Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 444
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38581422

ABSTRACT

Reliable cell type annotations are crucial for investigating cellular heterogeneity in single-cell omics data. Although various computational approaches have been proposed for single-cell RNA sequencing (scRNA-seq) annotation, high-quality cell labels are still lacking in single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) data, because of extreme sparsity and inconsistent chromatin accessibility between datasets. Here, we present a novel automated cell annotation method that transfers cell type information from a well-labeled scRNA-seq reference to an unlabeled scATAC-seq target, via a parallel graph neural network, in a semi-supervised manner. Unlike existing methods that utilize only gene expression or gene activity features, HyGAnno leverages genome-wide accessibility peak features to facilitate the training process. In addition, HyGAnno reconstructs a reference-target cell graph to detect cells with low prediction reliability, according to their specific graph connectivity patterns. HyGAnno was assessed across various datasets, showcasing its strengths in precise cell annotation, generating interpretable cell embeddings, robustness to noisy reference data and adaptability to tumor tissues.


Subject(s)
Chromatin , Neural Networks, Computer , Reproducibility of Results
2.
Plant Physiol ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805210

ABSTRACT

Under phosphorus (P) deficiency, white lupin (Lupinus albus L.) forms specialized root structure, called cluster root (CR), to improve soil exploration and nutrient acquisition. Sugar signaling is thought to play a vital role in the development of CR. Trehalose and its associated metabolites are the essential sugar signal molecules that link growth and development to carbon metabolism in plants, however, their roles in the control of CR are still unclear. Here, we investigated the function of the trehalose metabolism pathway by pharmacological and genetic manipulation of the activity of trehalase in white lupin, the only enzyme that degrades trehalose into glucose. Under P deficiency, validamycin A treatment, which inhibits trehalase, led to the accumulation of trehalose and promoted the formation of CR with enhanced organic acid production, whereas overexpression of the white lupin TREHALASE1 (LaTRE1) led to decreased trehalose levels, lateral rootlet density, and organic acid production. Transcriptomic and virus-induced gene silencing (VIGS) results revealed that LaTRE1 negatively regulates the formation of CRs, at least partially, by the suppression of LaLBD16, whose putative ortholog in Arabidopsis (Arabidopsis thaliana) acts downstream of ARF7- and ARF19-dependent auxin signaling in lateral root formation. Overall, our findings provide an association between the trehalose metabolism gene LaTRE1 and CR formation and function with respect to organic acid production in white lupin under P deficiency.

3.
Mol Cancer ; 23(1): 55, 2024 03 16.
Article in English | MEDLINE | ID: mdl-38491348

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) have emerged as key players in tumorigenesis and tumour progression. However, the biological functions and potential mechanisms of lncRNAs in colorectal cancer (CRC) are unclear. METHODS: The novel lncRNA POU6F2-AS1 was identified through bioinformatics analysis, and its expression in CRC patients was verified via qRT-PCR and FISH. In vitro and in vivo experiments, such as BODIPY staining, Oil Red O staining, triglyceride (TAG) assays, and liquid chromatography mass spectrometry (LC-MS) were subsequently performed with CRC specimens and cells to determine the clinical significance, and functional roles of POU6F2-AS1. Biotinylated RNA pull-down, RIP, Me-RIP, ChIP, and patient-derived organoid (PDO) culture assays were performed to confirm the underlying mechanism of POU6F2-AS1. RESULTS: The lncRNA POU6F2-AS1 is markedly upregulated in CRC and associated with adverse clinicopathological features and poor overall survival in CRC patients. Functionally, POU6F2-AS1 promotes the growth and lipogenesis of CRC cells both in vitro and in vivo. Mechanistically, METTL3-induced m6A modification is involved in the upregulation of POU6F2-AS1. Furthermore, upregulated POU6F2-AS1 could tether YBX1 to the FASN promoter to induce transcriptional activation, thus facilitating the growth and lipogenesis of CRC cells. CONCLUSIONS: Our data revealed that the upregulation of POU6F2-AS1 plays a critical role in CRC fatty acid metabolism and might provide a novel promising biomarker and therapeutic target for CRC.


