Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Microrna ; 8(2): 155-165, 2019.
Article in English | MEDLINE | ID: mdl-30520388

ABSTRACT

BACKGROUND: HER2 positive Breast Cancers (BC) have aggressive behavior and poor prognosis. Previously, we have identified miR-342-5p as an upstream regulator of HER2 signaling, as well as inhibitor of HER2 positive BC cell line growth. OBJECTIVE: Here, we aimed to further investigate the molecular mechanisms behind miR-342-5pinduced HER2 pathway deregulation. METHOD: Two HER2 amplified breast cancer cell lines were transiently transfected with miR-342-5p mimic or negative control, and gene expression was analyzed by Agilent microarrays. Three clinical datasets with BC patients were used to identify correlations between candidate genes and miR-342- 5p, and associations with survival. RESULTS: Pathway analyses of all deregulated genes revealed a significant suppression of the HER2 downstream pathways ERK/MAPK and SAPK/JNK, whereas the miR-342-5p predicted target genes were enriched for pathways associated with cell motility.Biological functions linked to mitochondrial stability were ranked among the top toxicological functions in both gene lists. Among the most deregulated genes, Cytochrome B5 Reductase 3 (CYB5R3) and Rap Guanine Nucleotide Exchange Factor 6 (RAPGEF6) significantly anticorrelated and correlated, respectively, with miR-342-5p in all three clinical BC datasets. Low CYB5R3 levels and high RAPGEF6 levels were significantly associated with survival, although this was not directly associated with HER2 expression. CONCLUSION: Our data suggest that miR-342-5p overexpression in HER2 positive BC cell lines elicits broad effects on HER2 downstream signaling, cell motility and mitochondrial stability. Together these effects may render cells less proliferative and more sensitive to cellular stress.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cytochrome-B(5) Reductase/metabolism , Gene Expression Regulation, Neoplastic/genetics , Guanine Nucleotide Exchange Factors/metabolism , MicroRNAs/genetics , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Cytochrome-B(5) Reductase/genetics , Female , Guanine Nucleotide Exchange Factors/genetics , Humans , Receptor, ErbB-2/metabolism
2.
Mol Oncol ; 13(10): 2278-2296, 2019 10.
Article in English | MEDLINE | ID: mdl-31402562

ABSTRACT

One of the hallmarks of cancer is sustained angiogenesis. Favorable results have been reported in some breast cancer (BC) patients receiving antiangiogenic therapy with bevacizumab (Bev) in combination with chemotherapy, and further knowledge on how Bev can be optimally combined with conventional treatment to increase efficacy is strongly needed. In this randomized, neoadjuvant phase II clinical trial, 132 patients with HER2-negative, nonmetastatic BC were treated with Bev in combination with sequential chemotherapy. Biopsies were sampled before treatment, after 12 weeks with anthracycline and after taxane therapy at week 25. MicroRNA (miRNA) expression profiling was performed on biopsies from each time point. Altogether, 241 biopsies were analyzed with the aim of identifying miRNA-based biomarkers of response to therapy. Results from the miRNA analyses were reported for the ER-positive cohort, which were previously demonstrated to benefit from antiangiogenic therapy in this study. For both treatment arms of this cohort, significantly different expression was observed for 217 miRNAs between objective responding and nonresponding patients before treatment initiation. These miRNAs have been linked to regulation of epithelial-mesenchymal transition, metastasis, and tumor growth, among other processes. Bev in combination with chemotherapy resulted in similar miRNA changes to chemotherapy alone. However, the deregulation of miRNA expression occurred earlier in the Bev arm. In both arms, tumor suppressor miRNAs were found upregulated after treatment, while oncogenic miRNAs were downregulated in the Bev arm. Patients responding to Bev showed a strong correlation between deregulated miRNAs and decreased proliferation score during the course of treatment, with downregulation of miR-4465 as the strongest indicator of reduced proliferation. Integrative analyses at miRNA-, gene-, and protein expression further indicated a longitudinal decrease in proliferation. Altogether, the results indicate that proliferation might represent a predictive factor for increased Bev sensitivity, which may aid in the identification of patients who could potentially benefit from Bev.


Subject(s)
Antineoplastic Agents/therapeutic use , Bevacizumab/therapeutic use , Breast Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , MicroRNAs/genetics , Breast Neoplasms/genetics , Cell Proliferation/drug effects , Female , Humans , Neoadjuvant Therapy
SELECTION OF CITATIONS
SEARCH DETAIL