ABSTRACT
Due to weak light-matter interaction, standard chemical vapor deposition (CVD)/exfoliated single-layer graphene-based photodetectors show low photoresponsivity (on the order of mA/W). However, epitaxial graphene (EG) offers a more viable approach for obtaining devices with good photoresponsivity. EG on 4H-SiC also hosts an interfacial buffer layer (IBL), which is the source of electron carriers applicable to quantum optoelectronic devices. We utilize these properties to demonstrate a gate-free, planar EG/4H-SiC-based device that enables us to observe the positive photoresponse for (405-532) nm and negative photoresponse for (632-980) nm laser excitation. The broadband binary photoresponse mainly originates from the energy band alignment of the IBL/EG interface and the highly sensitive work function of the EG. We find that the photoresponsivity of the device is > 10 A/W under 405 nm of power density 7.96 mW/cm2 at 1 V applied bias, which is three orders of magnitude greater than the obtained values of CVD/exfoliated graphene and higher than the required value for practical applications. These results path the way for selective light-triggered logic devices based on EG and can open a new window for broadband photodetection.
ABSTRACT
Just a few of the promising applications of graphene Corbino pnJ devices include two-dimensional Dirac fermion microscopes, custom programmable quantized resistors, and mesoscopic valley filters. In some cases, device scalability is crucial, as seen in fields like resistance metrology, where graphene devices are required to accommodate currents of the order 100 µA to be compatible with existing infrastructure. However, fabrication of these devices still poses many difficulties. In this work, unusual quantized resistances are observed in epitaxial graphene Corbino p-n junction devices held at the ν = 2 plateau (R H ≈ 12906 Ω) and agree with numerical simulations performed with the LTspice circuit simulator. The formulae describing experimental and simulated data are empirically derived for generalized placement of up to three current terminals and accurately reflects observed partial edge channel cancellation. These results support the use of ultraviolet lithography as a way to scale up graphene-based devices with suitably narrow junctions that could be applied in a variety of subfields.
ABSTRACT
Measurements of fractional multiples of the ν = 2 plateau quantized Hall resistance (R H ≈ 12906 Ω) were enabled by the utilization of multiple current terminals on millimetre-scale graphene p-n junction devices fabricated with interfaces along both lateral directions. These quantum Hall resistance checkerboard devices have been demonstrated to match quantized resistance outputs numerically calculated with the LTspice circuit simulator. From the devices' functionality, more complex embodiments of the quantum Hall resistance checkerboard were simulated to highlight the parameter space within which these devices could operate. Moreover, these measurements suggest that the scalability of p-n junction fabrication on millimetre or centimetre scales is feasible with regards to graphene device manufacturing by using the far more efficient process of standard ultraviolet lithography.
ABSTRACT
Tea is rich in catechins and aluminum. In this study, the process of catechin photolysis was applied as a model for examining the effects of aluminum chloride (AlCl3) on the structural changes of catechin and the alteration of aluminum complexes under blue light irradiation (BLI) at pH 8 using liquid chromatography and mass spectrometry techniques. Additionally, the effects of anions on catechin upon the addition of AlCl3 and treatment with BLI were also studied. In this study, when 1 mM catechin was treated with BLI, a superoxide anion radical (O2â¢-) was generated in an air-saturated aqueous solution, in addition to forming a dimeric catechin (proanthocyanidin) via a photon-induced redox reaction. The relative percentage of catechin was found to be 59.0 and 95.7 for catechin treated with BLI and catechin upon the addition of 1 mM AlCl3 treated with BLI, respectively. It suggested that catechin treated with BLI could be suppressed by AlCl3, while AlCl3 did not form a complex with catechin in the photolytic system. However, under the same conditions, it was also found that the addition of AlCl3 inhibited the photolytic formation of O2â¢-, and reduced the generation of proanthocyanidin, suggesting that the disconnection of proanthocyanidin was achieved by AlCl3 acting as a catalyst under treatment with BLI. The influence of 1 mM fluoride (F-) and 1 mM oxalate (C2O42-) ions on the photolysis of 1 mM catechin upon the addition of 1 mM AlCl3 and treatment with BLI was found to be insignificant, implying that, during the photolysis of catechin, the Al species were either neutral or negatively charged and the aluminum species did not form a complex with anions in the photolytic system. Therefore, aluminum, which is an amphoteric species, has an inherent potential to stabilize the photolysis of catechin in an alkaline conditions, while suppressing the O2â¢- and proanthocyanidin generation via aluminum ion catalysis in the catechin/Al system under treatment with BLI.
Subject(s)
Aluminum Chloride/chemistry , Catechin/chemistry , Photolysis , Proanthocyanidins/chemistry , Superoxides/chemistry , Aluminum/chemistry , Chromatography, Liquid , Light , Mass Spectrometry , Plants/chemistry , Tea/chemistryABSTRACT
Homogeneous, single-crystal, monolayer epitaxial graphene (EG) is the one of most promising candidates for the advancement of quantized Hall resistance (QHR) standards. A remaining challenge for the electrical characterization of EG-based quantum Hall devices as a useful tool for metrology is that they are electrically unstable when exposed to air due to the adsorption of and interaction with atmospheric molecular dopants. The resulting changes in the charge carrier density become apparent by variations in the surface conductivity, the charge carrier mobility, and may result in a transition from n-type to p-type conductivity. This work evaluates the use of Parylene C and Parylene N as passivation layers for EG. Electronic transport of EG quantum Hall devices and non-contact microwave perturbation measurements of millimeter-sized areas of EG are both performed on bare and Parylene coated samples to test the efficacy of the passivation layers. The reported results, showing a significant improvement in passivation due to Parylene deposition, suggest a method for the mass production of millimeter-scale graphene devices with stable electrical properties.
ABSTRACT
Regarding the improvement of current quantized Hall resistance (QHR) standards, one promising avenue is the growth of homogeneous monolayer epitaxial graphene (EG). A clean and simple process is used to produce large, precise areas of EG. Properties like the surface conductivity and dielectric loss tangent remain unstable when EG is exposed to air due to doping from molecular adsorption. Experimental results are reported on the extraction of the surface conductivity and dielectric loss tangent from data taken with a noncontact resonance microwave cavity, assembled with an air-filled, standard R100 rectangular waveguide configuration. By using amorphous boron nitride (a-BN) as an encapsulation layer, stability of EG's electrical properties under ambient laboratory conditions is greatly improved. Moreover, samples are exposed to a variety of environmental and chemical conditions. Both thicknesses of a-BN encapsulation are sufficient to preserve surface conductivity and dielectric loss tangent to within 10% of its previously measured value, a result which has essential importance in the mass production of millimeter-scale graphene devices demonstrating electrical stability.
ABSTRACT
Quantized magnetotransport is observed in 5.6 × 5.6 mm2 epitaxial graphene devices, grown using highly constrained sublimation on the Si-face of SiC(0001) at high temperature (1900 °C). The precise quantized Hall resistance of [Formula: see text] is maintained up to record level of critical current Ixx = 0.72 mA at T = 3.1 K and 9 T in a device where Raman microscopy reveals low and homogeneous strain. Adsorption-induced molecular doping in a second device reduced the carrier concentration close to the Dirac point (n ≈ 1010 cm-2), where mobility of 18760 cm2/V is measured over an area of 10 mm2. Atomic force, confocal optical, and Raman microscopies are used to characterize the large-scale devices, and reveal improved SiC terrace topography and the structure of the graphene layer. Our results show that the structural uniformity of epitaxial graphene produced by face-to-graphite processing contributes to millimeter-scale transport homogeneity, and will prove useful for scientific and commercial applications.
ABSTRACT
We report on nonreciprocity observations in several configurations of graphene-based quantum Hall devices. Two distinct measurement configurations were adopted to verify the universality of the observations (i.e., two-terminal arrays and four-terminal devices). Our findings determine the extent to which epitaxial graphene anisotropies contribute to the observed asymmetric Hall responses. The presence of backscattering induces a device-dependent asymmetry rendering the Onsager-Casimir relations limited in their capacity to describe the behavior of such devices, except in the low-field classical regime and the fully quantized Hall state. The improved understanding of this quantum electrical process broadly limits the applicability of the reciprocity principle in the presence of quantum phase transitions and for anisotropic two-dimensional materials.
ABSTRACT
As first recognized in 2010, epitaxial graphene on SiC(0001) provides a platform for quantized Hall resistance (QHR) metrology unmatched by other two-dimensional structures and materials. Here we report graphene parallel QHR arrays, with metrologically precise quantization near 1000 Ω. These arrays have tunable carrier densities, due to uniform epitaxial growth and chemical functionalization, allowing quantization at the robust ν = 2 filling factor in array devices at relative precision better than 10-8. Broad tunability of the carrier density also enables investigation of the ν = 6 plateau. Optimized networks of QHR devices described in this work suppress Ohmic contact resistance error using branched contacts and avoid crossover leakage with interconnections that are superconducting for quantizing magnetic fields up to 13.5 T. Our work enables more direct scaling of resistance for quantized values in arrays of arbitrary network geometry.
ABSTRACT
Here, we report the effects of enhanced magnetic fields resulting from type-II superconducting NbTiN slabs adjacent to narrow Hall bar devices fabricated from epitaxial graphene. Observed changes in the magnetoresistances were found to have minimal contributions from device inhomogeneities, magnet hysteresis, electron density variations along the devices, and transient phenomena. We hypothesize that Abrikosov vortices, present in type-II superconductors, contribute to these observations. By determining the London penetration depth, coupled with elements of Ginzburg-Landau theory, one can approximate an upper bound on the effect that vortex densities at low fields (< 1T) have on the reported observations. These analyses offer insights into device fabrication and how to utilize the Meissner effect for any low-field and low-temperature applications using superconductors.
ABSTRACT
Two-dimensional (2D) materials such as graphene have become the focus of extensive research efforts in condensed matter physics. They provide opportunities for both fundamental research and applications across a wide range of industries. Ideally, characterization of graphene requires non-invasive techniques with single-atomic-layer thickness resolution and nanometer lateral resolution. Moreover, commercial application of graphene requires fast and large-area scanning capability. We demonstrate the optimized balance of image resolution and acquisition time of non-invasive confocal laser scanning microscopy (CLSM), rendering it an indispensable tool for rapid analysis of mass-produced graphene. It is powerful for analysis of 1-5 layers of exfoliated graphene on Si/SiO2, and allows us to distinguish the interfacial layer and 1-3 layers of epitaxial graphene on SiC substrates. Furthermore, CLSM shows excellent correlation with conventional optical microscopy, atomic force microscopy, Kelvin probe force microscopy, conductive atomic force microscopy, scanning electron microscopy and Raman mapping.
ABSTRACT
We present simulations of quantum transport in graphene p-n junctions (pnJs) in which moiré superlattice potentials are incorporated to demonstrate the interplay between pnJs and moiré superlattice potentials. It is shown that the longitudinal and Hall resistivity maps can be strongly modulated by the pnJ profile, junction height, and moiré potentials. Device resistance measurements are subsequently performed on graphene/hexagonal- boron-nitride heterostructure samples with accurate alignment of crystallographic orientations to complement and support the simulation results.
ABSTRACT
The information provided in this data article will cover the growth parameters for monolayer, epitaxial graphene, as well as how to verify the layer homogeneity by confocal laser scanning and optical microscopy. The characterization of the subsequently fabricated quantum Hall device is shown for example cases during a series of environmental exposures. Quantum Hall data acquired from a CYTOP encapsulation is also provided. Data from Raman spectroscopy, atomic force microscopy, and other electrical property trends are shown. Lastly, quantum Hall effect data are presented from devices with deposited Parylene C films measuring 10.7⯵m and 720â¯nm. All data are relevant for Rigosi et al. [1].
ABSTRACT
Homogeneous monolayer epitaxial graphene (EG) is an ideal candidate for the development of millimeter-sized devices with single-crystal domains. A clean fabrication process was used to produce EG-based devices, with n-type doping level of the order of 1012 cm-2. Generally, electrical properties of EG, such as longitudinal resistivity, remain unstable when devices are exposed to air due to adsorption of molecular dopants, whose presence shifts the carrier density close to the Dirac point (<1010 cm-2) or into the p-type regime. Here, we report experimental results on the use of amorphous boron nitride (a-BN) as an encapsulation layer, whereby EG can maintain its longitudinal resistivity and have its carrier density modulated. Furthermore, we exposed 12 devices to controlled temperatures of up to 85 °C and relative humidity of up to 85% and reported that an approximately 20 nm a-BN encapsulation thickness is sufficient to preserve their longitudinal resistivity to within 10% of the previously measured value. We monitored the electronic properties of our encapsulated and nonencapsulated EG samples by magnetotransport measurements, using a neodymium iron boron magnet. Our results have essential importance in the mass production of millimeter-scale graphene devices, with stable electrical properties.
ABSTRACT
The development of graphene electronic devices produced by industry relies on efficient control of heat transfer from the graphene sheet to its environment. In nanoscale devices, heat is one of the major obstacles to the operation of such devices at high frequencies. Here we have studied the transport of hot carriers in epitaxial graphene sheets on 6H-SiC (0001) substrates with and without hydrogen intercalation by driving the device into the non-equilibrium regime. Interestingly, we have demonstrated that the energy relaxation time of the device without hydrogen intercalation is two orders of magnitude shorter than that with hydrogen intercalation, suggesting application of epitaxial graphene in high-frequency devices which require outstanding heat exchange with an outside cooling source.