Subject(s)
Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Up-Regulation , Cell Line, Tumor , Cell Proliferation/genetics , MicroRNAs/genetics , Colorectal Neoplasms/pathology , Fatty Acids , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , POU Domain Factors/genetics , POU Domain Factors/metabolism , Methyltransferases/metabolism , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism
4.
Biochem Cell Biol ; 102(3): 262-274, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38567768

ABSTRACT

Cell-in-cell (CIC) structures have been suggested to mediate intracellular substance transport between cells and have been found widely in inflammatory lung tissue of asthma. The aim of this study was to investigate the significance of CIC structures in inflammatory progress of asthma. CIC structures and related inflammatory pathways were analyzed in asthmatic lung tissue and normal lung tissue of mouse model. In vitro, the activation of inflammatory pathways by CIC-mediated intercellular communication was analyzed by RNA-Seq and verified by Western blotting and immunofluorescence. Results showed that CIC structures of lymphocytes and alveolar epithelial cells in asthmatic lung tissue mediated intercellular substance (such as mitochondria) transfer and promoted pro-inflammation in two phases. At early phase, internal lymphocytes triggered inflammasome-dependent pro-inflammation and cell death of itself. Then, degraded lymphocytes released cellular contents such as mitochondria inside alveolar epithelial cells, further activated multi-pattern-recognition receptors and NF-kappa B signaling pathways of alveolar epithelial cells, and thereby amplified pro-inflammatory response in asthma. Our work supplements the mechanism of asthma pro-inflammation progression from the perspective of CIC structure of lymphocytes and alveolar epithelial cells, and provides a new idea for anti-inflammatory therapy of asthma.


Subject(s)
Asthma , Cell Communication , Inflammation , Asthma/metabolism , Asthma/pathology , Animals , Mice , Inflammation/metabolism , Inflammation/pathology , Mice, Inbred BALB C , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Lymphocytes/metabolism , Lymphocytes/pathology , Disease Models, Animal , Humans , Signal Transduction , Disease Progression
5.
Small ; 20(5): e2306274, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37759380

ABSTRACT

Efficient electrocatalysts capable of operating continuously at industrial ampere-level current densities are crucial for large-scale applications of electrocatalytic water decomposition for hydrogen production. However, long-term industrial overall water splitting using a single electrocatalyst remains a major challenge. Here, bimetallic polyphthalocyanine (FeCoPPc)-anchored Ru nanoclusters, an innovative electrocatalyst comprising the hydrogen evolution reaction (HER) active Ru and the oxygen evolution reaction (OER) active FeCoPPc, engineered for efficient overall water splitting are demonstrated. By density functional theory calculations and systematic experiments, the electrocatalytic coenhancement effect resulting from unique charge redistribution, which synergistically boosts the HER activity of Ru and the OER activity of FeCoPPc by optimizing the adsorption energy of intermediates, is unveiled. As a result, even at a large current density of 2.0 A cm-2 , the catalyst exhibits low overpotentials of 220 and 308 mV, respectively, for HER and OER. It exhibits excellent stability, requiring only 1.88 V of cell voltage to achieve a current density of 2.0 A cm-2 in a 6.0 m KOH electrolyte at 70 °C, with a remarkable operational stability of over 100 h. This work provides a new electrocatalytic coenhancement strategy for the design and synthesis of electrocatalyst, paving the way for industrial-scale overall water splitting applications.

6.
Small ; : e2401429, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808805

ABSTRACT

Plastics serve as an essential foundation in contemporary society. Nevertheless, meeting the rigorous performance demands in advanced applications and addressing their end-of-life disposal are two critical challenges that persist. Here, an innovative and facile method is introduced for the design and scalable production of polycarbonate, a key engineering plastic, simultaneously achieving high performance and closed-loop chemical recyclability. The bisphenol framework of polycarbonate is strategically adjusted from the low-bond-dissociation-energy bisphenol A to high-bond-dissociation-energy 4,4'-dihydroxydiphenyl, in combination with the incorporation of polysiloxane segments. As expected, the enhanced bond dissociation energy endows the polycarbonate with an extremely high glow-wire flammability index surpassing 1025 °C, a 0.8 mm UL-94 V-0 rating, a high LOI value of 39.2%, and more than 50% reduction of heat and smoke release. Furthermore, the π-π stacking interactions within biphenyl structures resulted in a significant enhancement of mechanical strength by as more as 37.7%, and also played a positive role in achieving a lower dielectric constant. Significantly, the copolymer exhibited outstanding closed-loop chemical recyclability, allowing for facile depolymerization into bisphenol monomers and the repolymerized copolymer retains its high heat and fire resistance. This work provides a novel insight in the design of high-performance and closed-loop chemical recyclable polymeric materials.

7.
Opt Lett ; 49(9): 2417-2420, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691733

ABSTRACT

Soliton complexes highlight the particle-like dynamics of dissipative pulses. However, simple and reliable manipulation of bound solitons remains challenging, particularly for all-polarization-maintaining (PM) configurations that are free from random polarization perturbations. Here, we report controllable pulse patterns of robustly coexisting dichromatic soliton complexes in an all-PM fiber laser based on a twistable tapered-fiber filter. According to the twist angle, dichromatic pulses are switched between different patterns, and components at each wavelength can be independently manipulated, extending encodings from the time to the frequency domain. To the best of our knowledge, it is the first experimental demonstration of dual-wavelength soliton complexes that different pulse patterns coexist at separated wavebands.

8.
Opt Lett ; 49(8): 1911-1914, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621037

ABSTRACT

Coherent beam combining (CBC) of two femtosecond third-harmonic (TH) generators is proposed and demonstrated. By applying phase modulation to one of the fundamental laser pulses, the feedback loop effectively eliminates both phase and pointing errors between the two TH femtosecond laser beams. The system delivers 345-nm femtosecond laser pulses with 22-W average power at 1-MHz repetition rate. The average combining efficiency is 91.5% over approximately 1 h of testing. The beam quality of the combined ultraviolet (UV) laser beam is near-diffraction-limited with M2 factors of M X2=1.36, M Y2=1.24, which are similar to those of the individual channels. This scheme exhibits promising potential for increasing high-beam-quality UV laser power.

9.
Opt Lett ; 49(9): 2433-2436, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691737

ABSTRACT

We present for the first time, to the best of our knowledge, the pump-power-controlled, all-polarization-maintaining (all-PM), all-fiber configured, wavelength-tunable mode-locked fiber laser in the L-band (1565 to 1625 nm). A tuning range over 20 nm (1568.2  to 1588.9 nm) is attained simply by varying the pump power between 45 and 115 mW. Our work represents the first demonstration of wavelength tuning in all-PM configured nonlinear polarization evolution (NPE) lasers. The non-mechanical and electrically controllable tuning method offers ease of use and cost efficiency within an advanced all-PM, all-fiber design, indicating promising adaptability to diverse wavelength bands.

10.
Langmuir ; 40(13): 6962-6970, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38523302

ABSTRACT

It is critical to remove organic contaminants from wastewater released by the printing and dyeing industry for addressing water pollution issue. Therefore, the fabrication of new adsorbents with excellent removal efficiencies is an urgent task. A composite of MIL-101 partially functionalized with -SO3H (MIL-101-SO3H) and graphene oxide (GO) was prepared by assembling MIL-101-SO3H truncated octahedrons on the GO framework. The synthesized MIL-101-SO3H@GO has a superior adsorption efficiency for anionic azo dyes. The maximum adsorption capacities of MIL-101-SO3H@GO-1 for Congo red, methyl orange, acid orange 7, and acid orange G reached 2711.3, 818.8, 551.2, and 319.8 mg/g, respectively, which are considerably higher than those obtained using unmodified MIL-101. This is because additional interactions that promote azo dye adsorption, such as hydrogen bonding between the dye and the sulfonic acid groups of MIL-101-SO3H or the carboxyl groups of GO, were induced, and agglomerate pores that accommodated the dye were formed in the composite. The ultrahigh removal efficiency of the composite for azo dyes is mainly driven by hydrogen bonding, electrostatic interactions, π-π stacking between the MIL-101-SO3H@GO and dye molecules, synergistic interactions at the interface of GO and MIL-101-SO3H microcrystals, and the pore-filling effect. Understanding these driving forces for dye adsorption can contribute to the development of sustainable and functionally modified metal-organic framework composite adsorbents.

11.
Pharmacol Res ; 203: 107178, 2024 May.
Article in English | MEDLINE | ID: mdl-38583686

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is one of the most fatal chronic interstitial lung diseases with unknown pathogenesis, current treatments cannot truly reverse the progression of the disease. Pulmonary macrophages, especially bone marrow derived pro-fibrotic macrophages, secrete multiple kinds of profibrotic mediators (SPP1, CD206, CD163, IL-10, CCL18…), thus further promote myofibroblast activation and fibrosis procession. IL20Rb is a cell-surface receptor that belongs to IL-20 family. The role of IL20Rb in macrophage activation and pulmonary fibrosis remains unclear. In this study, we established a bleomycin-induced pulmonary fibrosis model, used IL4/13-inducing THP1 cells to induce profibrotic macrophage (M2-like phenotype) polarization models. We found that IL20Rb is upregulated in the progression of pulmonary fibrosis, and its absence can alleviate the progression of pulmonary fibrosis. In addition, we demonstrated that IL20Rb promote the activation of bone marrow derived profibrotic macrophages by regulating the Jak2/Stat3 and Pi3k/Akt signaling pathways. In terms of therapeutic strategy, we used IL20Rb neutralizing antibodies for animal administration, which was found to alleviate the progression of IPF. Our results suggest that IL20Rb plays a profibrotic role by promoting profibrotic macrophage polarization, and IL20Rb may become a potential therapeutic target for IPF. Neutralizing antibodies against IL20Rb may become a potential drug for the clinical treatment of IPF.


Subject(s)
Bleomycin , Macrophage Activation , Macrophages , Animals , Humans , Male , Mice , Bleomycin/toxicity , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/immunology , Janus Kinase 2/metabolism , Lung/pathology , Lung/metabolism , Lung/immunology , Lung/drug effects , Macrophages/metabolism , Macrophages/immunology , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/chemically induced , Receptors, Interleukin/metabolism , Signal Transduction , STAT3 Transcription Factor/metabolism , THP-1 Cells
12.
Exp Cell Res ; 429(2): 113665, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37236579

ABSTRACT

Heterotypic cell-in-cell structure (CICs) is the definition of the entry of one type of living cells into another type of cell. CICs between immune cells and tumor cells have been found to correlate with malignancy in many cancers. Since tumor immune microenvironment promotes non-small cell lung cancer (NSCLC) progression and drug resistance, we wondered the potential significance of heterotypic CICs in NSCLC. Heterotypic CICs was analyzed by histochemistry in an expanded spectrum of clinical lung cancer tissue specimens. In vitro study was performed using the mouse lung cancer cell line LLC and splenocytes. Our results revealed that CICs formed by lung cancer cells and infiltrated lymphocytes were correlated with malignancy of NSCLC. In addition, we found CICs mediated the transfer of lymphocyte mitochondria to tumor cells, and promoted cancer cell proliferation and anti-cytotoxicity by activating MAPK pathway and up-regulating PD-L1 expression. Furthermore, CICs induces glucose metabolism reprogramming of lung cancer cells by upregulating glucose intake and glycolytic enzyme. Our findings suggest that CICs formed by lung cancer cell and lymphocyte contribute to NSCLC progression and reprogramming of glucose metabolism, and might represent a previously undescribed pathway for drug resistance of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Mitochondria/metabolism , Glucose/metabolism , B7-H1 Antigen , Tumor Microenvironment
13.
BMC Public Health ; 24(1): 695, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438874

ABSTRACT

BACKGROUND: Anhui Province is currently facing an increase in imported malaria cases as a result of globalization and international travel. In response, Anhui Province has implemented a comprehensive adaptive framework to effectively address this threat. METHODS: This study collected surveillance data from 2012 to 2022 in Anhui Province. Descriptive statistics were used to analyze the epidemiological characteristics of imported malaria cases. Additionally, multivariate logistic regression was employed to identify factors associated with severe malaria. Documents were reviewed to document the evolution of the adaptive framework designed to combat imported malaria. The effectiveness of the adaptive framework was evaluated based on the rates of timely medical visits, timely diagnosis, and species identification. RESULTS: During the study period, a total of 1008 imported malaria cases were reported across 77 out of 105 counties in Anhui Province, representing a coverage of 73.33%. It was found that 10.52% of imported cases went undiagnosed for more than seven days after onset. The multivariate analysis revealed several potential risk factors for severe malaria, including increasing age (OR = 1.049, 95%CI:1.015-1.083), occupation (waitperson vs. worker, OR = 2.698, 95%CI:1.054-6.906), a longer time interval between onset and the initial medical visit (OR = 1.061, 95%CI:1.011-1.114), and misdiagnosis during the first medical visit (OR = 5.167, 95%CI:2.535-10.533). Following the implementation of the adaptive framework, the rates of timely medical visits, timely diagnosis, and species identification reached 100.00%, 78.57%, and 100.00%, respectively. CONCLUSIONS: Anhui Province has successfully developed and implemented an adaptive framework for addressing imported malaria, focusing on robust surveillance, prompt diagnosis, and standardized treatment. The experiences gained from this initiative can serve as a valuable reference for other non-endemic areas.


Subject(s)
Malaria , Humans , Malaria/diagnosis , Malaria/epidemiology , China/epidemiology , Risk Factors , Multivariate Analysis
14.
J Allergy Clin Immunol ; 151(4): 1050-1066.e7, 2023 04.
Article in English | MEDLINE | ID: mdl-36587852

ABSTRACT

BACKGROUND: Atopic march has long been recognized as the progression from atopic dermatitis (AD) to food allergy and asthma during infancy and childhood. However, effective blocking is hampered by the lack of specific biomarkers. OBJECTIVES: We aimed to investigate the pathologic progression of atopic march trajectories from skin to gut. METHODS: We built an atopic march mouse model by mechanical skin injury and percutaneous sensitization to peanut allergen. Anaphylaxis from the skin to the small intestine was then investigated by ELISA, RNA sequencing, quantitative real-time PCR, histopathologic analysis, and flow cytometry. The findings from the mice results were also verified by the serum samples of allergic pediatric patients. RESULTS: After modeling, inflammation in the skin and small intestine manifested as a mixed type of TH2 and TH17. Further analysis identified elevated succinate in the circulation and expanded tuft cells with upregulated IL-25 in the small intestine, resulting in increased intestinal type 2 innate lymphoid cells and an enhanced type 2 inflammatory response. In addition, free mitochondrial DNA (mtDNA) released after tissue damage was also involved in inflammation march from injured skin to small intestine through the STING pathway. Analysis of clinical samples verified that serum concentrations of succinate and mtDNA were higher in AD allergic children than non-AD allergic children. CONCLUSIONS: Succinate and mtDNA play key roles in skin-to-gut cross talk during the atopic march from AD to food allergy, and can be considered as biomarkers for risk assessment or targets for atopic march prevention strategies.


Subject(s)
Dermatitis, Atopic , Food Hypersensitivity , Mice , Animals , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Immunity, Innate , Succinic Acid , DNA, Mitochondrial/genetics , Lymphocytes/pathology , Succinates , Inflammation
15.
J Am Chem Soc ; 145(42): 23352-23360, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37824718

ABSTRACT

Soft porous crystals combine flexibility and porosity, allowing them to respond structurally to external physical and chemical environments. However, striking the right balance between flexibility and sufficient rigidity for porosity is challenging, particularly for molecular crystals formed by using weak intermolecular interactions. Here, we report a flexible oxygen-bridged prismatic organic cage molecule, Cage-6-COOH, which has three pillars that exhibit "hinge-like" rotational motion in the solid state. Cage-6-COOH can form a range of hydrogen-bonded organic frameworks (HOFs) where the "hinge" can accommodate a remarkable 67° dihedral angle range between neighboring units. This stems both from flexibility in the noncovalent hydrogen-bonding motifs in the HOFs and the molecular flexibility in the oxygen-linked cage hinge itself. The range of structures for Cage-6-COOH includes two topologically complex interpenetrated HOFs, CageHOF-2α and CageHOF-2ß. CageHOF-2α is nonporous, while CageHOF-2ß has permanent porosity and a surface area of 458 m2 g-1. The flexibility of Cage-6-COOH allows this molecule to rapidly transform from a low-crystallinity solid into the two crystalline interpenetrated HOFs, CageHOF-2α and CageHOF-2ß, under mild conditions simply by using acetonitrile or ethanol vapor, respectively. This self-healing behavior was selective, with the CageHOF-2ß structure exhibiting structural memory behavior.

16.
Hum Genet ; 142(1): 89-101, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36098810

ABSTRACT

The craniovertebral junction (CVJ) is an anatomically complex region of the axial skeleton that provides protection of the brainstem and the upper cervical spinal cord. Structural malformation of the CVJ gives rise to life-threatening neurological deficits, such as quadriplegia and dyspnea. Unfortunately, genetic studies on human subjects with CVJ malformation are limited and the pathogenesis remains largely elusive. In this study, we recruited 93 individuals with CVJ malformation and performed exome sequencing. Manual interpretation of the data identified three pathogenic variants in genes associated with Mendelian diseases, including CSNK2A1, MSX2, and DDX3X. In addition, the contribution of copy number variations (CNVs) to CVJ malformation was investigated and three pathogenic CNVs were identified in three affected individuals. To further dissect the complex mutational architecture of CVJ malformation, we performed a gene-based rare variant association analysis utilizing 4371 in-house exomes as control. Rare variants in LGI4 (carrier rate = 3.26%, p = 3.3 × 10-5) and BEST1 (carrier rate = 5.43%, p = 5.77 × 10-6) were identified to be associated with CVJ malformation. Furthermore, gene set analyses revealed that extracellular matrix- and RHO GTPase-associated biological pathways were found to be involved in the etiology of CVJ malformation. Overall, we comprehensively dissected the genetic underpinnings of CVJ malformation and identified several novel disease-associated genes and biological pathways.


Subject(s)
Atlanto-Axial Joint , DNA Copy Number Variations , Humans , Atlanto-Axial Joint/pathology , Quadriplegia , Disease Susceptibility/pathology , Bestrophins
17.
Small ; 19(49): e2304084, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37612797

ABSTRACT

Although the electron-withdrawing effect of gold (Au) is highlighted in catalytic reactions, its enhancement mechanism for electron transport, especially in the electrochemical process, is still unclear. Herein, Au-decorated Bi2 O3 (Au-Bi2 O3 ) is proposed as a proof-of-concept to investigate the electron-withdrawing effect in the electrocatalytic CO2 reduction reaction (eCO2 RR) process. Evidence from in situ Raman spectra and in situ XRD tests reveals that, compared to Bi2 O3 , Bi species in Au-Bi2 O3 can be reduced to metallic Bi more rapidly and more easily driven by the electron-withdrawing effect of Au. The XPS tests after eCO2 RR further validates the transformation from Bi3+ to Bi0 in Au-Bi2 O3 is more complete. Meanwhile, in the in situ Fourier transform infrared (FTIR) spectra, the key intermediates (CO2 *- and OCHO*- ) appear at the more positive potential, indicating that metallic Bi is favorable for eCO2 RR due to the lower energy barrier as corroborated by density function theory (DFT) calculations. Au don't directly participate in the conversion from CO2 to formate as the reaction sites, but utilize the electron-withdrawing effect to motivate Bi-sites to deliver higher catalytic activity and higher selectivity to formate at a lower applied potential. This study not only has an insight into the electron-withdrawing effect of Au on the eCO2 RR process, but also develops a new perspective for engineering electron-withdrawing effect in electrocatalysts for high-efficient CO2 -to-formate conversion.

18.
Small ; 19(14): e2205720, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36634983

ABSTRACT

Nanoporous single-crystal silicon carbide (SiC) is widely used in various applications such as protein dialysis, as a catalyst support, and in photoanodes for photoelectrochemical water splitting. However, the fabrication of nano-structured SiC is challenging owing to its extreme chemical and mechanical stability. This study demonstrates a highly-efficient, open-circuit electrolytic plasma-assisted chemical etching (EPACE) method without aggressive fluorine-containing reactants. The EPACE method enables the nano-structuring of SiC via a plasma-enveloped microtool traversing over the target material in an electrolyte bath. Through process design, EPACE readily produces a uniform nanoporous layer on a 4H-SiC wafer in KOH aqueous solution, with adjustable pore diameters in the range 40-130 nm. Plasma diagnosis by optical emission spectrometry (OES) and surface microanalysis reveal that EPACE realizes a nanoporous structure by electrolytic plasma-assisted oxidation and subsequent thermochemical reduction of an oxide. An increase in voltage or a decrease in etch gap intensifies the plasma and improves the etching efficiency. The maximum etch rate and depth reach 540 nm min-1 and 10 µm, respectively, demonstrating the significant potential of the approach as a time-saving and sustainable nanofabrication method for industrial applications. Further, the effectiveness of the fabricated SiC nanoporous structure for application in photoelectrochemical water splitting is demonstrated.

19.
Small ; 19(4): e2204889, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36420939

ABSTRACT

Exquisite design of RuO2 -based catalysts to simultaneously improve activity and stability under harsh conditions and reduce the Ru dosage is crucial for advancing energy conversion involving oxygen evolution reaction (OER). Herein, a distinctive cobalt-doped RuOx framework is constructed on Co3 O4 nanocones (Co3 O4 @CoRuOx ) as a promising strategy to realize above urgent desires. Extensive experimental characterization and theoretical analysis demonstrate that cobalt doped in RuOx lattice brings the oxygen vacancies and lattice contraction, which jointly redistribute the electron configuration of RuOx . The optimized d-band center balances the adsorption energies of oxygenated intermediates, lowing the thermodynamical barrier of the rate-determining step; and meanwhile, the over-oxidation and dissolution of Ru species are restrained because of the p-band down-shifting of the lattice oxygen. Co3 O4 @CoRuOx with 3.7 wt.% Ru delivers the extremely low OER overpotentials at 10 mA cm-2 in alkaline (167 mV), neutral (229 mV), and acidic electrolytes (161 mV), and super operating stability over dozens of hours. The unprecedented activity ranks first in all pH-universal OER catalysts reported so far. These findings provide a route to produce robust low-loading Ru catalysts and an engineering approach for regulating the central active metal through synergy of co-existing defects to improve the catalytic performance and stability.

20.
Small ; 19(36): e2302132, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37127874

ABSTRACT

Ultrathin 2D porous carbon-based materials offer numerous fascinating electrical, catalytic, and mechanical properties, which hold great promise in various applications. However, it remains a formidable challenge to fabricate these materials with tunable morphology and composition by a simple synthesis strategy. Here, a facile one-step self-flowering method without purification and harsh conditions is reported for large-scale fabrication of high-quality ultrathin (≈1.5 nm) N-doped porous carbon nanosheets (NPC) and their composites. It is demonstrated that the layered tannic/oxamide (TA/oxamide) hybrid is spontaneously blown, exfoliated, bloomed, in situ pore-formed, and aromatized during pyrolysis to form flower-like aggregated NPC. This universal one-step self-flowering system is compatible with various precursors to construct multiscale NPC-based composites (Ru@NPC, ZnO@NPC, MoS2 @NPC, Co@NPC, rGO@NPC, etc.). Notably, the programmable architecture enables NPC-based materials with excellent multifunctional performances, such as microwave absorption and hydrogen evolution. This work provides a facile, universal, scalable, and eco-friendly avenue to fabricate functional ultrathin porous carbon-based materials with programmability.

SELECTION OF CITATIONS
SEARCH DETAIL