Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal
Affiliation country
Publication year range
1.
Nature ; 601(7892): 257-262, 2022 01.
Article in English | MEDLINE | ID: mdl-34937940

ABSTRACT

The methanogenic degradation of oil hydrocarbons can proceed through syntrophic partnerships of hydrocarbon-degrading bacteria and methanogenic archaea1-3. However, recent culture-independent studies have suggested that the archaeon 'Candidatus Methanoliparum' alone can combine the degradation of long-chain alkanes with methanogenesis4,5. Here we cultured Ca. Methanoliparum from a subsurface oil reservoir. Molecular analyses revealed that Ca. Methanoliparum contains and overexpresses genes encoding alkyl-coenzyme M reductases and methyl-coenzyme M reductases, the marker genes for archaeal multicarbon alkane and methane metabolism. Incubation experiments with different substrates and mass spectrometric detection of coenzyme-M-bound intermediates confirm that Ca. Methanoliparum thrives not only on a variety of long-chain alkanes, but also on n-alkylcyclohexanes and n-alkylbenzenes with long n-alkyl (C≥13) moieties. By contrast, short-chain alkanes (such as ethane to octane) or aromatics with short alkyl chains (C≤12) were not consumed. The wide distribution of Ca. Methanoliparum4-6 in oil-rich environments indicates that this alkylotrophic methanogen may have a crucial role in the transformation of hydrocarbons into methane.


Subject(s)
Euryarchaeota , Hydrocarbons , Methane , Alkanes/metabolism , Biodegradation, Environmental , Euryarchaeota/enzymology , Euryarchaeota/genetics , Hydrocarbons/metabolism , Methane/metabolism , Oxidoreductases/metabolism , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL