Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Angew Chem Int Ed Engl ; 62(48): e202310921, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37847128

ABSTRACT

The diarylation and skeletal diversification of unstrained cyclic amines was exploited to expand and modify the favorable properties of this important substrate class with pivotal roles in drug discovery. Cyclic amines were employed in the synthesis of a novel class of amino-substituted diaryliodonium salts, which were converted to highly functionalized diarylamines through an atom-efficient one-pot N-arylation/ring opening reaction with external nucleophiles. The reaction proceeds through in situ formation of a diarylammonium intermediate that undergoes a nucleophilic ring opening by cleavage of the strong C-N bond. A wide variety of diarylamines was obtained through introduction of two different aryl groups of varied electronics, and the retained iodo-substituent enables downfield diversifications of the products. More than 20 nucleophiles, including amines, phenols, carboxylic acids, thiols and halides, were alkylated with high functional group tolerance, and the strategy proved efficient also in in late-stage functionalization of natural products and pharmaceuticals.

2.
Chemistry ; 28(69): e202202453, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36083826

ABSTRACT

Two regioselective, high-yielding one-pot routes to oxygen-bridged cyclic diaryliodonium salts and ortho-aryloxy-substituted acyclic diaryliodonium salts are presented. Starting from easily available ortho-iodo diaryl ethers, complete selectivity in formation of either the cyclic or acyclic product could be achieved by varying the reaction conditions. The complimentary reactivities of these novel ortho-oxygenated iodonium salts were demonstrated through a series of chemoselective arylations under metal-catalyzed and metal-free conditions, to deliver a range of novel, ortho-functionalized diaryl ether derivatives.


Subject(s)
Iodine , Salts , Catalysis , Ethers , Metals
3.
Angew Chem Int Ed Engl ; 57(35): 11427-11431, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-29956877

ABSTRACT

A transition metal-free N-arylation of primary and secondary amines with diaryliodonium salts is presented. Both acyclic and cyclic amines are well tolerated, providing a large set of N-alkyl anilines. The methodology is unprecedented among metal-free methods in terms of amine scope, the ability to transfer both electron-withdrawing and electron-donating aryl groups, and efficient use of resources, as excess substrate or reagents are not required.

4.
iScience ; 27(2): 108907, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38318365

ABSTRACT

SAMHD1 is a dNTP triphosphohydrolase governing nucleotide pool homeostasis and can detoxify chemotherapy metabolites controlling their clinical responses. To understand SAMHD1 biology and investigate the potential of targeting SAMHD1 as neoadjuvant to current chemotherapies, we set out to discover selective small-molecule inhibitors. Here, we report a discovery pipeline encompassing a biochemical screening campaign and a set of complementary biochemical, biophysical, and cell-based readouts for rigorous characterization of the screen output. The identified small molecules, TH6342 and analogs, accompanied by inactive control TH7126, demonstrated specific, low µM potency against both physiological and oncology-drug-derived substrates. By coupling kinetic studies with thermal shift assays, we reveal the inhibitory mechanism of TH6342 and analogs, which engage pre-tetrameric SAMHD1 and deter oligomerization and allosteric activation without occupying nucleotide-binding pockets. Altogether, our study diversifies inhibitory modes against SAMHD1, and the discovery pipeline reported herein represents a thorough framework for future SAMHD1 inhibitor development.

5.
STAR Protoc ; 3(4): 101700, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36149800

ABSTRACT

N- and O-arylated compounds are prevalent in pharmaceuticals and materials, and efficient approaches for their synthesis are important. Herein, we present an efficient protocol for the diarylation of aliphatic amines and water with two structurally different aryl groups in one single step, yielding highly functionalized diaryl amines and ethers. We describe the synthesis of the required diaryliodonium salts and detail the procedure for the diarylation. The protocol is limited to use of unhindered amines and diaryliodonium salts with certain substituents. For complete details on the use and execution of this protocol, please refer to Linde et al. (2022).


Subject(s)
Amines , Water , Salts , Catalysis , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL