Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Cell ; 185(23): 4333-4346.e14, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36257313

ABSTRACT

SARS-CoV-2 mRNA booster vaccines provide protection from severe disease, eliciting strong immunity that is further boosted by previous infection. However, it is unclear whether these immune responses are affected by the interval between infection and vaccination. Over a 2-month period, we evaluated antibody and B cell responses to a third-dose mRNA vaccine in 66 individuals with different infection histories. Uninfected and post-boost but not previously infected individuals mounted robust ancestral and variant spike-binding and neutralizing antibodies and memory B cells. Spike-specific B cell responses from recent infection (<180 days) were elevated at pre-boost but comparatively less so at 60 days post-boost compared with uninfected individuals, and these differences were linked to baseline frequencies of CD27lo B cells. Day 60 to baseline ratio of BCR signaling measured by phosphorylation of Syk was inversely correlated to days between infection and vaccination. Thus, B cell responses to booster vaccines are impeded by recent infection.


Subject(s)
B-Lymphocytes , COVID-19 , Viral Vaccines , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Vaccination , B-Lymphocytes/immunology , mRNA Vaccines
2.
Cell ; 185(9): 1556-1571.e18, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35447072

ABSTRACT

SARS-CoV-2 Omicron is highly transmissible and has substantial resistance to neutralization following immunization with ancestral spike-matched vaccines. It is unclear whether boosting with Omicron-matched vaccines would enhance protection. Here, nonhuman primates that received mRNA-1273 at weeks 0 and 4 were boosted at week 41 with mRNA-1273 or mRNA-Omicron. Neutralizing titers against D614G were 4,760 and 270 reciprocal ID50 at week 6 (peak) and week 41 (preboost), respectively, and 320 and 110 for Omicron. 2 weeks after the boost, titers against D614G and Omicron increased to 5,360 and 2,980 for mRNA-1273 boost and 2,670 and 1,930 for mRNA-Omicron, respectively. Similar increases against BA.2 were observed. Following either boost, 70%-80% of spike-specific B cells were cross-reactive against WA1 and Omicron. Equivalent control of virus replication in lower airways was observed following Omicron challenge 1 month after either boost. These data show that mRNA-1273 and mRNA-Omicron elicit comparable immunity and protection shortly after the boost.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Macaca , RNA, Messenger
3.
Cell ; 178(3): 567-584.e19, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31348886

ABSTRACT

The vaccine-mediated elicitation of antibodies (Abs) capable of neutralizing diverse HIV-1 strains has been a long-standing goal. To understand how broadly neutralizing antibodies (bNAbs) can be elicited, we identified, characterized, and tracked five neutralizing Ab lineages targeting the HIV-1-fusion peptide (FP) in vaccinated macaques over time. Genetic and structural analyses revealed two of these lineages to belong to a reproducible class capable of neutralizing up to 59% of 208 diverse viral strains. B cell analysis indicated each of the five lineages to have been initiated and expanded by FP-carrier priming, with envelope (Env)-trimer boosts inducing cross-reactive neutralization. These Abs had binding-energy hotspots focused on FP, whereas several FP-directed Abs induced by immunization with Env trimer-only were less FP-focused and less broadly neutralizing. Priming with a conserved subregion, such as FP, can thus induce Abs with binding-energy hotspots coincident with the target subregion and capable of broad neutralization.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , Peptides/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/classification , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Crystallography, X-Ray , Female , HEK293 Cells , HIV Antibodies/chemistry , HIV Antibodies/classification , HIV-1/metabolism , Humans , Macaca mulatta , Male , Peptides/chemistry , Protein Structure, Tertiary , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/metabolism
4.
Immunity ; 54(2): 324-339.e8, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33453152

ABSTRACT

Vaccine elicitation of broadly neutralizing antibodies (bnAbs) is a key HIV-research goal. The VRC01 class of bnAbs targets the CD4-binding site on the HIV-envelope trimer and requires extensive somatic hypermutation (SHM) to neutralize effectively. Despite substantial progress, vaccine-induced VRC01-class antibodies starting from unmutated precursors have exhibited limited neutralization breadth, particularly against viruses bearing glycan on loop D residue N276 (glycan276), present on most circulating strains. Here, using sequential immunization of immunoglobulin (Ig)-humanized mice expressing diverse unmutated VRC01-class antibody precursors, we elicited serum responses capable of neutralizing viruses bearing glycan276 and isolated multiple lineages of VRC01-class bnAbs, including two with >50% breadth on a 208-strain panel. Crystal structures of representative bnAbs revealed the same mode of recognition as known VRC01-class bnAbs. Structure-function studies further pinpointed key mutations and correlated their induction with specific immunizations. VRC01-class bnAbs can thus be matured by sequential immunization from unmutated ancestors to >50% breadth, and we delineate immunogens and regimens inducing key SHM.


Subject(s)
AIDS Vaccines/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/metabolism , HIV Antibodies/metabolism , HIV Infections/immunology , HIV-1/physiology , Mutation/genetics , Animals , Broadly Neutralizing Antibodies/genetics , Disease Models, Animal , HEK293 Cells , HIV Antibodies/genetics , Humans , Lymphocyte Activation , Mice , Mice, Transgenic , Somatic Hypermutation, Immunoglobulin , Vaccination
5.
N Engl J Med ; 390(17): 1549-1559, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38669354

ABSTRACT

BACKGROUND: Subcutaneous administration of the monoclonal antibody L9LS protected adults against controlled Plasmodium falciparum infection in a phase 1 trial. Whether a monoclonal antibody administered subcutaneously can protect children from P. falciparum infection in a region where this organism is endemic is unclear. METHODS: We conducted a phase 2 trial in Mali to assess the safety and efficacy of subcutaneous administration of L9LS in children 6 to 10 years of age over a 6-month malaria season. In part A of the trial, safety was assessed at three dose levels in adults, followed by assessment at two dose levels in children. In part B of the trial, children were randomly assigned, in a 1:1:1 ratio, to receive 150 mg of L9LS, 300 mg of L9LS, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection, as detected on blood smear performed at least every 2 weeks for 24 weeks. A secondary efficacy end point was the first episode of clinical malaria, as assessed in a time-to-event analysis. RESULTS: No safety concerns were identified in the dose-escalation part of the trial (part A). In part B, 225 children underwent randomization, with 75 children assigned to each group. No safety concerns were identified in part B. P. falciparum infection occurred in 36 participants (48%) in the 150-mg group, in 30 (40%) in the 300-mg group, and in 61 (81%) in the placebo group. The efficacy of L9LS against P. falciparum infection, as compared with placebo, was 66% (adjusted confidence interval [95% CI], 45 to 79) with the 150-mg dose and 70% (adjusted 95% CI, 50 to 82) with the 300-mg dose (P<0.001 for both comparisons). Efficacy against clinical malaria was 67% (adjusted 95% CI, 39 to 82) with the 150-mg dose and 77% (adjusted 95% CI, 55 to 89) with the 300-mg dose (P<0.001 for both comparisons). CONCLUSIONS: Subcutaneous administration of L9LS to children was protective against P. falciparum infection and clinical malaria over a period of 6 months. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT05304611.).


Subject(s)
Antibodies, Monoclonal, Humanized , Malaria, Falciparum , Adult , Child , Female , Humans , Male , Dose-Response Relationship, Drug , Double-Blind Method , Endemic Diseases/prevention & control , Injections, Subcutaneous , Kaplan-Meier Estimate , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Mali/epidemiology , Plasmodium falciparum , Treatment Outcome , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Directly Observed Therapy , Artemether, Lumefantrine Drug Combination/administration & dosage , Artemether, Lumefantrine Drug Combination/therapeutic use , Young Adult , Middle Aged
6.
J Virol ; 97(5): e0160422, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37098956

ABSTRACT

While neutralizing antibodies that target the HIV-1 fusion peptide have been elicited in mice by vaccination, antibodies reported thus far have been from only a single antibody class that could neutralize ~30% of HIV-1 strains. To explore the ability of the murine immune system to generate cross-clade neutralizing antibodies and to investigate how higher breadth and potency might be achieved, we tested 17 prime-boost regimens that utilized diverse fusion peptide-carrier conjugates and HIV-1 envelope trimers with different fusion peptides. We observed priming in mice with fusion peptide-carrier conjugates of variable peptide length to elicit higher neutralizing responses, a result we confirmed in guinea pigs. From vaccinated mice, we isolated 21 antibodies, belonging to 4 distinct classes of fusion peptide-directed antibodies capable of cross-clade neutralization. Top antibodies from each class collectively neutralized over 50% of a 208-strain panel. Structural analyses - both X-ray and cryo-EM - revealed each antibody class to recognize a distinct conformation of fusion peptide and to have a binding pocket capable of accommodating diverse fusion peptides. Murine vaccinations can thus elicit diverse neutralizing antibodies, and altering peptide length during prime can improve the elicitation of cross-clade responses targeting the fusion peptide site of HIV-1 vulnerability. IMPORTANCE The HIV-1 fusion peptide has been identified as a site for elicitation of broadly neutralizing antibodies, with prior studies demonstrating that priming with fusion peptide-based immunogens and boosting with soluble envelope (Env) trimers can elicit cross-clade HIV-1-neutralizing responses. To improve the neutralizing breadth and potency of fusion peptide-directed responses, we evaluated vaccine regimens that incorporated diverse fusion peptide-conjugates and Env trimers with variation in fusion peptide length and sequence. We found that variation in peptide length during prime elicits enhanced neutralizing responses in mice and guinea pigs. We identified vaccine-elicited murine monoclonal antibodies from distinct classes capable of cross-clade neutralization and of diverse fusion peptide recognition. Our findings lend insight into improved immunogens and regimens for HIV-1 vaccine development.


Subject(s)
AIDS Vaccines , HIV Infections , HIV Seropositivity , HIV-1 , Animals , Guinea Pigs , Mice , HIV Antibodies , Immunoglobulin Isotypes , Vaccination , Peptides , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , env Gene Products, Human Immunodeficiency Virus , HIV Infections/prevention & control
7.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33649208

ABSTRACT

Vaccine-based elicitation of broadly neutralizing antibodies holds great promise for preventing HIV-1 transmission. However, the key biophysical markers of improved antibody recognition remain uncertain in the diverse landscape of potential antibody mutation pathways, and a more complete understanding of anti-HIV-1 fusion peptide (FP) antibody development will accelerate rational vaccine designs. Here we survey the mutational landscape of the vaccine-elicited anti-FP antibody, vFP16.02, to determine the genetic, structural, and functional features associated with antibody improvement or fitness. Using site-saturation mutagenesis and yeast display functional screening, we found that 1% of possible single mutations improved HIV-1 envelope trimer (Env) affinity, but generally comprised rare somatic hypermutations that may not arise frequently in vivo. We observed that many single mutations in the vFP16.02 Fab could enhance affinity >1,000-fold against soluble FP, although affinity improvements against the HIV-1 trimer were more measured and rare. The most potent variants enhanced affinity to both soluble FP and Env, had mutations concentrated in antibody framework regions, and achieved up to 37% neutralization breadth compared to 28% neutralization of the template antibody. Altered heavy- and light-chain interface angles and conformational dynamics, as well as reduced Fab thermal stability, were associated with improved HIV-1 neutralization breadth and potency. We also observed parallel sets of mutations that enhanced viral neutralization through similar structural mechanisms. These data provide a quantitative understanding of the mutational landscape for vaccine-elicited FP-directed broadly neutralizing antibody and demonstrate that numerous antigen-distal framework mutations can improve antibody function by enhancing affinity simultaneously toward HIV-1 Env and FP.


Subject(s)
AIDS Vaccines/immunology , Broadly Neutralizing Antibodies/immunology , HIV Antibodies/immunology , HIV-1/immunology , Mutation , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/genetics , Broadly Neutralizing Antibodies/genetics , HIV Antibodies/genetics , HIV-1/genetics , Humans , env Gene Products, Human Immunodeficiency Virus/genetics
8.
N Engl J Med ; 383(25): 2427-2438, 2020 12 17.
Article in English | MEDLINE | ID: mdl-32991794

ABSTRACT

BACKGROUND: Testing of vaccine candidates to prevent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in an older population is important, since increased incidences of illness and death from coronavirus disease 2019 (Covid-19) have been associated with an older age. METHODS: We conducted a phase 1, dose-escalation, open-label trial of a messenger RNA vaccine, mRNA-1273, which encodes the stabilized prefusion SARS-CoV-2 spike protein (S-2P) in healthy adults. The trial was expanded to include 40 older adults, who were stratified according to age (56 to 70 years or ≥71 years). All the participants were assigned sequentially to receive two doses of either 25 µg or 100 µg of vaccine administered 28 days apart. RESULTS: Solicited adverse events were predominantly mild or moderate in severity and most frequently included fatigue, chills, headache, myalgia, and pain at the injection site. Such adverse events were dose-dependent and were more common after the second immunization. Binding-antibody responses increased rapidly after the first immunization. By day 57, among the participants who received the 25-µg dose, the anti-S-2P geometric mean titer (GMT) was 323,945 among those between the ages of 56 and 70 years and 1,128,391 among those who were 71 years of age or older; among the participants who received the 100-µg dose, the GMT in the two age subgroups was 1,183,066 and 3,638,522, respectively. After the second immunization, serum neutralizing activity was detected in all the participants by multiple methods. Binding- and neutralizing-antibody responses appeared to be similar to those previously reported among vaccine recipients between the ages of 18 and 55 years and were above the median of a panel of controls who had donated convalescent serum. The vaccine elicited a strong CD4 cytokine response involving type 1 helper T cells. CONCLUSIONS: In this small study involving older adults, adverse events associated with the mRNA-1273 vaccine were mainly mild or moderate. The 100-µg dose induced higher binding- and neutralizing-antibody titers than the 25-µg dose, which supports the use of the 100-µg dose in a phase 3 vaccine trial. (Funded by the National Institute of Allergy and Infectious Diseases and others; mRNA-1273 Study ClinicalTrials.gov number, NCT04283461.).


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273 , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , Dose-Response Relationship, Drug , Female , Humans , Male , Middle Aged , Neutralization Tests , Spike Glycoprotein, Coronavirus , T-Lymphocytes/physiology
9.
N Engl J Med ; 383(16): 1544-1555, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32722908

ABSTRACT

BACKGROUND: Vaccines to prevent coronavirus disease 2019 (Covid-19) are urgently needed. The effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines on viral replication in both upper and lower airways is important to evaluate in nonhuman primates. METHODS: Nonhuman primates received 10 or 100 µg of mRNA-1273, a vaccine encoding the prefusion-stabilized spike protein of SARS-CoV-2, or no vaccine. Antibody and T-cell responses were assessed before upper- and lower-airway challenge with SARS-CoV-2. Active viral replication and viral genomes in bronchoalveolar-lavage (BAL) fluid and nasal swab specimens were assessed by polymerase chain reaction, and histopathological analysis and viral quantification were performed on lung-tissue specimens. RESULTS: The mRNA-1273 vaccine candidate induced antibody levels exceeding those in human convalescent-phase serum, with live-virus reciprocal 50% inhibitory dilution (ID50) geometric mean titers of 501 in the 10-µg dose group and 3481 in the 100-µg dose group. Vaccination induced type 1 helper T-cell (Th1)-biased CD4 T-cell responses and low or undetectable Th2 or CD8 T-cell responses. Viral replication was not detectable in BAL fluid by day 2 after challenge in seven of eight animals in both vaccinated groups. No viral replication was detectable in the nose of any of the eight animals in the 100-µg dose group by day 2 after challenge, and limited inflammation or detectable viral genome or antigen was noted in lungs of animals in either vaccine group. CONCLUSIONS: Vaccination of nonhuman primates with mRNA-1273 induced robust SARS-CoV-2 neutralizing activity, rapid protection in the upper and lower airways, and no pathologic changes in the lung. (Funded by the National Institutes of Health and others.).


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , 2019-nCoV Vaccine mRNA-1273 , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/physiology , CD4 Antigens , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/pathology , Coronavirus Infections/therapy , Disease Models, Animal , Dose-Response Relationship, Immunologic , Immunization, Passive , Lung/pathology , Lung/virology , Macaca mulatta , Pneumonia, Viral/pathology , Pneumonia, Viral/therapy , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes/immunology , Viral Load , Viral Vaccines/administration & dosage , Virus Replication , COVID-19 Serotherapy
10.
Br J Haematol ; 199(5): 679-687, 2022 12.
Article in English | MEDLINE | ID: mdl-36128909

ABSTRACT

Patients with severe aplastic anaemia (SAA) are often not vaccinated against viruses due to concerns of ineffective protective antibody response and potential for pathogenic global immune system activation, leading to relapse. We evaluated the impact of COVID-19 vaccination on haematological indices and disease status and characterized the humoural and cellular responses to vaccination in 50 SAA patients, who were previously treated with immunosuppressive therapy (IST). There was no significant difference in haemoglobin (p = 0.52), platelet count (p = 0.67), absolute lymphocyte (p = 0.42) and neutrophil (p = 0.98) counts prior to and after completion of vaccination series. Relapse after vaccination, defined as a progressive decline in counts requiring treatment, occurred in three patients (6%). Humoural response was detectable in 90% (28/31) of cases by reduction in an in-vitro Angiotensin II Converting Enzyme (ACE2) binding and neutralization assay, even in patients receiving ciclosporin (10/11, 90.1%). Comparison of spike-specific T-cell responses in 27 SAA patients and 10 control subjects revealed qualitatively similar CD4+ Th1-dominant responses to vaccination. There was no difference in CD4+ (p = 0.77) or CD8+ (p = 0.74) T-cell responses between patients on or off ciclosporin therapy at the time of vaccination. Our data highlight appropriate humoural and cellular responses in SAA previously treated with IST and true relapse after vaccination is rare.


Subject(s)
Anemia, Aplastic , COVID-19 , Humans , Anemia, Aplastic/drug therapy , Cyclosporine/therapeutic use , COVID-19 Vaccines/therapeutic use , SARS-CoV-2 , Immunosuppressive Agents/therapeutic use , COVID-19/prevention & control , Recurrence , Immunity , Vaccination
11.
J Infect Dis ; 224(11): 1916-1924, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34009371

ABSTRACT

BACKGROUND: Perinatal human immunodeficiency virus type 1 (HIV-1) continues to occur due to barriers to effective antiretroviral prevention that might be mitigated by long-acting broadly neutralizing monoclonal antibodies (bNAbs). METHODS: An extended half-life bNAb, VRC01LS, was administered subcutaneously at 80 mg/dose after birth to HIV-1-exposed, nonbreastfed (cohort 1, n = 10) and breastfed (cohort 2, n = 11) infants. Cohort 2 received a second dose (100 mg) at 12 weeks. All received antiretroviral prophylaxis. VRC01LS levels were compared to VRC01 levels determined in a prior cohort. RESULTS: Local reactions (all grade ≤2) occurred in 67% and 20% after dose 1 and dose 2, respectively. The weight-banded dose (mean 28.8 mg/kg) of VRC01LS administered subcutaneously achieved a mean (standard deviation) plasma level of 222.3 (71.6) µg/mL by 24 hours and 44.0 (11.6) µg/mL at week 12, prior to dose 2. The preestablished target of ≥50 µg/mL was attained in 95% and 32% at weeks 8 and 12, respectively. The terminal half-life was 37-41 days. VRC01LS level after 1 dose was significantly greater (P <.002) than after a VRC01 dose (20 mg/kg). No infants acquired HIV-1. CONCLUSIONS: VRC01LS was well tolerated with pharmacokinetics that support further studies of more potent long-acting bNAbs as adjunct treatment with antiretrovirals to prevent infant HIV-1 transmission.


Subject(s)
Anti-Retroviral Agents/administration & dosage , Antibodies, Monoclonal/pharmacokinetics , Broadly Neutralizing Antibodies/pharmacology , HIV Antibodies , HIV Infections/prevention & control , HIV-1/drug effects , Infectious Disease Transmission, Vertical/prevention & control , Anti-Retroviral Agents/therapeutic use , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Broadly Neutralizing Antibodies/administration & dosage , Dose-Response Relationship, Drug , Female , HIV Antibodies/administration & dosage , HIV Antibodies/adverse effects , HIV Infections/blood , HIV Infections/drug therapy , HIV-1/immunology , HIV-1/pathogenicity , Half-Life , Humans , Infant, Newborn , Male
12.
Clin Infect Dis ; 73(11): e4421-e4427, 2021 12 06.
Article in English | MEDLINE | ID: mdl-32463443

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is a leading cause of viral pneumonia and bronchiolitis during the first 6 months of life. Placentally transferred antibodies can prevent severe RSV illness, and maternal immunization may reduce illness in young infants. Identification of protective antibody levels facilitates the advancement of vaccine candidates and maternal immunization. METHODS: We conducted a nested case-control study with 587 Malian mother-infant pairs, followed from birth to age 6 months. RSV cases were infants who developed influenza-like illness (ILI) or pneumonia and were RSV-positive by polymerase chain reaction. Cases were matched to healthy controls and RSV-negative ILI controls. RSV-A and RSV-B neutralizing antibodies were measured in maternal, cord blood, and infant sera at age 3 and 6 months. RESULTS: Maternal antibodies were efficiently transferred to infants. Maternal and infant RSV titers were strongly correlated. Infant antibody titers against RSV-A were 3 times higher than those against RSV-B. At birth, infants who remained healthy had significantly higher RSV-A and RSV-B titers compared with infants who subsequently contracted RSV. RSV-A inhibitory concentration (IC)80 titer >239 or RSV-B titer >60 at birth was significantly associated with being a healthy control compared with an RSV case within the first 3 months of life. RSV-A IC80 titers in cord blood were associated with decreased episodes of pneumonia. CONCLUSIONS: Maternally acquired RSV antibodies were associated with protection of infants against community-detected cases of RSV-ILI and pneumonia. RSV titers in cord blood can predict whether an infant will be infected with RSV or remain uninfected.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Antibodies, Neutralizing , Antibodies, Viral , Case-Control Studies , Humans , Infant , Infant, Newborn , Respiratory Syncytial Virus Infections/prevention & control
13.
J Infect Dis ; 222(4): 628-636, 2020 07 23.
Article in English | MEDLINE | ID: mdl-31681963

ABSTRACT

BACKGROUND: Although mother-to-child human immunodeficiency virus (HIV) transmission has dramatically decreased with maternal antiretroviral therapy, breast milk transmission accounts for most of the 180 000 new infant HIV infections annually. Broadly neutralizing antibodies (bNAb) may further reduce transmission. METHODS: A Phase 1 safety and pharmacokinetic study was conducted: a single subcutaneous (SC) dose of 20 or 40 mg/kg (Dose Groups 1 and 2, respectively) of the bNAb VRC01 was administered to HIV-exposed infants soon after birth. Breastfeeding infants (Dose Group 3) received 40 mg/kg SC VRC01 after birth and then 20 mg/kg/dose SC monthly. All infants received appropriate antiretroviral prophylaxis. RESULTS: Forty infants were enrolled (21 in the United States, 19 in Africa). Subcutaneous VRC01 was safe and well tolerated with only mild-to-moderate local reactions, primarily erythema, which rapidly resolved. For multiple-dose infants, local reactions decreased with subsequent injections. VRC01 was rapidly absorbed after administration, with peak concentrations 1-6 days postdose. The 40 mg/kg dose resulted in 13 of 14 infants achieving the serum 50 micrograms (mcg)/mL target at day 28. Dose Group 3 infants maintained concentrations greater than 50 mcg/mL throughout breastfeeding. CONCLUSIONS: Subcutaneous VRC01 as single or multiple doses is safe and well tolerated in very young infants and is suitable for further study to prevent HIV transmission in infants.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Broadly Neutralizing Antibodies/administration & dosage , HIV Antibodies/administration & dosage , HIV Infections/drug therapy , HIV-1/drug effects , Infectious Disease Transmission, Vertical/prevention & control , Africa , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Broadly Neutralizing Antibodies/adverse effects , Female , HIV Antibodies/adverse effects , HIV Infections/blood , Humans , Infant, Newborn , Injections, Subcutaneous , Linear Models , Male , United States
16.
Sci Transl Med ; 16(728): eadd5960, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38170789

ABSTRACT

Durable humoral immunity is mediated by long-lived plasma cells (LLPCs) that reside in the bone marrow. It remains unclear whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein vaccination is able to elicit and maintain LLPCs. Here, we describe a sensitive method to identify and isolate antigen-specific LLPCs by tethering antibodies secreted by these cells onto the cell surface. Using this method, we found that two doses of adjuvanted SARS-CoV-2 spike protein vaccination are able to induce spike protein-specific LLPC reservoirs enriched for receptor binding domain specificities in the bone marrow of nonhuman primates that are detectable for several months after vaccination. Immunoglobulin gene sequencing confirmed that several of these LLPCs were clones of memory B cells elicited 2 weeks after boost that had undergone further somatic hypermutation. Many of the antibodies secreted by these LLPCs also exhibited improved neutralization and cross-reactivity compared with earlier time points. These findings establish our method as a means to sensitively and reliably detect rare antigen-specific LLPCs and demonstrate that adjuvanted SARS-CoV-2 spike protein vaccination establishes spike protein-specific LLPC reservoirs.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Humans , Plasma Cells/metabolism , Antibodies, Viral , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Adjuvants, Immunologic , Primates , Antibodies, Neutralizing
17.
Nat Commun ; 15(1): 4301, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773089

ABSTRACT

The vaccine elicitation of HIV tier-2-neutralization antibodies has been a challenge. Here, we report the isolation and characterization of a CD4-binding site (CD4bs) specific monoclonal antibody, HmAb64, from a human volunteer immunized with a polyvalent DNA prime-protein boost HIV vaccine. HmAb64 is derived from heavy chain variable germline gene IGHV1-18 and light chain germline gene IGKV1-39. It has a third heavy chain complementarity-determining region (CDR H3) of 15 amino acids. On a cross-clade panel of 208 HIV-1 pseudo-virus strains, HmAb64 neutralized 20 (10%), including tier-2 strains from clades B, BC, C, and G. The cryo-EM structure of the antigen-binding fragment of HmAb64 in complex with a CNE40 SOSIP trimer revealed details of its recognition; HmAb64 uses both heavy and light CDR3s to recognize the CD4-binding loop, a critical component of the CD4bs. This study demonstrates that a gp120-based vaccine can elicit antibodies capable of tier 2-HIV neutralization.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , CD4 Antigens , HIV Antibodies , HIV-1 , Humans , AIDS Vaccines/immunology , HIV-1/immunology , HIV Antibodies/immunology , Antibodies, Neutralizing/immunology , CD4 Antigens/immunology , CD4 Antigens/metabolism , Vaccines, DNA/immunology , Antibodies, Monoclonal/immunology , HIV Infections/prevention & control , HIV Infections/immunology , HIV Infections/virology , Cryoelectron Microscopy , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/chemistry , Binding Sites , Complementarity Determining Regions/immunology , Complementarity Determining Regions/chemistry
18.
Adv Sci (Weinh) ; : e2309268, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704686

ABSTRACT

Broadly neutralizing antibodies are proposed as therapeutic and prophylactic agents against HIV-1, but their potency and breadth are less than optimal. This study describes the immunization of a llama with the prefusion-stabilized HIV-1 envelope (Env) trimer, BG505 DS-SOSIP, and the identification and improvement of potent neutralizing nanobodies recognizing the CD4-binding site (CD4bs) of vulnerability. Two of the vaccine-elicited CD4bs-targeting nanobodies, G36 and R27, when engineered into a triple tandem format with llama IgG2a-hinge region and human IgG1-constant region (G36×3-IgG2a and R27×3-IgG2a), neutralized 96% of a multiclade 208-strain panel at geometric mean IC80s of 0.314 and 0.033 µg mL-1, respectively. Cryo-EM structures of these nanobodies in complex with Env trimer revealed the two nanobodies to neutralize HIV-1 by mimicking the recognition of the CD4 receptor. To enhance their neutralizing potency and breadth, nanobodies are linked to the light chain of the V2-apex-targeting broadly neutralizing antibody, CAP256V2LS. The resultant human-llama bispecific antibody CAP256L-R27×3LS exhibited ultrapotent neutralization and breadth exceeding other published HIV-1 broadly neutralizing antibodies, with pharmacokinetics determined in FcRn-Fc mice similar to the parent CAP256V2LS. Vaccine-elicited llama nanobodies, when combined with V2-apex broadly neutralizing antibodies, may therefore be able to fulfill anti-HIV-1 therapeutic and prophylactic clinical goals.

19.
JCI Insight ; 9(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587079

ABSTRACT

BACKGROUNDBroadly neutralizing monoclonal antibodies (bNAbs) represent a promising strategy for HIV-1 immunoprophylaxis and treatment. 10E8VLS and VRC07-523LS are bNAbs that target the highly conserved membrane-proximal external region (MPER) and the CD4-binding site of the HIV-1 viral envelope glycoprotein, respectively.METHODSIn this phase 1, open-label trial, we evaluated the safety and pharmacokinetics of 5 mg/kg 10E8VLS administered alone, or concurrently with 5 mg/kg VRC07-523LS, via s.c. injection to healthy non-HIV-infected individuals.RESULTSEight participants received either 10E8VLS alone (n = 6) or 10E8VLS and VRC07-523LS in combination (n = 2). Five (n = 5 of 8, 62.5%) participants who received 10E8VLS experienced moderate local reactogenicity, and 1 participant (n = 1/8, 12.5%) experienced severe local reactogenicity. Further trial enrollment was stopped, and no participant received repeat dosing. All local reactogenicity resolved without sequelae. 10E8VLS retained its neutralizing capacity, and no functional anti-drug antibodies were detected; however, a serum t1/2 of 8.1 days was shorter than expected. Therefore, the trial was voluntarily stopped per sponsor decision (Vaccine Research Center, National Institute of Allergy and Infectious Diseases [NIAID], NIH). Mechanistic studies performed to investigate the underlying reason for the reactogenicity suggest that multiple mechanisms may have contributed, including antibody aggregation and upregulation of local inflammatory markers.CONCLUSION10E8VLS resulted in unexpected reactogenicity and a shorter t1/2 in comparison with previously tested bNAbs. These studies may facilitate identification of nonreactogenic second-generation MPER-targeting bNAbs, which could be an effective strategy for HIV-1 immunoprophylaxis and treatment.TRIAL REGISTRATIONClinicaltrials.gov, accession no. NCT03565315.FUNDINGDivision of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV Infections/drug therapy , HIV Infections/prevention & control , HIV Antibodies , Broadly Neutralizing Antibodies/pharmacology , Antibodies, Monoclonal/pharmacology
20.
Cell Rep ; 42(7): 112711, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37436900

ABSTRACT

Broadly neutralizing antibodies (bNAbs) against HIV can reduce viral transmission in humans, but an effective therapeutic will require unusually high breadth and potency of neutralization. We employ the OSPREY computational protein design software to engineer variants of two apex-directed bNAbs, PGT145 and PG9RSH, resulting in increases in potency of over 100-fold against some viruses. The top designed variants improve neutralization breadth from 39% to 54% at clinically relevant concentrations (IC80 < 1 µg/mL) and improve median potency (IC80) by up to 4-fold over a cross-clade panel of 208 strains. To investigate the mechanisms of improvement, we determine cryoelectron microscopy structures of each variant in complex with the HIV envelope trimer. Surprisingly, we find the largest increases in breadth to be a result of optimizing side-chain interactions with highly variable epitope residues. These results provide insight into mechanisms of neutralization breadth and inform strategies for antibody design and improvement.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV Antibodies , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , Cryoelectron Microscopy , Neutralization Tests
SELECTION OF CITATIONS
SEARCH DETAIL