Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Pharmacol Exp Ther ; 338(1): 114-24, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21505060

ABSTRACT

The endogenous cannabinoid (endocannabinoid) anandamide is principally degraded by the integral membrane enzyme fatty acid amide hydrolase (FAAH). Pharmacological blockade of FAAH has emerged as a potentially attractive strategy for augmenting endocannabinoid signaling and retaining the beneficial effects of cannabinoid receptor activation, while avoiding the undesirable side effects, such as weight gain and impairments in cognition and motor control, observed with direct cannabinoid receptor 1 agonists. Here, we report the detailed mechanistic and pharmacological characterization of N-pyridazin-3-yl-4-(3-{[5-(trifluoromethyl)pyridin-2-yl]oxy}benzylidene)piperidine-1-carboxamide (PF-04457845), a highly efficacious and selective FAAH inhibitor. Mechanistic studies confirm that PF-04457845 is a time-dependent, covalent FAAH inhibitor that carbamylates FAAH's catalytic serine nucleophile. PF-04457845 inhibits human FAAH with high potency (k(inact)/K(i) = 40,300 M(-1)s(-1); IC(50) = 7.2 nM) and is exquisitely selective in vivo as determined by activity-based protein profiling. Oral administration of PF-04457845 produced potent antinociceptive effects in both inflammatory [complete Freund's adjuvant (CFA)] and noninflammatory (monosodium iodoacetate) pain models in rats, with a minimum effective dose of 0.1 mg/kg (CFA model). PF-04457845 displayed a long duration of action as a single oral administration at 1 mg/kg showed in vivo efficacy for 24 h with a concomitant near-complete inhibition of FAAH activity and maximal sustained elevation of anandamide in brain. Significantly, PF-04457845-treated mice at 10 mg/kg elicited no effect in motility, catalepsy, and body temperature. Based on its exceptional selectivity and in vivo efficacy, combined with long duration of action and optimal pharmacokinetic properties, PF-04457845 is a clinical candidate for the treatment of pain and other nervous system disorders.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Pain/drug therapy , Pain/enzymology , Pyridazines/pharmacology , Pyridazines/therapeutic use , Urea/analogs & derivatives , Amidohydrolases/metabolism , Animals , Enzyme Inhibitors/chemistry , Humans , Inflammation/drug therapy , Inflammation/enzymology , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Piperidines/chemistry , Piperidines/pharmacology , Piperidines/therapeutic use , Pyridazines/chemistry , Rats , Rats, Sprague-Dawley , Urea/chemistry , Urea/pharmacology , Urea/therapeutic use
2.
ACS Med Chem Lett ; 2(2): 91-96, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21666860

ABSTRACT

Fatty acid amide hydrolase (FAAH) is an integral membrane serine hydrolase that degrades the fatty acid amide family of signaling lipids, including the endocannabinoid anandamide. Genetic or pharmacological inactivation of FAAH leads to analgesic and anti-inflammatory phenotypes in rodents without showing the undesirable side effects observed with direct cannabinoid receptor agonists, indicating that FAAH may represent an attractive therapeutic target for the treatment of inflammatory pain and other nervous system disorders. Herein, we report the discovery and characterization of a highly efficacious and selective FAAH inhibitor PF-04457845 (23). Compound 23 inhibits FAAH by a covalent, irreversible mechanism involving carbamylation of the active-site serine nucleophile of FAAH with high in vitro potency (k(inact)/K(i) and IC(50) values of 40300 M(-1) s(-1) and 7.2 nM, respectively, for human FAAH). Compound 23 has exquisite selectivity for FAAH relative to other members of the serine hydrolase superfamily as demonstrated by competitive activity-based protein profiling. Oral administration of 23 at 0.1 mg/kg results in efficacy comparable to that of naproxen at 10 mg/kg in a rat model of inflammatory pain. Compound 23 is being evaluated in human clinical trials.

3.
Bioorg Med Chem Lett ; 17(3): 756-60, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17095227

ABSTRACT

The Type 1 PI3Kinases comprise a family of enzymes, which primarily phosphorylate PIP2 to give the second messenger PIP3, a key player in many intracellular signaling processes [Science, 2002, 296, 1655; Trends Pharmacol. Sci.2003, 24, 366]. Of the four type 1 PI3Ks, the gamma-isoform, which is expressed almost exclusively in leukocytes [Curr. Biol., 1997, 7, R470], is of particular interest with respect to its role in inflammatory diseases such as rheumatoid arthritis (RA) and chronic obstructive pulmonary disease (COPD) [Mol. Med. Today, 2000, 6, 347]. Investigation of a series of 4,6-disubstituted-4H-benzo[1,4]oxazin-3-ones has led to the identification of single-digit nanomolar inhibitors of PI3Kgamma, several of which had good cell based activity and were shown to be active in vivo in an aspectic peritonitis model of inflammatory cell migration.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Oxazines/chemical synthesis , Oxazines/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Animals , Baculoviridae/drug effects , Baculoviridae/enzymology , Class Ib Phosphatidylinositol 3-Kinase , Drug Design , Drug Evaluation, Preclinical , Escherichia coli/drug effects , Indicators and Reagents , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Magnetic Resonance Spectroscopy , Mice , Mice, Knockout , Phosphatidylinositol 3-Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL