ABSTRACT
BACKGROUND: Nucleic acid amplification tests have allowed simultaneous detection of multiple respiratory viruses. METHODS: We compared the results of a liquid bead array xTAG Respiratory Virus Panel (RVP; (Luminex Corporation, Toronto, Canada) and a solid microarray Verigene Respiratory Virus Plus (RV+; Nanosphere, Northbrook, IL) for the detection of influenza A virus (INF A), influenza B virus (INF B), and respiratory syncytial virus (RSV) in 170 respiratory specimens from hospitalized patients. RESULTS: Overall, xTAG RVP demonstrated sensitivities and specificities of 97.6 and 100% for INF A, 100 and 99.4% for INF B, and 100 and 100% for RSV, while the Verigene RV+ test sensitivities and specificities were 95.1 and 98.5%, 100.0 and 99.4%, and 97.1 and 100%, respectively. There were no significant differences in the area under the curves between the two assays for each virus (P = 0.364 for INF A, P = 1.000 for INF B, P = 0.317 for RSV). Comparing the results of two assays, discordant results were present mostly due to subtype assignments and identification of coinfections. The detection of viruses was not significantly different (P = 1.000) and the virus/subtype assignment showed good agreement with kappa coefficients of 0.908. CONCLUSION: The xTAG RVP and Verigene RV+ showed high sensitivities and specificities, and good overall agreement in detection and identification of INF and RSV. These assays can be used in clinical settings for a reliable detection of respiratory viruses found commonly in hospitalized patients.
Subject(s)
Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Microarray Analysis/methods , Multiplex Polymerase Chain Reaction/methods , Respiratory Syncytial Viruses/isolation & purification , Respiratory Tract Infections/virology , Hospitalization , Humans , Sensitivity and SpecificityABSTRACT
Retrovirus tropism can be restricted by host cell factors such as Fv1, TRIM5alpha, and Lv1 that inhibit infection by targeting the incoming viral capsid. The Fv1 gene inhibits murine leukemia virus infection in mice, but the precise mechanism of Fv1-mediated restriction is poorly understood. Our previous studies had demonstrated that Fv1-mediated viral tropism can be determined within the capsid protein at position 114 (Jung and Kozak. 2000. J. Virol. 74: 5385-7). To study the interaction between Fv1 and CA, we introduced amino acid substitution and deletion at this site in the N-tropic AKV capsid gene. The mutated two-LTR proviral DNAs were introduced into SC-1 cells by transfection. After transfection, cell supernatants collected from transfected cells were tested for host range susceptibility. The result indicated that substitution of amino acids did not alter tropism, but the deletion of 114His produced a virus with unusual tropism. The novel phenotype produced here failed to replicate in Fv1-expressing cells. This mutant virus showing such an extreme restriction pattern would be useful for studying the mechanism of Fv1- mediated restriction.
Subject(s)
Gene Products, gag/metabolism , Leukemia Virus, Murine/physiology , Proteins/metabolism , Tropism , Amino Acid Substitution , Animals , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Line , Gene Products, gag/genetics , Leukemia Virus, Murine/genetics , Mice , Mice, Inbred BALB C , Mutagenesis, Site-Directed , NIH 3T3 Cells , Proteins/genetics , Terminal Repeat Sequences , Transfection , Virus ReplicationABSTRACT
Clone PERV-C (A3) env was isolated from the genomic DNA of domestic pig (Sus scrofa domesticus) in Korea to investigate the molecular properties of PERV-C. The nucleic acid homologies between the PERV-MSL (type C) reference and the PERV-C(A3) clone was 99% for env, but a single base pair deletion was found in the transmembrane (TM) region of the env open reading frame. To examine the functional characteristics of truncated PERV-C env, we constructed a replication-incompetent retroviral vector by replacing the env gene of the pCL-Eco retrovirus vector with PERV-C env. A retroviral vector bearing PERV-C/A chimeric envelopes was also created to complement the TM defect. Our results indicated that truncated PERV-C env was not infectious in human cells as expected. Interestingly, however, the vector with the PERV-C/A envelope was able to infect 293 cells. This observation suggests that recombination within PERV-C TM could render PERV-C infectious in humans. To further characterize PERV-C/A envelopes, we constructed an infectious molecular clone by using a PCR-based technique. This infectious molecular clone will be useful to examine more specific regions that are critical for human cell tropism.
Subject(s)
Retroviridae Infections/virology , Retroviridae/genetics , Sus scrofa/virology , Viral Envelope Proteins/genetics , Amino Acid Sequence , Animals , Cell Line , Cloning, Molecular , Disease Reservoirs/virology , Humans , Korea , Molecular Sequence Data , Point Mutation , Recombination, Genetic , Retroviridae/chemistry , Retroviridae/metabolism , Sequence Alignment , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolismABSTRACT
Human papillomavirus (HPV) infection is an important etiologic factor in cervical carcinogenesis. Various HPV DNA detection methods have been evaluated for clinicopathological level. For the specimens with normal cytological finding, discrepancies among the detection methods were frequently found and adequate interpretation can be difficult. 6,322 clinical specimens were submitted and evaluated for real-time PCR and Hybrid Capture 2 (HC2). 573 positive or "Not Detected but Amplified" (NDBA) specimens by real-time PCR were additionally tested using genetic analyzer. For the reliability of real-time PCR, 325 retests were performed. Optimal cut-off cycle threshold (CT ) value was evaluated also. 78.7% of submitted specimens showed normal or nonspecific cytological finding. The distributions of HPV types by real-time PCR were not different between positive and NDBA cases. For positive cases by fragment analysis, concordance rates with real-time PCR and HC2 were 94.2% and 84.2%. In NDBA cases, fragment analysis and real-time PCR showed identical results in 77.0% and HC2 revealed 27.6% of concordance with fragment analysis. Optimal cut-off CT value was different for HPV types. NDBA results in real-time PCR should be regarded as equivocal, not negative. The adjustment of cut-off CT value for HPV types will be helpful for the appropriate result interpretation.
Subject(s)
DNA, Viral/genetics , Papillomaviridae/genetics , Papillomavirus Infections/genetics , Uterine Cervical Neoplasms/genetics , Adult , DNA, Viral/classification , DNA, Viral/isolation & purification , Female , Genotype , Humans , Molecular Diagnostic Techniques , Papanicolaou Test , Papillomaviridae/classification , Papillomaviridae/isolation & purification , Papillomaviridae/pathogenicity , Papillomavirus Infections/diagnosis , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/virologyABSTRACT
Herpes simplex viruses types 1 and 2 (HSV-1 and HSV-2), and varicella-zoster virus (VZV) are common agents resulting in various forms of clinical manifestation from skin vesicle to disseminated viral infection. The aim of the present study was to develop a real-time PCR and melting curve analysis which detect and differentiate HSV-1, HSV-2, and VZV, to compare with PCR-RFLP using clinical specimens, and to introduce the 4-year experience in the clinical laboratory. Three pairs of primers for HSV-1, HSV-2, and VZV were designed. Primers for human endogenous retrovirus-3 (HERV-3), an internal control, were adopted. A hundred selected specimens and many clinical specimens were tested for methods comparison and assay validation. Increased sensitivity and specificity were obtained from real-time PCR. In review of results of clinical specimens submitted to clinical laboratory, a total of 46 of 3,513 specimens were positive in cerebrospinal fluids, blood, skin vesicles, genital swabs, aqueous humor, and ear discharge. Thus, this method could be a rapid and accurate alternative to virus culture and other molecular tests for detection and typing of HSV-1, HSV-2, and VZV.
Subject(s)
Herpesviridae Infections , Herpesvirus 1, Human/genetics , Herpesvirus 2, Human/genetics , Herpesvirus 3, Human/genetics , Multiplex Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods , Adolescent , Adult , Aged , Aged, 80 and over , Cell Line , Female , Herpesviridae Infections/diagnosis , Herpesviridae Infections/virology , Herpesvirus 1, Human/isolation & purification , Herpesvirus 2, Human/isolation & purification , Herpesvirus 3, Human/isolation & purification , Humans , Male , Middle Aged , Nucleic Acid Denaturation , RNA, Viral/analysis , RNA, Viral/genetics , Reproducibility of Results , Sensitivity and Specificity , Young AdultABSTRACT
Many nontuberculous mycobacteria (NTM) species have clinical significance, and the rapid and reliable identification of Mycobacterium tuberculosis complex (MTBC) and NTM species is important. We evaluated the simultaneous detection of MTBC and NTM in respiratory specimens. MTBC and NTM were simultaneously detected and identified by laboratory-developed (LDT) real-time PCR, multiplex real-time PCR/melting curve analysis, rpoB PCR restriction fragment length polymorphisms and the AdvanSure Mycobacteria GenoBlot assay (LG Life Sciences). Eighty-five respiratory specimens from 69 patients showed simultaneous detection of MTBC and NTM. A line probe assay showed 70.6% concordance with LDT. Ten patients (14.5%) had a history of tuberculosis, and eight patients (11.6%) had been previously diagnosed with bronchiectasis. Mixed cultures were present one time in 57 patients (82.6%) and repeatedly in 12 patients (17.4%). MTBC was more frequent in 44 patients (63.8%), and NTM was isolated in seven patients (10.1%). The commonly detected NTM species in the mixed cultures were Mycobacterium intracellulare (29.0%) and Mycobacterium abscessus (29.0%). Co-isolation caused a failure of antitubercular drug susceptibility testing in 2 patients (2.9%). Molecular methods allow MTBC and NTM species to be simultaneously identified in respiratory specimens. NTM isolated with MTBC has clinical significance in some patients and should not be ignored.