ABSTRACT
We report a new method for introducing metal atoms into silicon wafers, using negligible thermal budget. Molecular thin films are irradiated with ultra-violet light releasing metal species into the semiconductor substrate. Secondary ion mass spectrometry and x-ray absorption spectroscopy show that Mn is incorporated into Si as an interstitial dopant. We propose that our method can form the basis of a generic low-cost, low-temperature technology that could lead to the creation of ordered dopant arrays.
Subject(s)
Crystallization/methods , Manganese/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Silicon/chemistry , Macromolecular Substances/chemistry , Macromolecular Substances/radiation effects , Manganese/radiation effects , Materials Testing , Molecular Conformation/radiation effects , Nanostructures/radiation effects , Nanostructures/ultrastructure , Particle Size , Silicon/radiation effects , Surface Properties/radiation effects , Ultraviolet RaysABSTRACT
Two scales of roughness are imparted onto silicon surfaces by isotropically patterning micron sized pillars using photolithography followed by an additional nanoparticle coating. Contact angles of the patterned surfaces were observed to increase with the addition of the nanoparticle coating, several of which, exhibited superhydrophobic characteristics. Freeze fracture atomic force microscopy and in situ synchrotron SAXS were used to investigate the micro- and nano-wettability of these surfaces using aqueous liquids of varying surface tension. The results revealed that scaling different roughness morphologies result in unique wetting characteristics. It indicated that surfaces with micro, nano or dual scale roughness induced channels for the wetting liquid as per capillary action. With the reduction of liquid surface tension, nano-wetting behaviour differed between superhydrophobic and non-superhydrophobic dual-scale roughness surfaces. Micro-wetting behaviour, however, remained consistent. This suggests that micro- and nano-wetting are mutually exclusive, and that the order in which they occur is ultimately governed by the energy expenditure of the entire system.
ABSTRACT
A new class of self-assembling hexa-peri-hexbenzocoronene (HBC)-fullerene hybrid materials has been synthesized and characterized. Photoluminescence experiments indicate that energy transfer processes can be tuned in these donor-acceptor systems by varying the length and nature of the linker group. In preliminary device testing, ambipolar charge transport behavior is observed in organic field effect transistors, while single active component organic photovoltaic devices consisting of these materials achieved a maximum external quantum efficiency of 30%.
ABSTRACT
We used atomic force microscopy to study dynamic forces between a rigid silica sphere (radius approximately 45 microm) and a silica nano-particle super-hydrophobic surface (SNP-SHS) in aqueous electrolyte, in the presence and absence of surfactant. Characterization of the SNP-SHS surface in air showed a surface roughness of up to two microns. When in contact with an aqueous phase, the SNP-SHS traps large, soft and stable air pockets in the surface interstices. The inherent roughness of the SNP-SHS together with the trapped air pockets are responsible for the superior hydrophobic properties of SNP-SHS such as high equilibrium contact angle (> 140 degrees) of water sessile drops on these surfaces and low hydrodynamic friction as observed in force measurements. We also observed that added surfactants adsorbed at the surface of air pockets magnified hydrodynamic interactions involving the SNP-SHS. The dynamic forces between the same silica sphere and a laterally smooth mica surface showed that the fitted Navier slip lengths using the Reynolds lubrication model were an order of magnitude larger than the length scale of the sphere surface roughness. The surface roughness and the lateral heterogeneity of the SNP-SHS hindered attempts to characterize the dynamic response using the Reynolds lubrication model even when augmented with a Navier slip boundary.