Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Blood ; 129(20): 2771-2781, 2017 05 18.
Article in English | MEDLINE | ID: mdl-28331056

ABSTRACT

We used the genomic breakpoint between BCR and ABL1 genes for the DNA-based monitoring of minimal residual disease (MRD) in 48 patients with childhood acute lymphoblastic leukemia (ALL). Comparing the results with standard MRD monitoring based on immunoglobulin/T-cell receptor (Ig/TCR) gene rearrangements and with quantification of IKZF1 deletion, we observed very good correlation for the methods in a majority of patients; however, >20% of children (25% [8/32] with minor and 12.5% [1/8] with major-BCR-ABL1 variants in the consecutive cohorts) had significantly (>1 log) higher levels of BCR-ABL1 fusion than Ig/TCR rearrangements and/or IKZF1 deletion. We performed cell sorting of the diagnostic material and assessed the frequency of BCR-ABL1-positive cells in various hematopoietic subpopulations; 12% to 83% of non-ALL B lymphocytes, T cells, and/or myeloid cells harbored the BCR-ABL1 fusion in patients with discrepant MRD results. The multilineage involvement of the BCR-ABL1-positive clone demonstrates that in some patients diagnosed with BCR-ABL1-positive ALL, a multipotent hematopoietic progenitor is affected by the BCR-ABL1 fusion. These patients have BCR-ABL1-positive clonal hematopoiesis resembling a chronic myeloid leukemia (CML)-like disease manifesting in "lymphoid blast crisis." The biological heterogeneity of BCR-ABL1-positive ALL may impact the patient outcomes and optimal treatment (early stem cell transplantation vs long-term administration of tyrosine-kinase inhibitors) as well as on MRD testing. Therefore, we recommend further investigations on CML-like BCR-ABL1-positive ALL.


Subject(s)
Chromosome Breakage , Fusion Proteins, bcr-abl/genetics , Genome, Human , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Child , Child, Preschool , Gene Deletion , Hematopoiesis , Humans , Ikaros Transcription Factor/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood , Leukocyte Count , Neoplasm, Residual/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood , Receptors, Antigen, T-Cell/genetics , Treatment Outcome
2.
Stem Cells ; 36(8): 1237-1248, 2018 08.
Article in English | MEDLINE | ID: mdl-29603838

ABSTRACT

Transgenic mice expressing green fluorescent protein (GFP) are useful in transplantation experiments. When we used ubiquitin-GFP (UBC-GFP) transgenic mice to study the availability of niches for transplanted hematopoietic stem and progenitor cells, the results were strikingly different from the corresponding experiments that used congenic mice polymorphic in the CD45 antigen. Analysis of these unexpected results revealed that the hematopoiesis of UBC-GFP mice was outcompeted by the hematopoiesis of wild-type (WT) mice. Importantly, UBC-GFP mice engrafted the transplanted bone marrow of WT mice without conditioning. There was a significant bias toward lymphopoiesis in the WT branch of chimeric UBC-GFP/WT hematopoiesis. A fraction of immature Sca-1+ cells in the spleen of UBC-GFP mice expressed GFP at a very high level. The chimeric hematopoiesis was stable in the long term and also after transplantation to secondary recipient mice. The article thus identifies a specific defect in the hematopoiesis of UBC-GFP transgenic mice that compromises the lymphoid-primed hematopoietic stem cells in the bone marrow and spleen. Stem Cells 2018;36:1237-1248.


Subject(s)
Green Fluorescent Proteins/metabolism , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Lymphocytes/metabolism , Ubiquitin/metabolism , Animals , Bone Marrow/metabolism , Chimera , Hematopoiesis , Lymphopoiesis , Male , Mice, Inbred C57BL , Mice, Transgenic , Spleen/metabolism , Splenectomy , Thymus Gland/metabolism
3.
BMC Cancer ; 16: 572, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27485109

ABSTRACT

BACKGROUND: Imatinib-resistant chronic myeloid leukemia (CML) patients receiving second-line tyrosine kinase inhibitor (TKI) therapy with dasatinib or nilotinib have a higher risk of disease relapse and progression and not infrequently BCR-ABL1 kinase domain (KD) mutations are implicated in therapeutic failure. In this setting, earlier detection of emerging BCR-ABL1 KD mutations would offer greater chances of efficacy for subsequent salvage therapy and limit the biological consequences of full BCR-ABL1 kinase reactivation. Taking advantage of an already set up and validated next-generation deep amplicon sequencing (DS) assay, we aimed to assess whether DS may allow a larger window of detection of emerging BCR-ABL1 KD mutants predicting for an impending relapse. METHODS: a total of 125 longitudinal samples from 51 CML patients who had acquired dasatinib- or nilotinib-resistant mutations during second-line therapy were analyzed by DS from the time of failure and mutation detection by conventional sequencing backwards. BCR-ABL1/ABL1%(IS) transcript levels were used to define whether the patient had 'optimal response', 'warning' or 'failure' at the time of first mutation detection by DS. RESULTS: DS was able to backtrack dasatinib- or nilotinib-resistant mutations to the previous sample(s) in 23/51 (45 %) pts. Median mutation burden at the time of first detection by DS was 5.5 % (range, 1.5-17.5 %); median interval between detection by DS and detection by conventional sequencing was 3 months (range, 1-9 months). In 5 cases, the mutations were detectable at baseline. In the remaining cases, response level at the time mutations were first detected by DS could be defined as 'Warning' (according to the 2013 ELN definitions of response to 2nd-line therapy) in 13 cases, as 'Optimal response' in one case, as 'Failure' in 4 cases. No dasatinib- or nilotinib-resistant mutations were detected by DS in 15 randomly selected patients with 'warning' at various timepoints, that later turned into optimal responders with no treatment changes. CONCLUSIONS: DS enables a larger window of detection of emerging BCR-ABL1 KD mutations predicting for an impending relapse. A 'Warning' response may represent a rational trigger, besides 'Failure', for DS-based mutation screening in CML patients undergoing second-line TKI therapy.


Subject(s)
Fusion Proteins, bcr-abl/genetics , High-Throughput Nucleotide Sequencing/methods , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Sequence Analysis, DNA/methods , Drug Resistance, Neoplasm , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Pharmacogenomic Variants , Polymorphism, Single Nucleotide , Protein Kinase Inhibitors/therapeutic use
4.
Mol Cancer ; 14: 89, 2015 Apr 18.
Article in English | MEDLINE | ID: mdl-25928096

ABSTRACT

In chronic myeloid leukemia, the identification of individual BCR-ABL1 fusions is required for the development of personalized medicine approach for minimal residual disease monitoring at the DNA level. Next generation sequencing (NGS) of amplicons larger than 1000 bp simplified and accelerated a process of characterization of patient-specific BCR-ABL1 genomic fusions. NGS of large regions upstream and downstream the individual breakpoints in BCR and ABL1 genes, respectively, also provided information about the sequence variants such are single nucleotide polymorphisms.


Subject(s)
Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Polymorphism, Single Nucleotide/genetics , High-Throughput Nucleotide Sequencing/methods , Humans
5.
Biol Blood Marrow Transplant ; 19(5): 713-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23422843

ABSTRACT

Significant controversy exists regarding the impact of hematopoietic stroma damage by irradiation on the efficiency of engraftment of intravenously transplanted stem cells. It was previously demonstrated that in normal syngenic mice, all intravenously transplanted donor stem cells, present in the bone marrow, compete equally with those of the host. In this study, we comprehensively compared the blood cell production derived from transplanted donor stem cells with that from the host stem cells surviving various doses of submyeloablative irradiation. We compared the partial chimerism resulting from transplantation with theoretical estimates that assumed transplantation efficiencies ranging from 100% to 20%. The highest level of consensus between the experimental and the theoretical results was 100% for homing and engraftment (ie, the utilization of all transplanted stem cells). These results point to a very potent mechanism through which intravenously administered hematopoietic stem cells are captured from circulation, engraft in the hematopoietic tissue, and contribute to blood cell production in irradiated recipients. The damage done to hematopoietic stroma and to the trabecular bone by submyeloablative doses of ionizing radiation does not negatively affect the homing and engraftment mechanisms of intravenously transplanted hematopoietic progenitor and stem cells.


Subject(s)
Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/radiation effects , Animals , Bone Marrow Transplantation/methods , Female , Gene Transfer Techniques , Genetic Vectors , Hematopoietic Stem Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Transduction, Genetic , Whole-Body Irradiation/methods
6.
Int J Oncol ; 58(2): 238-250, 2021 02.
Article in English | MEDLINE | ID: mdl-33491750

ABSTRACT

Chronic myeloid leukemia (CML) is a malignant hematopoietic disorder distinguished by the presence of a BCR­ABL1 fused oncogene with constitutive kinase activity. Targeted CML therapy by specific tyrosine kinase inhibitors (TKIs) leads to a marked improvement in the survival of the patients and their quality of life. However, the development of resistance to TKIs remains a critical issue for a subset of patients. The most common cause of resistance are numerous point mutations in the BCR­ABL1 gene, followed by less common mutations and multiple mutation-independent mechanisms. Recently, exosomes, which are extracellular vesicles excreted from normal and tumor cells, have been associated with drug resistance and cancer progression. The aim of the present study was to characterize the exosomes released by imatinib­resistant K562 (K562IR) cells. The K562IR­derived exosomes were internalized by imatinib­sensitive K562 cells, which thereby increased their survival in the presence of 2 µM imatinib. The exosomal cargo was subsequently analyzed to identify resistance­associated markers using a deep label­free quantification proteomic analysis. There were >3,000 exosomal proteins identified of which, 35 were found to be differentially expressed. From this, a total of 3, namely the membrane proteins, interferon­induced transmembrane protein 3, CD146 and CD36, were markedly upregulated in the exosomes derived from the K562IR cells, and exhibited surface localization. The upregulation of these proteins was verified in the K562IR exosomes, and also in the K562IR cells. Using flow cytometric analysis, it was possible to further demonstrate the potential of CD146 as a cell surface marker associated with imatinib resistance in K562 cells. Taken together, these results suggested that exosomes and their respective candidate surface proteins could be potential diagnostic markers of TKI drug resistance in CML therapy.


Subject(s)
Exosomes/metabolism , Fusion Proteins, bcr-abl/antagonists & inhibitors , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/pharmacology , Apoptosis/drug effects , CD146 Antigen/metabolism , CD36 Antigens/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm , Exosomes/drug effects , Fusion Proteins, bcr-abl/genetics , Humans , Imatinib Mesylate/therapeutic use , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Membrane Proteins/metabolism , Protein Kinase Inhibitors/therapeutic use , RNA-Binding Proteins/metabolism
7.
Front Oncol ; 11: 744373, 2021.
Article in English | MEDLINE | ID: mdl-34616685

ABSTRACT

Somatic mutations are a common molecular mechanism through which chronic myeloid leukemia (CML) cells acquire resistance to tyrosine kinase inhibitors (TKIs) therapy. While most of the mutations in the kinase domain of BCR-ABL1 can be successfully managed, the recurrent somatic mutations in other genes may be therapeutically challenging. Despite the major clinical relevance of mutation-associated resistance in CML, the mechanisms underlying mutation acquisition in TKI-treated leukemic cells are not well understood. This work demonstrated de novo acquisition of mutations on isolated single-cell sorted CML clones growing in the presence of imatinib. The acquisition of mutations was associated with the significantly increased expression of the LIG1 and PARP1 genes involved in the error-prone alternative nonhomologous end-joining pathway, leading to genomic instability, and increased expression of the UNG, FEN and POLD3 genes involved in the base-excision repair (long patch) pathway, allowing point mutagenesis. This work showed in vitro and in vivo that de novo acquisition of resistance-associated mutations in oncogenes is the prevalent method of somatic mutation development in CML under TKIs treatment.

8.
Oncotarget ; 7(16): 21982-90, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-26980736

ABSTRACT

In chronic myeloid leukemia (CML) and Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL) patients who fail imatinib treatment, BCR-ABL1 mutation profiling by Sanger sequencing (SS) is recommended before changing therapy since detection of specific mutations influences second-generation tyrosine kinase inhibitor (2GTKI) choice. We aimed to assess i) in how many patients who relapse on second-line 2GTKI therapy next generation sequencing (NGS) may track resistant mutations back to the sample collected at the time of imatinib resistance, before 2GTKI start (switchover sample) and ii) whether low level mutations identified by NGS always undergo clonal expansion. To this purpose, we used NGS to retrospectively analyze 60 imatinib-resistant patients (CML, n = 45; Ph+ ALL,n = 15) who had failed second-line 2GTKI therapy and had acquired BCR-ABL1 mutations (Group 1) and 25 imatinib-resistant patients (CML, n = 21; Ph+ ALL, n = 4) who had responded to second-line 2GTKI therapy, for comparison (Group 2). NGS uncovered that in 26 (43%) patients in Group 1, the 2GTKI-resistant mutations that triggered relapse were already detectable at low levels in the switchover sample (median mutation burden, 5%; range 1.1%-18.4%). Importantly, none of the low level mutations detected by NGS in switchover samples failed to expand whenever the patient received the 2GTKI to whom they were insensitive. In contrast, no low level mutation that was resistant to the 2GTKI the patients subsequently received was detected in the switchover samples from Group 2. NGS at the time of imatinib failure reliably identifies clinically relevant mutations, thus enabling a more effective therapeutic tailoring.


Subject(s)
Drug Resistance, Neoplasm/genetics , Fusion Proteins, bcr-abl/genetics , High-Throughput Nucleotide Sequencing/methods , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adult , Aged , DNA Mutational Analysis/methods , Dasatinib/therapeutic use , Female , Humans , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Male , Middle Aged , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Protein Kinase Inhibitors/therapeutic use , Retrospective Studies
9.
J Cancer Res Clin Oncol ; 141(5): 887-99, 2015 May.
Article in English | MEDLINE | ID: mdl-25367136

ABSTRACT

PURPOSE: Here, we studied whether amplicon next-generation deep sequencing (NGS) could improve the detection of emerging BCR-ABL1 kinase domain mutations in chronic phase chronic myeloid leukemia (CML) patients under tyrosine kinase inhibitor (TKI) treatment and discussed the clinical relevance of such sensitive mutational detection. METHODS: For NGS data evaluation including extraction of biologically relevant low-level variants from background error noise, we established and applied a robust and versatile bioinformatics approach. RESULTS: Results from a retrospective longitudinal analysis of 135 samples of 15 CML patients showed that NGS could have revealed emerging resistant mutants 2-11 months earlier than conventional sequencing. Interestingly, in cases who later failed first-line imatinib treatment, NGS revealed that TKI-resistant mutations were already detectable at the time of major or deeper molecular response. Identification of emerging mutations by NGS was mirrored by BCR-ABL1 transcript level expressed either fluctuations around 0.1 %(IS) or by slight transcript level increase. NGS also allowed tracing mutations that emerged during second-line TKI therapy back to the time of switchover. Compound mutants could be detected in three cases, but were not found to outcompete single mutants. CONCLUSIONS: This work points out, that next-generation deep sequencing, coupled with a robust bioinformatics approach for mutation calling, may be just in place to ensure reliable detection of emerging BCR-ABL1 mutations, allowing early therapy switch and selection of the most appropriate therapy. Further, prospective assessment of how to best integrate NGS in the molecular monitoring and clinical decision algorithms is warranted.


Subject(s)
Antineoplastic Agents/therapeutic use , Benzamides/therapeutic use , Fusion Proteins, bcr-abl/genetics , High-Throughput Nucleotide Sequencing , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Mutation/drug effects , Piperazines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/therapeutic use , Adult , Aged , Computational Biology , Female , Humans , Imatinib Mesylate , Longitudinal Studies , Male , Middle Aged , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL