Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.414
Filter
Add more filters

Publication year range
1.
Cell ; 183(4): 875-889.e17, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33035453

ABSTRACT

Banyan trees are distinguished by their extraordinary aerial roots. The Ficus genus includes species that have evolved a species-specific mutualism system with wasp pollinators. We sequenced genomes of the Chinese banyan tree, F. microcarpa, and a species lacking aerial roots, F. hispida, and one wasp genome coevolving with F. microcarpa, Eupristina verticillata. Comparative analysis of the two Ficus genomes revealed dynamic karyotype variation associated with adaptive evolution. Copy number expansion of auxin-related genes from duplications and elevated auxin production are associated with aerial root development in F. microcarpa. A male-specific AGAMOUS paralog, FhAG2, was identified as a candidate gene for sex determination in F. hispida. Population genomic analyses of Ficus species revealed genomic signatures of morphological and physiological coadaptation with their pollinators involving terpenoid- and benzenoid-derived compounds. These three genomes offer insights into and genomic resources for investigating the geneses of aerial roots, monoecy and dioecy, and codiversification in a symbiotic system.


Subject(s)
Biological Evolution , Ficus/genetics , Genome, Plant , Pollination/physiology , Trees/genetics , Wasps/physiology , Animals , Chromosomes, Plant/genetics , DNA Transposable Elements/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Indoleacetic Acids/metabolism , Molecular Sequence Annotation , Phylogeny , Plant Roots/growth & development , Segmental Duplications, Genomic/genetics , Sex Chromosomes/genetics , Volatile Organic Compounds/analysis
2.
Nature ; 597(7878): 709-714, 2021 09.
Article in English | MEDLINE | ID: mdl-34497421

ABSTRACT

Multiple sclerosis (MS) lesions that do not resolve in the months after they form harbour ongoing demyelination and axon degeneration, and are identifiable in vivo by their paramagnetic rims on MRI scans1-3. Here, to define mechanisms underlying this disabling, progressive neurodegenerative state4-6 and foster development of new therapeutic agents, we used MRI-informed single-nucleus RNA sequencing to profile the edge of demyelinated white matter lesions at various stages of inflammation. We uncovered notable glial and immune cell diversity, especially at the chronically inflamed lesion edge. We define 'microglia inflamed in MS' (MIMS) and 'astrocytes inflamed in MS', glial phenotypes that demonstrate neurodegenerative programming. The MIMS transcriptional profile overlaps with that of microglia in other neurodegenerative diseases, suggesting that primary and secondary neurodegeneration share common mechanisms and could benefit from similar therapeutic approaches. We identify complement component 1q (C1q) as a critical mediator of MIMS activation, validated immunohistochemically in MS tissue, genetically by microglia-specific C1q ablation in mice with experimental autoimmune encephalomyelitis, and therapeutically by treating chronic experimental autoimmune encephalomyelitis with C1q blockade. C1q inhibition is a potential therapeutic avenue to address chronic white matter inflammation, which could be monitored by longitudinal assessment of its dynamic biomarker, paramagnetic rim lesions, using advanced MRI methods.


Subject(s)
Astrocytes/pathology , Lymphocytes/pathology , Microglia/pathology , Multiple Sclerosis/pathology , Animals , Brain/pathology , Complement C1q/antagonists & inhibitors , Complement C1q/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Inflammation/pathology , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Middle Aged , Multiple Sclerosis/diagnostic imaging , RNA-Seq , Transcriptome , White Matter/pathology
3.
Proc Natl Acad Sci U S A ; 121(16): e2318935121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588421

ABSTRACT

Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.


Subject(s)
Adipose Tissue, Brown , Glucose , Mice , Humans , Animals , Glucose/metabolism , Adipose Tissue, Brown/metabolism , Acetylation , Adipose Tissue, White/metabolism , Energy Metabolism , Obesity/genetics , Obesity/metabolism , Thermogenesis/genetics , Mice, Inbred C57BL , Basic-Leucine Zipper Transcription Factors/metabolism
4.
PLoS Pathog ; 20(6): e1012287, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843304

ABSTRACT

The kinetics of type I interferon (IFN) induction versus the virus replication compete, and the result of the competition determines the outcome of the infection. Chaperone proteins that involved in promoting the activation kinetics of PRRs rapidly trigger antiviral innate immunity. We have previously shown that prior to the interaction with MAVS to induce type I IFN, 14-3-3η facilitates the oligomerization and intracellular redistribution of activated MDA5. Here we report that the cleavage of 14-3-3η upon MDA5 activation, and we identified Caspase-3 activated by MDA5-dependent signaling was essential to produce sub-14-3-3η lacking the C-terminal helix (αI) and tail. The cleaved form of 14-3-3η (sub-14-3-3η) could strongly interact with MDA5 but could not support MDA5-dependent type I IFN induction, indicating the opposite functions between the full-length 14-3-3η and sub-14-3-3η. During human coronavirus or enterovirus infections, the accumulation of sub-14-3-3η was observed along with the activation of Caspase-3, suggesting that RNA viruses may antagonize 14-3-3η by promoting the formation of sub-14-3-3η to impair antiviral innate immunity. In conclusion, sub-14-3-3η, which could not promote MDA5 activation, may serve as a negative feedback to return to homeostasis to prevent excessive type I IFN production and unnecessary inflammation.


Subject(s)
14-3-3 Proteins , Caspase 3 , Interferon-Induced Helicase, IFIH1 , 14-3-3 Proteins/metabolism , Humans , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Caspase 3/metabolism , Immunity, Innate , HEK293 Cells , Animals , Signal Transduction , Interferon Type I/metabolism
5.
Circ Res ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864216

ABSTRACT

BACKGROUND: Cardiac hypertrophy is an adaptive response to pressure overload aimed at maintaining cardiac function. However, prolonged hypertrophy significantly increases the risk of maladaptive cardiac remodeling and heart failure. Recent studies have implicated long noncoding RNAs in cardiac hypertrophy and cardiomyopathy, but their significance and mechanism(s) of action are not well understood. METHODS: We measured lincRNA-p21 RNA and H3K27ac levels in the hearts of dilated cardiomyopathy patients. We assessed the functional role of lincRNA-p21 in basal and surgical pressure-overload conditions using loss-of-function mice. Genome-wide transcriptome analysis revealed dysregulated genes and pathways. We labeled proteins in proximity to full-length lincRNA-p21 using a novel BioID2-based system. We immunoprecipitated lincRNA-p21-interacting proteins and performed cell fractionation, ChIP-seq (chromatin immunoprecipitation followed by sequencing), and co-immunoprecipitation to investigate molecular interactions and underlying mechanisms. We used GapmeR antisense oligonucleotides to evaluate the therapeutic potential of lincRNA-p21 inhibition in cardiac hypertrophy and associated heart failure. RESULTS: lincRNA-p21 was induced in mice and humans with cardiomyopathy. Global and cardiac-specific lincRNA-p21 knockout significantly suppressed pressure overload-induced ventricular wall thickening, stress marker elevation, and deterioration of cardiac function. Genome-wide transcriptome analysis and transcriptional network analysis revealed that lincRNA-p21 acts in trans to stimulate the NFAT/MEF2 pathway. Mechanistically, lincRNA-p21 is bound to the scaffold protein KAP1. lincRNA-p21 cardiac-specific knockout suppressed stress-induced nuclear accumulation of KAP1, and KAP1 knockdown attenuated cardiac hypertrophy and NFAT activation. KAP1 positively regulates pathological hypertrophy by physically interacting with NFATC4 to promote the overactive status of NFAT/MEF2 signaling. GapmeR antisense oligonucleotide depletion of lincRNA-p21 similarly inhibited cardiac hypertrophy and adverse remodeling, highlighting the therapeutic potential of inhibiting lincRNA-p21. CONCLUSIONS: These findings advance our understanding of the functional significance of stress-induced long noncoding RNA in cardiac hypertrophy and demonstrate the potential of lincRNA-p21 as a novel therapeutic target for cardiac hypertrophy and subsequent heart failure.

6.
Nucleic Acids Res ; 51(9): 4398-4414, 2023 05 22.
Article in English | MEDLINE | ID: mdl-36999631

ABSTRACT

The long non-coding telomeric RNA transcript TERRA, in the form of an RNA-DNA duplex, regulates telomere recombination. In a screen for nucleases that affects telomere recombination, mutations in DNA2, EXO1, MRE11 and SAE2 cause severe delay in type II survivor formation, indicating that type II telomere recombination is mediated through a mechanism similar to repairing double-strand breaks. On the other hand, mutation in RAD27 results in early formation of type II recombination, suggesting that RAD27 acts as a negative regulator in telomere recombination. RAD27 encodes a flap endonuclease that plays a role in DNA metabolism, including replication, repair and recombination. We demonstrate that Rad27 suppresses the accumulation of the TERRA-associated R-loop and selectively cleaves TERRA of R-loop and double-flapped structures in vitro. Moreover, we show that Rad27 negatively regulates single-stranded C-rich telomeric DNA circles (C-circles) in telomerase-deficient cells, revealing a close correlation between R-loop and C-circles during telomere recombination. These results demonstrate that Rad27 participates in telomere recombination by cleaving TERRA in the context of an R-loop or flapped RNA-DNA duplex, providing mechanistic insight into how Rad27 maintains chromosome stability by restricting the accumulation of the R-loop structure within the genome.


Subject(s)
Flap Endonucleases , R-Loop Structures , Saccharomyces cerevisiae Proteins , DNA Helicases/genetics , DNA, Single-Stranded , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Recombination, Genetic , RNA/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Telomere/genetics , Telomere/metabolism
7.
Nano Lett ; 24(14): 4300-4309, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38534038

ABSTRACT

The imbalance between endogenous and exogenous healing is the fundamental reason for the poor tendon healing. In this study, a Janus patch was developed to promote endogenous healing and inhibit exogenous healing, leading to improved tendon repair. The upper layer of the patch is a poly(dl-lactide-co-glycolide)/polycaprolactone (PLGA/PCL) nanomembrane (PMCP-NM) modified with poly(2-methylacryloxyethyl phosphocholine) (PMPC), which created a lubricated and antifouling surface, preventing cell invasion and mechanical activation. The lower layer is a PLGA/PCL fiber membrane loaded with fibrin (Fb) (Fb-NM), serving as a temporary chemotactic scaffold to regulate the regenerative microenvironment. In vitro, the Janus patch effectively reduced 92.41% cell adhesion and 79.89% motion friction. In vivo, the patch inhibited tendon adhesion through the TGF-ß/Smad signaling pathway and promoted tendon maturation. This Janus patch is expected to provide a practical basis and theoretical guidance for high-quality soft tissue repair.


Subject(s)
Tendons , Wound Healing , Tendons/physiology , Cell Adhesion
8.
Infect Immun ; 92(4): e0048323, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38501672

ABSTRACT

Aspergillus fumigatus (A. fumigatus) is one of the common pathogens of fungal keratitis. Fungal growth and invasion cause excessive inflammation and corneal damage, leading to severe vision loss. Neutrophils are the primary infiltrating cells critical for fungal clearance. Cathelicidin [LL-37 in humans and cathelicidin-related antimicrobial peptide (CRAMP) in mice], a natural antimicrobial peptide, can directly inhibit the growth of many pathogens and regulate immune responses. However, the role of cathelicidin and its effect on neutrophils in A. fumigatus keratitis remain unclear. By establishing A. fumigatus keratitis mouse models, we found that cathelicidin was increased in A. fumigatus keratitis. It could reduce fungal loads, lower clinical scores, and improve corneal transparency. Restriction of CRAMP on fungal proliferation was largely counteracted in CD18-/- mice, in which neutrophils cannot migrate into infected sites. When WT neutrophils were transferred into CD18-/- mice, corneal fungal loads were distinctly reduced, indicating that neutrophils are vital for CRAMP-mediated resistance. Furthermore, cathelicidin promoted neutrophils to phagocytose and degrade conidia both in vitro and in vivo. CXC chemokine receptor 2 (CXCR2) was reported to be a functional receptor of LL-37 on neutrophils. CXCR2 antagonist SB225002 or phospholipase C (PLC) inhibitor U73122 weakened LL-37-induced phagocytosis. Meanwhile, LL-37 induced PLC γ phosphorylation, which was attenuated by SB225002. SB225002 or the autophagy inhibitors Bafilomycin-A1 and 3-Methyladenine weakened LL-37-induced degradation of conidia. Transmission electron microscopy (TEM) observed that LL-37 increased autophagosomes in Aspergillus-infected neutrophils. Consistently, LL-37 elevated autophagy-associated protein expressions (Beclin-1 and LC3-II), but this effect was weakened by SB225002. Collectively, cathelicidin reduces fungal loads and improves the prognosis of A. fumigatus keratitis. Both in vitro and in vivo, cathelicidin promotes neutrophils to phagocytose and degrade conidia. LL-37/CXCR2 activates PLC γ to amplify neutrophils' phagocytosis and induces autophagy to eliminate intracellular conidia.


Subject(s)
Aspergillus fumigatus , Keratitis , Phenylurea Compounds , Humans , Animals , Mice , Neutrophils , Antifungal Agents/metabolism , Cathelicidins , Phospholipase C gamma/metabolism , Keratitis/microbiology , Prognosis , Mice, Inbred C57BL
9.
J Cell Biochem ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38720641

ABSTRACT

Enterovirus A71 (EV-A71) belongs to the genus Enterovirus of the Picornaviridae family and often causes outbreaks in Asia. EV-A71 infection usually causes hand, foot, and mouth disease and can even affect the central nervous system, causing neurological complications or death. The 5'-untranslated region (5'-UTR) of EV-A71 contains an internal ribosome entry site (IRES) that is responsible for the translation of viral proteins. IRES-transacting factors can interact with the EV-A71 5'-UTR to regulate IRES activity. Heterogeneous nuclear ribonucleoprotein (hnRNP) A3 is a member of the hnRNP A/B protein family of RNA-binding proteins and is involved in RNA transport and modification. We found that hnRNP A3 knockdown promoted the replication of EV-A71 in neural calls. Conversely, increasing the expression of hnRNP A3 within cells inhibits the growth of EV-A71. HnRNP A3 can bind to the EV-A71 5'-UTR, and knockdown of hnRNP A3 enhances the luciferase activity of the EV-A71 5'-UTR IRES. The localization of hnRNP A3 shifts from the nucleus to the cytoplasm of infected cells during viral infection. Additionally, EV-A71 infection can increase the protein expression of hnRNP A3, and the protein level is correlated with efficient viral growth. Based on these findings, we concluded that hnRNP A3 plays a negative regulatory role in EV-A71 replication within neural cells.

10.
J Am Chem Soc ; 146(23): 16229-16236, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38815186

ABSTRACT

Employing covalent organic frameworks (COFs) for the photocatalytic CO2 reduction reaction (CDRR) to generate high-value chemical fuels and mitigate greenhouse gas emissions represents a sustainable catalytic conversion approach. However, achieving superior photocatalytic CDRR performance is hindered by the challenges of low charge separation efficiency, poor stability, and high preparation costs associated with COFs. Herein, in this work, we utilized perfluorinated metallophthalocyanine (MPcF16) and the organic biomolecule compound ellagic acid (EA) as building blocks to actualize functional covalent organic frameworks (COFs) named EPM-COF (M = Co, Ni, Cu). The designed EPCo-COF, featuring cobalt metal active sites, demonstrated an impressive CO production rate and selectivity in the photocatalytic CO2 reduction reaction (CDRR). Moreover, following alkaline treatment (EPCo-COF-AT), the COF exposed carboxylic acid anion (COO-) and hydroxyl group (OH), thereby enhancing the electron-donating capability of EA. This modification achieved a heightened CO production rate of 17.7 mmol g-1 h-1 with an outstanding CO selectivity of 97.8% in efficient photocatalytic CDRR. Theoretical calculations further illustrated that EPCo-COF-AT functionalized with COO- and OH can effectively alleviate the energy barriers involved in the CDRR process, which facilitates the proton-coupled electron transfer processes and enhances the photocatalytic performance on the cobalt active sites within EPCo-COF-AT.

11.
J Cell Sci ; 135(10)2022 05 15.
Article in English | MEDLINE | ID: mdl-35466366

ABSTRACT

Tripeptidyl peptidase II (TPPII or TPP2) degrades N-terminal tripeptides from proteins and peptides. Studies in both humans and mice have shown that TPPII deficiency is linked to cellular immune-senescence, lifespan regulation and the aging process. However, the mechanism of how TPPII participates in these processes is less clear. In this study, we established a chemical probe-based assay and found that although the mRNA and protein levels of TPPII were not altered during senescence, its enzymatic activity was reduced in senescent human fibroblasts. We also showed that elevation of the levels of the serine protease inhibitor serpinB2 reduced TPPII activity in senescent cells. Moreover, suppression of TPPII led to elevation in the amount of lysosomal contents as in well as TPPI (TPP1) and ß-galactosidase activities, suggesting that lysosome biogenesis is induced to compensate for the reduction of TPPII activity in senescent cells. Together, this study discloses a critical role of the serpinB2-TPPII signaling pathway in proteostasis during senescence. Since serpinB2 levels can be increased by a variety of cellular stresses, reduction of TPPII activity through activation of serpinB2 might represent a common pathway for cells to respond to different stress conditions. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Aminopeptidases , Cellular Senescence , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Intracellular Signaling Peptides and Proteins , Aminopeptidases/genetics , Aminopeptidases/metabolism , Cellular Senescence/genetics , Cellular Senescence/physiology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Fibroblasts/metabolism , Fibroblasts/physiology , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Proteostasis/genetics , Proteostasis/physiology , Serine Endopeptidases/metabolism , Signal Transduction
12.
Biochem Biophys Res Commun ; 707: 149768, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38489874

ABSTRACT

DNA mismatch repair (MMR) is a crucial mechanism that ensures chromosome stability and prevents the development of various human cancers. Apart from its role in correcting mismatches during DNA replication, MMR also plays a significant role in regulating recombination between non-identical sequences, a process known as homeologous recombination. Telomeres, the protective ends of eukaryotic chromosomes, possess sequences that are not perfectly homologous. While telomerase primarily maintains telomere length in the yeast Saccharomyces cerevisiae, recombination between telomeres becomes a major pathway for length maintenance in cells lacking telomerase. This study investigates the participation of MMR in telomere recombination. Our findings reveal that mutations in MMR genes activate type I recombination. Notably, among the MMR proteins, MutSα (Msh2 and Msh6) and MutLα (Mlh1 and Pms1) exerted the most pronounced effects on telomere recombination. We also found that yeast cells containing simple human telomeric TTAGGG DNA sequences preferentially utilize type II recombination to maintain their telomeres, highlighting the influence of the heterogeneous nature of yeast telomeric sequences on type II recombination. Furthermore, our observations indicate that MMR activity is indispensable for its impact on telomere recombination. Collectively, these results contribute to a more comprehensive understanding of the role of MMR in telomere recombination.


Subject(s)
Saccharomyces cerevisiae Proteins , Telomerase , Humans , DNA Mismatch Repair/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Telomerase/genetics , Telomerase/metabolism , Telomere Homeostasis/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Telomere/genetics , Telomere/metabolism
13.
Small ; 20(15): e2306832, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009745

ABSTRACT

Superionic conductors are key components of solid-state batteries (SSBs). Multicomponent or high-entropy materials, offering a vast compositional space for tailoring properties, have recently attracted attention as novel solid electrolytes (SEs). However, the influence of synthetic parameters on ionic conductivity in compositionally complex SEs has not yet been investigated. Herein, the effect of cooling rate after high-temperature annealing on charge transport in the multicationic substituted lithium argyrodite Li6.5[P0.25Si0.25Ge0.25Sb0.25]S5I is reported. It is demonstrated that a room-temperature ionic conductivity of ∼12 mS cm-1 can be achieved upon cooling at a moderate rate, superior to that of fast- and slow-cooled samples. To rationalize the findings, the material is probed using powder diffraction, nuclear magnetic resonance and X-ray photoelectron spectroscopy combined with electrochemical methods. In the case of moderate cooling rate, favorable structural (bulk) and compositional (surface) characteristics for lithium diffusion evolve. Li6.5[P0.25Si0.25Ge0.25Sb0.25]S5I is also electrochemically tested in pellet-type SSBs with a layered Ni-rich oxide cathode. Although delivering larger specific capacities than Li6PS5Cl-based cells at high current rates, the lower (electro)chemical stability of the high-entropy Li-ion conductor led to pronounced capacity fading. The research data indicate that subtle changes in bulk structure and surface composition strongly affect the electrical conductivity of high-entropy lithium argyrodites.

14.
Small ; : e2309026, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38477698

ABSTRACT

Hypoxic tumor microenvironment (TME) hampers the application of oxygen (O2 )-dependent photodynamic therapy (PDT) in solid tumors. To address this problem, a biomimetic nanotheranostics (named MMCC@EM) is developed for optical molecular imaging-escorted self-oxygenation PDT. MMCC@EM is synthesized by encapsulating chlorin e6 (Ce6) and catalase (CAT) in metal-organic framework (MOF) nanoparticles with erythrocyte membrane (EM) camouflage. Based on the biomimetic properties of EM, MMCC@EM efficiently accumulates in tumor tissues. The enriched MMCC@EM achieves TME-activatable drug release, thereby releasing CAT and Ce6, and this process can be monitored through fluorescence (FL) imaging. In addition, endogenous hydrogen peroxide (H2 O2 ) will be decomposed by CAT to produce O2 , which can be reflected by the measurement of intratumoral oxygen concentration using photoacoustic (PA) imaging. Such self-oxygenation nanotheranostics effectively mitigate tumor hypoxia and improve the generation of singlet oxygen (1 O2 ). The 1 O2 disrupts mitochondrial function and triggers caspase-3-mediated cellular apoptosis. Furthermore, MMCC@EM triggers immunogenic cell death (ICD) effect, leading to an increased infiltration of cytotoxic T lymphocytes (CTLs) into tumor tissues. As a result, MMCC@EM exhibits good therapeutic effects in 4T1-tumor bearing mice under the navigation of FL/PA duplex imaging.

15.
Brief Bioinform ; 23(3)2022 05 13.
Article in English | MEDLINE | ID: mdl-35352094

ABSTRACT

Cell signal networks are orchestrated directly or indirectly by various peptide-mediated protein-protein interactions, which are normally weak and transient and thus ideal for biological regulation and medicinal intervention. Here, we develop a general-purpose method for modeling and predicting the binding affinities of protein-peptide interactions (PpIs) at the structural level. The method is a hybrid strategy that employs an unsupervised approach to derive a layered PpI atom-residue interaction (ulPpI[a-r]) potential between different protein atom types and peptide residue types from thousands of solved PpI complex structures and then statistically correlates the potential descriptors with experimental affinities (KD values) over hundreds of known PpI samples in a supervised manner to create an integrated unsupervised-supervised PpI affinity (usPpIA) predictor. Although both the ulPpI[a-r] potential and usPpIA predictor can be used to calculate PpI affinities from their complex structures, the latter seems to perform much better than the former, suggesting that the unsupervised potential can be improved substantially with a further correction by supervised statistical learning. We examine the robustness and fault-tolerance of usPpIA predictor when applied to treat the coarse-grained PpI complex structures modeled computationally by sophisticated peptide docking and dynamics simulation. It is revealed that, despite developed solely based on solved structures, the integrated unsupervised-supervised method is also applicable for locally docked structures to reach a quantitative prediction but can only give a qualitative prediction on globally docked structures. The dynamics refinement seems not to change (or improve) the predictive results essentially, although it is computationally expensive and time-consuming relative to peptide docking. We also perform extrapolation of usPpIA predictor to the indirect affinity quantities of HLA-A*0201 binding epitope peptides and NHERF PDZ binding scaffold peptides, consequently resulting in a good and moderate correlation of the predicted KD with experimental IC50 and BLU on the two peptide sets, with Pearson's correlation coefficients Rp = 0.635 and 0.406, respectively.


Subject(s)
Peptides , Proteins , Peptides/chemistry , Protein Binding , Proteins/chemistry
16.
Plant Physiol ; 192(3): 1997-2014, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37011145

ABSTRACT

Lignified stone cell content is a key factor used to evaluate fruit quality, influencing the economic value of pear (Pyrus pyrifolia) fruits. However, our understanding of the regulatory networks of stone cell formation is limited due to the complex secondary metabolic pathway. In this study, we used a combination of co-expression network analysis, gene expression profiles, and transcriptome analysis in different pear cultivars with varied stone cell content to identify a hub MYB gene, PbrMYB24. The relative expression of PbrMYB24 in fruit flesh was significantly correlated with the contents of stone cells, lignin, and cellulose. We then verified the function of PbrMYB24 in regulating lignin and cellulose formation via genetic transformation in homologous and heterologous systems. We constructed a high-efficiency verification system for lignin and cellulose biosynthesis genes in pear callus. PbrMYB24 transcriptionally activated multiple target genes involved in stone cell formation. On the one hand, PbrMYB24 activated the transcription of lignin and cellulose biosynthesis genes by binding to different cis-elements [AC-I (ACCTACC) element, AC-II (ACCAACC) element and MYB-binding sites (MBS)]. On the other hand, PbrMYB24 bound directly to the promoters of PbrMYB169 and NAC STONE CELL PROMOTING FACTOR (PbrNSC), activating the gene expression. Moreover, both PbrMYB169 and PbrNSC activated the promoter of PbrMYB24, enhancing gene expression. This study improves our understanding of lignin and cellulose synthesis regulation in pear fruits through identifying a regulator and establishing a regulatory network. This knowledge will be useful for reducing the stone cell content in pears via molecular breeding.


Subject(s)
Fruit , Pyrus , Fruit/genetics , Fruit/metabolism , Pyrus/genetics , Pyrus/metabolism , Lignin/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Plant
17.
Ann Neurol ; 93(2): 244-256, 2023 02.
Article in English | MEDLINE | ID: mdl-36088542

ABSTRACT

OBJECTIVE: Despite the increasing number of genes associated with Charcot-Marie-Tooth (CMT) disease, many patients currently still lack appropriate genetic diagnosis for this disease. Autosomal dominant mutations in aminoacyl-tRNA synthetases (ARSs) have been implicated in CMT. Here, we describe causal missense mutations in the gene encoding seryl-tRNA synthetase 1 (SerRS) for 3 families affected with CMT. METHODS: Whole-exome sequencing was performed in 16 patients and 14 unaffected members of 3 unrelated families. The functional impact of the genetic variants identified was investigated using bioinformatic prediction tools and confirmed using cellular and biochemical assays. RESULTS: Combined linkage analysis for the 3 families revealed significant linkage (Zmax LOD = 6.9) between the genomic co-ordinates on chromosome 1: 108681600-110300504. Within the linkage region, heterozygous SerRS missense variants segregated with the clinical phenotype in the 3 families. The mutant SerRS proteins exhibited reduced aminoacylation activity and abnormal SerRS dimerization, which suggests the impairment of total protein synthesis and induction of eIF2α phosphorylation. INTERPRETATION: Our findings suggest the heterozygous SerRS variants identified represent a novel cause for autosomal dominant CMT. Mutant SerRS proteins are known to impact various molecular and cellular functions. Our findings provide significant advances on the current understanding of the molecular mechanisms associated with ARS-related CMT. ANN NEUROL 2023;93:244-256.


Subject(s)
Charcot-Marie-Tooth Disease , Serine-tRNA Ligase , Humans , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , Serine-tRNA Ligase/genetics , Mutation , Heterozygote , Mutation, Missense/genetics
18.
Opt Express ; 32(12): 20762-20775, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859449

ABSTRACT

Underwater wireless optical communication (UWOC) has demonstrated high-speed and low-latency properties in clear and coastal ocean water because of the relatively low attenuation 'window' for blue-green wavelengths from 450 nm to 550 nm. However, there are different attenuation coefficients for transmission in ocean water at different wavelengths, and the light transmission more seriously deteriorates with fluctuations in the water turbidity. Therefore, traditional UWOC using a single wavelength or coarse blue-green wavelengths has difficulty tolerating variations in water turbidity. Dense wavelength division multiplexing (WDM) technology provides sufficient communication channels with a narrow wavelength spacing and minimal channel crosstalk. Here, we improve the UWOC in clear and coastal ocean water using dense blue-green WDM. A cost-effective WDM emitter is proposed with directly modulated blue-green laser diodes. Dense wavelength beam combination and collimation are demonstrated in a 20-metre underwater channel from 490 nm to 520 nm. Demultiplexing with a minimum channel spacing of 2 nm is realized by an optical grating. Remarkably, our WDM results demonstrate an aggregate data rate exceeding 10 Gbit/s under diverse water turbidity conditions, with negligible crosstalk observed for each channel. This is the densest WDM implementation with a record channel spacing of 2 nm and the highest channel count for underwater blue-green light communications, providing turbidity-tolerant signal transmission in clear and coastal ocean water.

19.
Cytokine ; 179: 156626, 2024 07.
Article in English | MEDLINE | ID: mdl-38678810

ABSTRACT

PURPOSE: To determine the antifungal, anti-inflammatory and neuroprotective effects of resveratrol (RES) in Aspergillus fumigatus (A. fumigatus) keratitis. METHODS: Cytotoxicity assay and Draize eye assay were performed to assess the toxicity of RES. The antifungal effect of RES was assessed by minimal inhibitory concentration, scanning or transmission electron microscopy, propidium iodide uptake assay, and Calcofluor white staining. Phosphorylation of p38 MAPK, mRNA and protein levels of Dectin-1 and related inflammatory factors were measured by qRT-PCR, ELISA and Western blot in vitro and in vivo. Clinical score, HE staining, plate count, and myeloperoxidase test were used to observe the progress of fungal keratitis. IF staining, qRT-PCR, and the Von Frey test were selected to assess the neuroprotective effects of RES. RESULTS: RES suppressed A. fumigatus hyphae growth and altered hyphae morphology in vitro. RES decreased the expression of Dectin-1, IL-1ß and TNF-α, as well as p38 MAPK phosphorylation expression, and also decreased clinical scores, reduced inflammatory cell infiltration and neutrophil activity, and decreased fungal load. RES also protected corneal basal nerve fibers, down-regulated mechanosensitivity thresholds, and increased the mRNA levels of CGRP and TRPV-1.. CONCLUSION: These evidences revealed that RES could exert antifungal effects on A. fumigatus and ameliorate FK through suppressing the Dectin-1/p38 MAPK pathway to down-regulate IL-1ß, IL-6, etc. expression and play protective effect on corneal nerves.


Subject(s)
Anti-Inflammatory Agents , Aspergillus fumigatus , Keratitis , Lectins, C-Type , Neuroprotective Agents , Resveratrol , p38 Mitogen-Activated Protein Kinases , Aspergillus fumigatus/drug effects , Lectins, C-Type/metabolism , Keratitis/drug therapy , Keratitis/metabolism , Keratitis/microbiology , Resveratrol/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Neuroprotective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Mice , Aspergillosis/drug therapy , Aspergillosis/metabolism , Antifungal Agents/pharmacology , Male , Signal Transduction/drug effects , MAP Kinase Signaling System/drug effects , Cornea/drug effects , Cornea/metabolism
20.
Microb Pathog ; 189: 106606, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437994

ABSTRACT

Fungal keratitis (FK) is a highly blinding infectious corneal disease caused by pathogenic fungi. Candida albicans (C. albicans) is one of the main pathogens of fungal keratitis. Extracellular vesicles (EVs), lipid bilayer compartments released by almost all living cells, including fungi, have garnered attention for their role in pathogenic microbial infection and host immune responses in recent years. Studies have reported that pretreating the host with fungal EVs can reduce the inflammatory response of the host when attacked by fungi and reduce the lethality of fungal infection. However, there are no studies that have evaluated whether C. albicans EVs can modulate the inflammatory response associated with C. albicans keratitis. Our study revealed that C. albicans EVs could activate the polymorphonuclear cells (PMNs) and promote their secretion of proinflammatory cytokines and nitric oxide (NO), enhance their phagocytic and fungicidal abilities against C. albicans. C. albicans EVs also induced a proinflammatory response in RAW264.7 cells, which was characterized by increased production of inflammatory cytokines and elevated expression of the chemokine CCL2. Similarly, stimulation of C. albicans EVs to RAW264.7 cells also enhanced the phagocytosis and killing ability of cells against C. albicans. Besides, in our in vivo experiments, after receiving subconjunctival injection of C. albicans EVs, C57BL/6 mice were infected with C. albicans. The results demonstrated that pre-exposure to C. albicans EVs could effectively diminish the severity of keratitis, reduce fungal load and improve prognosis. Overall, we conclude that C. albicans EVs can modulate the function of immune cells and play a protective role in C. albicans keratitis.


Subject(s)
Extracellular Vesicles , Keratitis , Animals , Mice , Candida albicans/physiology , Mice, Inbred C57BL , Keratitis/microbiology , Cytokines
SELECTION OF CITATIONS
SEARCH DETAIL