Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Microbiol ; 9(4): 949-963, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38528148

ABSTRACT

A polymorphism causing deficiencies in Toll-interacting protein (TOLLIP), an inhibitory adaptor protein affecting endosomal trafficking, is associated with increased tuberculosis (TB) risk. It is, however, unclear how TOLLIP affects TB pathogenesis. Here we show that TB severity is increased in Tollip-/- mice, characterized by macrophage- and T cell-driven inflammation, foam cell formation and lipid accumulation. Tollip-/- alveolar macrophages (AM) specifically accumulated lipid and underwent necrosis. Transcriptional and protein analyses of Mycobacterium tuberculosis (Mtb)-infected, Tollip-/- AM revealed increased EIF2 signalling and downstream upregulation of the integrated stress response (ISR). These phenotypes were linked, as incubation of the Mtb lipid mycolic acid with Mtb-infected Tollip-/- AM activated the ISR and increased Mtb replication. Correspondingly, the ISR inhibitor, ISRIB, reduced Mtb numbers in AM and improved Mtb control, overcoming the inflammatory phenotype. In conclusion, targeting the ISR offers a promising target for host-directed anti-TB therapy towards improved Mtb control and reduced immunopathology.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , Macrophages, Alveolar/microbiology , Tuberculosis/microbiology , Mycobacterium tuberculosis/physiology , Macrophages/microbiology , Lipids , Intracellular Signaling Peptides and Proteins/metabolism
2.
bioRxiv ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39211191

ABSTRACT

Pluripotent stem cell (SC)-derived islets offer hope as a renewable source for ß cell replacement for type 1 diabetes (T1D), yet functional and metabolic immaturity may limit their long-term therapeutic potential. Here, we show that limitations in mitochondrial transcriptional programming impede the formation and maturation of SC-derived ß (SC-ß) cells. Utilizing transcriptomic profiling, assessments of chromatin accessibility, mitochondrial phenotyping, and lipidomics analyses, we observed that SC-ß cells exhibit reduced oxidative and mitochondrial fatty acid metabolism compared to primary human islets that are related to limitations in key mitochondrial transcriptional networks. Surprisingly, we found that reductions in glucose- stimulated mitochondrial respiration in SC-islets were not associated with alterations in mitochondrial mass, structure, or genome integrity. In contrast, SC-islets show limited expression of targets of PPARIZ and PPARγ, which regulate mitochondrial programming, yet whose functions in ß cell differentiation are unknown. Importantly, treatment with WY14643, a potent PPARIZ agonist, induced expression of mitochondrial targets, improved insulin secretion, and increased the formation and maturation of SC-ß cells both in vitro and following transplantation. Thus, mitochondrial programming promotes the differentiation and maturation of SC-ß cells and may be a promising target to improve ß cell replacement efforts for T1D.

SELECTION OF CITATIONS
SEARCH DETAIL