Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Int J Nanomedicine ; 19: 6499-6513, 2024.
Article in English | MEDLINE | ID: mdl-38946887

ABSTRACT

Purpose: To address the problem of suboptimal reactive oxygen species (ROS) production in Radiation therapy (RT) which was resulted from exacerbated tumor hypoxia and the heterogeneous distribution of radiation sensitizers. Materials and Methods: In this work, a novel nanomedicine, designated as PLGA@IR780-Bi-DTPA (PIBD), was engineered by loading the radiation sensitizer Bi-DTPA and the photothermal agent IR780 onto poly(lactic-co-glycolic acid) (PLGA). This design leverages the tumor-targeting ability of IR780 to ensure selective accumulation of the nanoparticles in tumor cells, particularly within the mitochondria. The effect of the photothermal therapy-enhanced radiation therapy was also examined to assess the alleviation of hypoxia and the enhancement of radiation sensitivity. Results: The PIBD nanoparticles exhibited strong capacity in mitochondrial targeting and selective tumor accumulation. Upon activation by 808 nm laser irradiation, the nanoparticles effectively alleviated local hypoxia by photothermal effect enhanced blood supplying to improve oxygen content, thereby enhancing the ROS production for effective RT. Comparative studies revealed that PIBD-induced RT significantly outperformed conventional RT in treating hypoxic tumors. Conclusion: This design of tumor-targeting photothermal therapy-enhanced radiation therapy nanomedicine would advance the development of targeted drug delivery system for effective RT regardless of hypoxic microenvironment.


Subject(s)
Nanoparticles , Photothermal Therapy , Polylactic Acid-Polyglycolic Acid Copolymer , Reactive Oxygen Species , Animals , Photothermal Therapy/methods , Reactive Oxygen Species/metabolism , Nanoparticles/chemistry , Cell Line, Tumor , Humans , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Mice , Indoles/pharmacology , Indoles/chemistry , Tumor Hypoxia/drug effects , Tumor Hypoxia/radiation effects , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/chemistry , Mice, Inbred BALB C , Mitochondria/drug effects , Mitochondria/metabolism , Neoplasms/radiotherapy , Neoplasms/therapy , Neoplasms/metabolism , Nanomedicine
2.
Front Epidemiol ; 3: 1201038, 2023.
Article in English | MEDLINE | ID: mdl-38455935

ABSTRACT

Background: French Polynesia is a French overseas collectivity in the Southeast Pacific, comprising 75 inhabited islands across five archipelagoes. The human settlement of the region corresponds to the last massive migration of humans to empty territories, but its timeline is still debated. Despite their recent population history and geographical isolation, inhabitants of French Polynesia experience health issues similar to those of continental countries. Modern lifestyles and increased longevity have led to a rise in non-communicable diseases (NCDs) such as obesity, diabetes, hypertension, and cardiovascular diseases. Likewise, international trade and people mobility have caused the emergence of communicable diseases (CDs) including mosquito-borne and respiratory diseases. Additionally, chronic pathologies including acute rheumatic fever, liver diseases, and ciguatera, are highly prevalent in French Polynesia. However, data on such diseases are scarce and not representative of the geographic fragmentation of the population. Objectives: The present project aims to estimate the prevalence of several NCDs and CDs in the population of the five archipelagoes, and identify associated risk factors. Moreover, genetic analyses will contribute to determine the sequence and timings of the peopling history of French Polynesia, and identify causal links between past genetic adaptation to island environments, and present-day susceptibility to certain diseases. Methods: This cross-sectional survey is based on the random selection of 2,100 adults aged 18-69 years and residing on 18 islands from the five archipelagoes. Each participant answered a questionnaire on a wide range of topics (including demographic characteristics, lifestyle habits and medical history), underwent physical measurements (height, weight, waist circumference, arterial pressure, and skin pigmentation), and provided biological samples (blood, saliva, and stool) for biological, genetic and microbiological analyses. Conclusion: For the first time in French Polynesia, the present project allows to collect a wide range of data to explore the existence of indicators and/or risk factors for multiple pathologies of public health concern. The results will help health authorities to adapt actions and preventive measures aimed at reducing the incidence of NCDs and CDs. Moreover, the new genomic data generated in this study, combined with anthropological data, will increase our understanding of the peopling history of French Polynesia. Clinical trial registration: https://clinicaltrials.gov/, identifier: NCT06133400.

SELECTION OF CITATIONS
SEARCH DETAIL