Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Cell ; 173(2): 371-385.e18, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625053

ABSTRACT

Identifying molecular cancer drivers is critical for precision oncology. Multiple advanced algorithms to identify drivers now exist, but systematic attempts to combine and optimize them on large datasets are few. We report a PanCancer and PanSoftware analysis spanning 9,423 tumor exomes (comprising all 33 of The Cancer Genome Atlas projects) and using 26 computational tools to catalog driver genes and mutations. We identify 299 driver genes with implications regarding their anatomical sites and cancer/cell types. Sequence- and structure-based analyses identified >3,400 putative missense driver mutations supported by multiple lines of evidence. Experimental validation confirmed 60%-85% of predicted mutations as likely drivers. We found that >300 MSI tumors are associated with high PD-1/PD-L1, and 57% of tumors analyzed harbor putative clinically actionable events. Our study represents the most comprehensive discovery of cancer genes and mutations to date and will serve as a blueprint for future biological and clinical endeavors.


Subject(s)
Neoplasms/pathology , Algorithms , B7-H1 Antigen/genetics , Computational Biology , Databases, Genetic , Entropy , Humans , Microsatellite Instability , Mutation , Neoplasms/genetics , Neoplasms/immunology , Principal Component Analysis , Programmed Cell Death 1 Receptor/genetics
3.
Nature ; 578(7793): 102-111, 2020 02.
Article in English | MEDLINE | ID: mdl-32025015

ABSTRACT

The discovery of drivers of cancer has traditionally focused on protein-coding genes1-4. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium5 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods. For structural variants, we present two methods of driver discovery, and identify regions that are significantly affected by recurrent breakpoints and recurrent somatic juxtapositions. Our analyses confirm previously reported drivers6,7, raise doubts about others and identify novel candidates, including point mutations in the 5' region of TP53, in the 3' untranslated regions of NFKBIZ and TOB1, focal deletions in BRD4 and rearrangements in the loci of AKR1C genes. We show that although point mutations and structural variants that drive cancer are less frequent in non-coding genes and regulatory sequences than in protein-coding genes, additional examples of these drivers will be found as more cancer genomes become available.


Subject(s)
Genome, Human/genetics , Mutation/genetics , Neoplasms/genetics , DNA Breaks , Databases, Genetic , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Humans , INDEL Mutation
5.
Nucleic Acids Res ; 49(D1): D1094-D1101, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33095860

ABSTRACT

Most mutations in cancer genomes occur in the non-coding regions with unknown impact on tumor development. Although the increase in the number of cancer whole-genome sequences has revealed numerous putative non-coding cancer drivers, their information is dispersed across multiple studies making it difficult to understand their roles in tumorigenesis of different cancer types. We have developed CNCDatabase, Cornell Non-coding Cancer driver Database (https://cncdatabase.med.cornell.edu/) that contains detailed information about predicted non-coding drivers at gene promoters, 5' and 3' UTRs (untranslated regions), enhancers, CTCF insulators and non-coding RNAs. CNCDatabase documents 1111 protein-coding genes and 90 non-coding RNAs with reported drivers in their non-coding regions from 32 cancer types by computational predictions of positive selection using whole-genome sequences; differential gene expression in samples with and without mutations; or another set of experimental validations including luciferase reporter assays and genome editing. The database can be easily modified and scaled as lists of non-coding drivers are revised in the community with larger whole-genome sequencing studies, CRISPR screens and further experimental validations. Overall, CNCDatabase provides a helpful resource for researchers to explore the pathological role of non-coding alterations in human cancers.


Subject(s)
Carcinogenesis/genetics , Databases, Genetic , Gene Expression Regulation, Neoplastic , Genome, Human , Neoplasms/genetics , 3' Untranslated Regions , 5' Untranslated Regions , Carcinogenesis/metabolism , Carcinogenesis/pathology , Clustered Regularly Interspaced Short Palindromic Repeats , Enhancer Elements, Genetic , Genes, Reporter , Humans , Insulator Elements , Luciferases/genetics , Luciferases/metabolism , Mutation , Neoplasms/metabolism , Neoplasms/pathology , Open Reading Frames , Promoter Regions, Genetic , RNA, Untranslated/classification , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Untranslated Regions , Whole Genome Sequencing
6.
Nat Cancer ; 5(4): 659-672, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38286828

ABSTRACT

The mitochondrial genome (mtDNA) encodes essential machinery for oxidative phosphorylation and metabolic homeostasis. Tumor mtDNA is among the most somatically mutated regions of the cancer genome, but whether these mutations impact tumor biology is debated. We engineered truncating mutations of the mtDNA-encoded complex I gene, Mt-Nd5, into several murine models of melanoma. These mutations promoted a Warburg-like metabolic shift that reshaped tumor microenvironments in both mice and humans, consistently eliciting an anti-tumor immune response characterized by loss of resident neutrophils. Tumors bearing mtDNA mutations were sensitized to checkpoint blockade in a neutrophil-dependent manner, with induction of redox imbalance being sufficient to induce this effect in mtDNA wild-type tumors. Patient lesions bearing >50% mtDNA mutation heteroplasmy demonstrated a response rate to checkpoint blockade that was improved by ~2.5-fold over mtDNA wild-type cancer. These data nominate mtDNA mutations as functional regulators of cancer metabolism and tumor biology, with potential for therapeutic exploitation and treatment stratification.


Subject(s)
DNA, Mitochondrial , Glycolysis , Immune Checkpoint Inhibitors , Melanoma , Mutation , DNA, Mitochondrial/genetics , Animals , Melanoma/genetics , Melanoma/drug therapy , Mice , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Glycolysis/genetics , Tumor Microenvironment , Cell Line, Tumor , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Neutrophils/metabolism , Neutrophils/immunology , Mitochondria/metabolism , Mitochondria/genetics , Oxidative Phosphorylation/drug effects
7.
Nat Metab ; 5(6): 1029-1044, 2023 06.
Article in English | MEDLINE | ID: mdl-37337120

ABSTRACT

Tumour metabolism is controlled by coordinated changes in metabolite abundance and gene expression, but simultaneous quantification of metabolites and transcripts in primary tissue is rare. To overcome this limitation and to study gene-metabolite covariation in cancer, we assemble the Cancer Atlas of Metabolic Profiles of metabolomic and transcriptomic data from 988 tumour and control specimens spanning 11 cancer types in published and newly generated datasets. Meta-analysis of the Cancer Atlas of Metabolic Profiles reveals two classes of gene-metabolite covariation that transcend cancer types. The first corresponds to gene-metabolite pairs engaged in direct enzyme-substrate interactions, identifying putative genes controlling metabolite pool sizes. A second class of gene-metabolite covariation represents a small number of hub metabolites, including quinolinate and nicotinamide adenine dinucleotide, which correlate to many genes specifically expressed in immune cell populations. These results provide evidence that gene-metabolite covariation in cellularly heterogeneous tissue arises, in part, from both mechanistic interactions between genes and metabolites, and from remodelling of the bulk metabolome in specific immune microenvironments.


Subject(s)
Metabolomics , Neoplasms , Humans , Metabolomics/methods , Metabolome , Neoplasms/genetics , Gene Expression Profiling/methods , Transcriptome , Tumor Microenvironment
8.
bioRxiv ; 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36993533

ABSTRACT

The mitochondrial genome encodes essential machinery for respiration and metabolic homeostasis but is paradoxically among the most common targets of somatic mutation in the cancer genome, with truncating mutations in respiratory complex I genes being most over-represented1. While mitochondrial DNA (mtDNA) mutations have been associated with both improved and worsened prognoses in several tumour lineages1-3, whether these mutations are drivers or exert any functional effect on tumour biology remains controversial. Here we discovered that complex I-encoding mtDNA mutations are sufficient to remodel the tumour immune landscape and therapeutic resistance to immune checkpoint blockade. Using mtDNA base editing technology4 we engineered recurrent truncating mutations in the mtDNA-encoded complex I gene, Mt-Nd5, into murine models of melanoma. Mechanistically, these mutations promoted utilisation of pyruvate as a terminal electron acceptor and increased glycolytic flux without major effects on oxygen consumption, driven by an over-reduced NAD pool and NADH shuttling between GAPDH and MDH1, mediating a Warburg-like metabolic shift. In turn, without modifying tumour growth, this altered cancer cell-intrinsic metabolism reshaped the tumour microenvironment in both mice and humans, promoting an anti-tumour immune response characterised by loss of resident neutrophils. This subsequently sensitised tumours bearing high mtDNA mutant heteroplasmy to immune checkpoint blockade, with phenocopy of key metabolic changes being sufficient to mediate this effect. Strikingly, patient lesions bearing >50% mtDNA mutation heteroplasmy also demonstrated a >2.5-fold improved response rate to checkpoint inhibitor blockade. Taken together these data nominate mtDNA mutations as functional regulators of cancer metabolism and tumour biology, with potential for therapeutic exploitation and treatment stratification.

9.
Cell Metab ; 35(8): 1424-1440.e5, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37413991

ABSTRACT

Tumor cell phenotypes and anti-tumor immune responses are shaped by local metabolite availability, but intratumoral metabolite heterogeneity (IMH) and its phenotypic consequences remain poorly understood. To study IMH, we profiled tumor/normal regions from clear cell renal cell carcinoma (ccRCC) patients. A common pattern of IMH transcended all patients, characterized by correlated fluctuations in the abundance of metabolites and processes associated with ferroptosis. Analysis of intratumoral metabolite-RNA covariation revealed that the immune composition of the microenvironment, especially the abundance of myeloid cells, drove intratumoral metabolite variation. Motivated by the strength of RNA-metabolite covariation and the clinical significance of RNA biomarkers in ccRCC, we inferred metabolomic profiles from the RNA sequencing data of ccRCC patients enrolled in 7 clinical trials, and we ultimately identifyied metabolite biomarkers associated with response to anti-angiogenic agents. Local metabolic phenotypes, therefore, emerge in tandem with the immune microenvironment, influence ongoing tumor evolution, and are associated with therapeutic sensitivity.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Myeloid Cells , RNA , Tumor Microenvironment , Biomarkers, Tumor
10.
Sci Adv ; 8(25): eabn9699, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35731870

ABSTRACT

Hürthle cell carcinomas (HCCs) display two exceptional genotypes: near-homoplasmic mutation of mitochondrial DNA (mtDNA) and genome-wide loss of heterozygosity (gLOH). To understand the phenotypic consequences of these genetic alterations, we analyzed genomic, metabolomic, and immunophenotypic data of HCC and other thyroid cancers. Both mtDNA mutations and profound depletion of citrate pools are common in HCC and other thyroid malignancies, suggesting that thyroid cancers are broadly equipped to survive tricarboxylic acid cycle impairment, whereas metabolites in the reduced form of NADH-dependent lysine degradation pathway were elevated exclusively in HCC. The presence of gLOH was not associated with metabolic phenotypes but rather with reduced immune infiltration, indicating that gLOH confers a selective advantage partially through immunosuppression. Unsupervised multimodal clustering revealed four clusters of HCC with distinct clinical, metabolomic, and microenvironmental phenotypes but overlapping genotypes. These findings chart the metabolic and microenvironmental landscape of HCC and shed light on the interaction between genotype, metabolism, and the microenvironment in cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Thyroid Neoplasms , Carcinoma, Hepatocellular/genetics , DNA, Mitochondrial/genetics , Genotype , Humans , Liver Neoplasms/genetics , Mutation , Oxyphil Cells/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Tumor Microenvironment/genetics
11.
Science ; 376(6596): eabe1505, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35617398

ABSTRACT

In castration-resistant prostate cancer (CRPC), the loss of androgen receptor (AR) dependence leads to clinically aggressive tumors with few therapeutic options. We used ATAC-seq (assay for transposase-accessible chromatin sequencing), RNA-seq, and DNA sequencing to investigate 22 organoids, six patient-derived xenografts, and 12 cell lines. We identified the well-characterized AR-dependent and neuroendocrine subtypes, as well as two AR-negative/low groups: a Wnt-dependent subtype, and a stem cell-like (SCL) subtype driven by activator protein-1 (AP-1) transcription factors. We used transcriptomic signatures to classify 366 patients, which showed that SCL is the second most common subtype of CRPC after AR-dependent. Our data suggest that AP-1 interacts with the YAP/TAZ and TEAD proteins to maintain subtype-specific chromatin accessibility and transcriptomic landscapes in this group. Together, this molecular classification reveals drug targets and can potentially guide therapeutic decisions.


Subject(s)
Chromatin , Molecular Targeted Therapy , Prostatic Neoplasms, Castration-Resistant , Cell Line, Tumor , Chromatin/genetics , Gene Expression Profiling , Humans , Male , Neoplastic Stem Cells/classification , Neoplastic Stem Cells/metabolism , Organoids/metabolism , Organoids/pathology , Prostatic Neoplasms, Castration-Resistant/classification , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
12.
Cell Rep ; 34(5): 108707, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33535033

ABSTRACT

RTK/RAS/RAF pathway alterations (RPAs) are a hallmark of lung adenocarcinoma (LUAD). In this study, we use whole-genome sequencing (WGS) of 85 cases found to be RPA(-) by previous studies from The Cancer Genome Atlas (TCGA) to characterize the minority of LUADs lacking apparent alterations in this pathway. We show that WGS analysis uncovers RPA(+) in 28 (33%) of the 85 samples. Among the remaining 57 cases, we observe focal deletions targeting the promoter or transcription start site of STK11 (n = 7) or KEAP1 (n = 3), and promoter mutations associated with the increased expression of ILF2 (n = 6). We also identify complex structural variations associated with high-level copy number amplifications. Moreover, an enrichment of focal deletions is found in TP53 mutant cases. Our results indicate that RPA(-) cases demonstrate tumor suppressor deletions and genome instability, but lack unique or recurrent genetic lesions compensating for the lack of RPAs. Larger WGS studies of RPA(-) cases are required to understand this important LUAD subset.


Subject(s)
Adenocarcinoma of Lung/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/genetics , Tachykinins/metabolism , Whole Genome Sequencing/methods , Humans
13.
PLoS One ; 15(11): e0234669, 2020.
Article in English | MEDLINE | ID: mdl-33137091

ABSTRACT

SUMMARY: Large-scale sequencing projects, such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), have generated high throughput sequencing and molecular profiling data sets, but it is still challenging to identify potentially causal changes in cellular processes in cancer as well as in other diseases in an automated fashion. We developed the netboxr package written in the R programming language, which makes use of the NetBox algorithm to identify candidate cancer-related functional modules. The algorithm makes use of a data-driven, network-based approach that combines prior knowledge with a network clustering algorithm, obviating the need for and the limitation of independently curated functionally labeled gene sets. The method can combine multiple data types, such as mutations and copy number alterations, leading to more reliable identification of functional modules. We make the tool available in the Bioconductor R ecosystem for applications in cancer research and cell biology. AVAILABILITY AND IMPLEMENTATION: The netboxr package is free and open-sourced under the GNU GPL-3 license R package available at https://www.bioconductor.org/packages/release/bioc/html/netboxr.html.


Subject(s)
Algorithms , Biomarkers, Tumor/genetics , Gene Regulatory Networks , Genome, Human , Genomics/methods , Neoplasms/genetics , Software , Humans , Metabolic Networks and Pathways , Programming Languages
14.
Cell Syst ; 8(5): 446-455.e8, 2019 05 22.
Article in English | MEDLINE | ID: mdl-31078526

ABSTRACT

Recent studies have shown that mutations at non-coding elements, such as promoters and enhancers, can act as cancer drivers. However, an important class of non-coding elements, namely CTCF insulators, has been overlooked in the previous driver analyses. We used insulator annotations from CTCF and cohesin ChIA-PET and analyzed somatic mutations in 1,962 whole genomes from 21 cancer types. Using the heterogeneous patterns of transcription-factor-motif disruption, functional impact, and recurrence of mutations, we developed a computational method that revealed 21 insulators showing signals of positive selection. In particular, mutations in an insulator in multiple cancer types, including 16% of melanoma samples, are associated with TGFB1 up-regulation. Using CRISPR-Cas9, we find that alterations at two of the most frequently mutated regions in this insulator increase cell growth by 40%-50%, supporting the role of this boundary element as a cancer driver. Thus, our study reveals several CTCF insulators as putative cancer drivers.


Subject(s)
CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Animals , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation/genetics , Gene Expression Regulation, Neoplastic/genetics , Genome, Human , Humans , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Promoter Regions, Genetic/genetics , Repressor Proteins/genetics , Cohesins
15.
Cell Syst ; 6(3): 301-313.e3, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29396322

ABSTRACT

Tumor metabolism is reorganized to support proliferation in the face of growth-related stress. Unlike the widespread profiling of changes to metabolic enzyme levels in cancer, comparatively less attention has been paid to the substrates/products of enzyme-catalyzed reactions, small-molecule metabolites. We developed an informatic pipeline to concurrently analyze metabolomics data from over 900 tissue samples spanning seven cancer types, revealing extensive heterogeneity in metabolic changes relative to normal tissue across cancers of different tissues of origin. Despite this heterogeneity, a number of metabolites were recurrently differentially abundant across many cancers, such as lactate and acyl-carnitine species. Through joint analysis of metabolomic data alongside clinical features of patient samples, we also identified a small number of metabolites, including several polyamines and kynurenine, which were associated with aggressive tumors across several tumor types. Our findings offer a glimpse onto common patterns of metabolic reprogramming across cancers, and the work serves as a large-scale resource accessible via a web application (http://www.sanderlab.org/pancanmet).


Subject(s)
Computational Biology/methods , Metabolomics/methods , Neoplasms/metabolism , Algorithms , Humans , Software
16.
Genome Biol ; 18(1): 141, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28750683

ABSTRACT

We report a novel computational method, RegNetDriver, to identify tumorigenic drivers using the combined effects of coding and non-coding single nucleotide variants, structural variants, and DNA methylation changes in the DNase I hypersensitivity based regulatory network. Integration of multi-omics data from 521 prostate tumor samples indicated a stronger regulatory impact of structural variants, as they affect more transcription factor hubs in the tissue-specific network. Moreover, crosstalk between transcription factor hub expression modulated by structural variants and methylation levels likely leads to the differential expression of target genes. We report known prostate tumor regulatory drivers and nominate novel transcription factors (ERF, CREB3L1, and POU2F2), which are supported by functional validation.


Subject(s)
Algorithms , Carcinogenesis/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Gene Expression Regulation, Neoplastic , Nerve Tissue Proteins/genetics , Octamer Transcription Factor-2/genetics , Prostatic Neoplasms/genetics , Repressor Proteins/genetics , Binding Sites , Carcinogenesis/metabolism , Carcinogenesis/pathology , Chromosome Mapping , Cyclic AMP Response Element-Binding Protein/metabolism , DNA Methylation , Deoxyribonuclease I , Epigenesis, Genetic , Gene Regulatory Networks , Humans , Male , Nerve Tissue Proteins/metabolism , Octamer Transcription Factor-2/metabolism , Organ Specificity , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Binding , Protein Interaction Mapping , Repressor Proteins/metabolism
17.
Cancer Cell ; 29(1): 104-116, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26766592

ABSTRACT

Dysregulated metabolism is a hallmark of cancer, manifested through alterations in metabolites. We performed metabolomic profiling on 138 matched clear cell renal cell carcinoma (ccRCC)/normal tissue pairs and found that ccRCC is characterized by broad shifts in central carbon metabolism, one-carbon metabolism, and antioxidant response. Tumor progression and metastasis were associated with metabolite increases in glutathione and cysteine/methionine metabolism pathways. We develop an analytic pipeline and visualization tool (metabolograms) to bridge the gap between TCGA transcriptomic profiling and our metabolomic data, which enables us to assemble an integrated pathway-level metabolic atlas and to demonstrate discordance between transcriptome and metabolome. Lastly, expression profiling was performed on a high-glutathione cluster, which corresponds to a poor-survival subgroup in the ccRCC TCGA cohort.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/genetics , Gene Expression Regulation, Neoplastic/genetics , Kidney Neoplasms/diagnosis , Kidney Neoplasms/genetics , Gene Expression Profiling/methods , Genetic Predisposition to Disease/genetics , Humans , Metabolomics/methods , Neoplasm Staging , Prognosis
19.
Science ; 337(6099): 1231-5, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22837387

ABSTRACT

The brain tumor glioblastoma multiforme (GBM) is among the most lethal forms of human cancer. Here, we report that a small subset of GBMs (3.1%; 3 of 97 tumors examined) harbors oncogenic chromosomal translocations that fuse in-frame the tyrosine kinase coding domains of fibroblast growth factor receptor (FGFR) genes (FGFR1 or FGFR3) to the transforming acidic coiled-coil (TACC) coding domains of TACC1 or TACC3, respectively. The FGFR-TACC fusion protein displays oncogenic activity when introduced into astrocytes or stereotactically transduced in the mouse brain. The fusion protein, which localizes to mitotic spindle poles, has constitutive kinase activity and induces mitotic and chromosomal segregation defects and triggers aneuploidy. Inhibition of FGFR kinase corrects the aneuploidy, and oral administration of an FGFR inhibitor prolongs survival of mice harboring intracranial FGFR3-TACC3-initiated glioma. FGFR-TACC fusions could potentially identify a subset of GBM patients who would benefit from targeted FGFR kinase inhibition.


Subject(s)
Cell Transformation, Neoplastic , Fetal Proteins/genetics , Glioblastoma/genetics , Microtubule-Associated Proteins/genetics , Nuclear Proteins/genetics , Oncogene Proteins, Fusion/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Aneuploidy , Animals , Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Chromosomal Instability , Enzyme Inhibitors/pharmacology , Fetal Proteins/chemistry , Fetal Proteins/metabolism , Glioblastoma/metabolism , Humans , Mice , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Mitosis , Neoplasm Transplantation , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Oncogene Fusion , Oncogene Proteins, Fusion/chemistry , Oncogene Proteins, Fusion/genetics , Piperazines/pharmacology , Protein Structure, Tertiary , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/chemistry , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/chemistry , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Spindle Apparatus/metabolism , Translocation, Genetic , Xenograft Model Antitumor Assays
20.
ChemMedChem ; 6(8): 1390-400, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21692183

ABSTRACT

A novel compound, N6-(4-hydroxybenzyl)adenosine, isolated from Gastrodia elata and which has been shown to be a potential therapeutic agent for preventing and treating neurodegenerative disease, was found to target both the adenosine A(2A) receptor (A(2A) R) and the equilibrative nucleoside transporter 1 (ENT1). As A(2A) R and ENT1 are proximal in the synaptic crevice of striatum, where the mutant huntingtin aggregate is located, the dual-action compounds that concomitantly target these two membrane proteins may be beneficial for the therapy of Huntington's disease. To design the desired dual-action compounds, pharmacophore models of the A(2A) R agonists and the ENT1 inhibitors were constructed. Accordingly, potentially active compounds were designed and synthesized by chemical modification of adenosine, particularly at the N6 and C5' positions, if the predicted activity was within an acceptable range. Indeed, some of the designed compounds exhibit significant dual-action properties toward both A(2A) R and ENT1. Both pharmacophore models exhibit good statistical correlation between predicted and measured activities. In agreement with competitive ligand binding assay results, these compounds also prevent apoptosis in serum-deprived PC12 cells, rendering a crucial function in neuroprotection and potential utility in the treatment of neurodegenerative diseases.


Subject(s)
Adenosine A2 Receptor Agonists/chemical synthesis , Adenosine/analogs & derivatives , Equilibrative Nucleoside Transporter 1/antagonists & inhibitors , Neuroprotective Agents/chemical synthesis , Receptor, Adenosine A2A/chemistry , Adenosine/chemical synthesis , Adenosine/chemistry , Adenosine/pharmacology , Adenosine A2 Receptor Agonists/chemistry , Adenosine A2 Receptor Agonists/pharmacology , Animals , Apoptosis , Drug Design , Equilibrative Nucleoside Transporter 1/metabolism , Gastrodia/chemistry , Humans , Models, Chemical , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , PC12 Cells , Rats , Receptor, Adenosine A2A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL