Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.109
Filter
Add more filters

Publication year range
1.
Cell ; 184(12): 3256-3266.e13, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34048699

ABSTRACT

Northern East Asia was inhabited by modern humans as early as 40 thousand years ago (ka), as demonstrated by the Tianyuan individual. Using genome-wide data obtained from 25 individuals dated to 33.6-3.4 ka from the Amur region, we show that Tianyuan-related ancestry was widespread in northern East Asia before the Last Glacial Maximum (LGM). At the close of the LGM stadial, the earliest northern East Asian appeared in the Amur region, and this population is basal to ancient northern East Asians. Human populations in the Amur region have maintained genetic continuity from 14 ka, and these early inhabitants represent the closest East Asian source known for Ancient Paleo-Siberians. We also observed that EDAR V370A was likely to have been elevated to high frequency after the LGM, suggesting the possible timing for its selection. This study provides a deep look into the population dynamics of northern East Asia.


Subject(s)
Population Dynamics , DNA, Ancient/analysis , Asia, Eastern , Female , Genetic Variation , Genetics, Population , Genome, Human , Geography , Humans , Ice Cover , Likelihood Functions , Male , Models, Genetic , Phylogeny , Principal Component Analysis , Time Factors
2.
Cell ; 184(14): 3829-3841.e21, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34171307

ABSTRACT

Past human genetic diversity and migration between southern China and Southeast Asia have not been well characterized, in part due to poor preservation of ancient DNA in hot and humid regions. We sequenced 31 ancient genomes from southern China (Guangxi and Fujian), including two ∼12,000- to 10,000-year-old individuals representing the oldest humans sequenced from southern China. We discovered a deeply diverged East Asian ancestry in the Guangxi region that persisted until at least 6,000 years ago. We found that ∼9,000- to 6,000-year-old Guangxi populations were a mixture of local ancestry, southern ancestry previously sampled in Fujian, and deep Asian ancestry related to Southeast Asian Hòabìnhian hunter-gatherers, showing broad admixture in the region predating the appearance of farming. Historical Guangxi populations dating to ∼1,500 to 500 years ago are closely related to Tai-Kadai and Hmong-Mien speakers. Our results show heavy interactions among three distinct ancestries at the crossroads of East and Southeast Asia.


Subject(s)
Genetics, Population , Asia, Southeastern , Asia, Eastern , Geography , Humans
3.
Nature ; 631(8022): 783-788, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961297

ABSTRACT

Three-dimensional (3D) printing has emerged as an attractive manufacturing technique because of its exceptional freedom in accessing geometrically complex customizable products. Its potential for mass manufacturing, however, is hampered by its low manufacturing efficiency (print speed) and insufficient product quality (mechanical properties). Recent progresses in ultra-fast 3D printing of photo-polymers1-5 have alleviated the issue of manufacturing efficiency, but the mechanical performance of typical printed polymers still falls far behind what is achievable with conventional processing techniques. This is because of the printing requirements that restrict the molecular design towards achieving high mechanical performance. Here we report a 3D photo-printable resin chemistry that yields an elastomer with tensile strength of 94.6 MPa and toughness of 310.4 MJ m-3, both of which far exceed that of any 3D printed elastomer6-10. Mechanistically, this is achieved by the dynamic covalent bonds in the printed polymer that allow network topological reconfiguration. This facilitates the formation of hierarchical hydrogen bonds (in particular, amide hydrogen bonds), micro-phase separation and interpenetration architecture, which contribute synergistically to superior mechanical performance. Our work suggests a brighter future for mass manufacturing using 3D printing.

4.
Nature ; 629(8014): 1118-1125, 2024 May.
Article in English | MEDLINE | ID: mdl-38778102

ABSTRACT

Higher plants survive terrestrial water deficiency and fluctuation by arresting cellular activities (dehydration) and resuscitating processes (rehydration). However, how plants monitor water availability during rehydration is unknown. Although increases in hypo-osmolarity-induced cytosolic Ca2+ concentration (HOSCA) have long been postulated to be the mechanism for sensing hypo-osmolarity in rehydration1,2, the molecular basis remains unknown. Because osmolarity triggers membrane tension and the osmosensing specificity of osmosensing channels can only be determined in vivo3-5, these channels have been classified as a subtype of mechanosensors. Here we identify bona fide cell surface hypo-osmosensors in Arabidopsis and find that pollen Ca2+ spiking is controlled directly by water through these hypo-osmosensors-that is, Ca2+ spiking is the second messenger for water status. We developed a functional expression screen in Escherichia coli for hypo-osmosensitive channels and identified OSCA2.1, a member of the hyperosmolarity-gated calcium-permeable channel (OSCA) family of proteins6. We screened single and high-order OSCA mutants, and observed that the osca2.1/osca2.2 double-knockout mutant was impaired in pollen germination and HOSCA. OSCA2.1 and OSCA2.2 function as hypo-osmosensitive Ca2+-permeable channels in planta and in HEK293 cells. Decreasing osmolarity of the medium enhanced pollen Ca2+ oscillations, which were mediated by OSCA2.1 and OSCA2.2 and required for germination. OSCA2.1 and OSCA2.2 convert extracellular water status into Ca2+ spiking in pollen and may serve as essential hypo-osmosensors for tracking rehydration in plants.


Subject(s)
Arabidopsis , Calcium Signaling , Calcium , Germination , Osmolar Concentration , Pollen , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Germination/genetics , Mutation , Pollen/genetics , Pollen/metabolism , Water/metabolism , HEK293 Cells , Humans , Dehydration
5.
Immunity ; 53(5): 934-951.e9, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33159854

ABSTRACT

Inflammatory signaling is required for hematopoietic stem and progenitor cell (HSPC) development. Here, we studied the involvement of RIG-I-like receptors (RLRs) in HSPC formation. Rig-I or Mda5 deficiency impaired, while Lgp2 deficiency enhanced, HSPC emergence in zebrafish embryos. Rig-I or Mda5 deficiency reduced HSPC numbers by inhibiting inflammatory signals that were in turn enhanced in Lgp2 deficient embryos. Simultaneous reduction of Lgp2 and either Rig-I or Mda5 rescued inflammatory signals and HSPC numbers. Modulating the expression of the signaling mediator Traf6 in RLR deficient embryos restored HSPC numbers. Repetitive element transcripts could be detected in hemogenic endothelial cells and HSPCs, suggesting a role as RLR ligands. Indeed, ectopic expression of repetitive elements enhanced HSPC formation in wild-type, but not in Rig-I or Mda5 deficient embryos. Manipulation of RLR expression in mouse fetal liver HSPCs indicated functional conservation among species. Thus, repetitive elements transcribed during development drive RLR-mediated inflammatory signals that regulate HSPC formation.


Subject(s)
Gene Expression Regulation, Developmental , Hematopoietic Stem Cells/metabolism , Repetitive Sequences, Nucleic Acid , Signal Transduction , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Animals , Biomarkers , Chromatin Assembly and Disassembly , DNA Transposable Elements , Disease Susceptibility , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Immunity, Innate , Immunohistochemistry , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , RNA Helicases/deficiency , RNA Helicases/genetics , RNA-Binding Proteins/metabolism , TNF Receptor-Associated Factor 6/metabolism , Valproic Acid/pharmacology , Zebrafish
6.
Nature ; 624(7990): 74-79, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37968404

ABSTRACT

Electrochemical capacitors are expected to replace conventional electrolytic capacitors in line filtering for integrated circuits and portable electronics1-8. However, practical implementation of electrochemical capacitors into line-filtering circuits has not yet been achieved owing to the difficulty in synergistic accomplishment of fast responses, high specific capacitance, miniaturization and circuit-compatible integration1,4,5,9-12. Here we propose an electric-field enhancement strategy to promote frequency characteristics and capacitance simultaneously. By downscaling the channel width with femtosecond-laser scribing, a miniaturized narrow-channel in-plane electrochemical capacitor shows drastically reduced ionic resistances within both the electrode material and the electrolyte, leading to an ultralow series resistance of 39 mΩ cm2 at 120 Hz. As a consequence, an ultrahigh areal capacitance of up to 5.2 mF cm-2 is achieved with a phase angle of -80° at 120 Hz, twice as large as one of the highest reported previously4,13,14, and little degradation is observed over 1,000,000 cycles. Scalable integration of this electrochemical capacitor into microcircuitry shows a high integration density of 80 cells cm-2 and on-demand customization of capacitance and voltage. In light of excellent filtering performances and circuit compatibility, this work presents an important step of line-filtering electrochemical capacitors towards practical applications in integrated circuits and flexible electronics.

7.
Nat Immunol ; 17(4): 397-405, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26928339

ABSTRACT

The signaling adaptor TRAF3 is a highly versatile regulator of both innate immunity and adaptive immunity, but how its phosphorylation is regulated is still unknown. Here we report that deficiency in or inhibition of the conserved serine-threonine kinase CK1ɛ suppressed the production of type I interferon in response to viral infection. CK1ɛ interacted with and phosphorylated TRAF3 at Ser349, which thereby promoted the Lys63 (K63)-linked ubiquitination of TRAF3 and subsequent recruitment of the kinase TBK1 to TRAF3. Consequently, CK1ɛ-deficient mice were more susceptible to viral infection. Our findings establish CK1ɛ as a regulator of antiviral innate immune responses and indicate a novel mechanism of immunoregulation that involves CK1ɛ-mediated phosphorylation of TRAF3.


Subject(s)
Casein Kinase 1 epsilon/immunology , Immunity, Innate/immunology , Interferon-beta/immunology , TNF Receptor-Associated Factor 3/immunology , Animals , Casein Kinase 1 epsilon/antagonists & inhibitors , Casein Kinase 1 epsilon/genetics , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , HeLa Cells , Herpes Simplex/immunology , Herpesvirus 1, Human/immunology , Humans , Interferon Type I/biosynthesis , Interferon Type I/immunology , Interferon-beta/biosynthesis , Mass Spectrometry , Mice , Mice, Knockout , Phosphorylation , Protein Serine-Threonine Kinases , Real-Time Polymerase Chain Reaction , Rhabdoviridae Infections/immunology , TNF Receptor-Associated Factor 3/genetics , Ubiquitination , Vesiculovirus/immunology , West Nile Fever/immunology , West Nile virus/immunology
8.
Cell ; 153(4): 773-84, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23663777

ABSTRACT

5-methylcytosine is a major epigenetic modification that is sometimes called "the fifth nucleotide." However, our knowledge of how offspring inherit the DNA methylome from parents is limited. We generated nine single-base resolution DNA methylomes, including zebrafish gametes and early embryos. The oocyte methylome is significantly hypomethylated compared to sperm. Strikingly, the paternal DNA methylation pattern is maintained throughout early embryogenesis. The maternal DNA methylation pattern is maintained until the 16-cell stage. Then, the oocyte methylome is gradually discarded through cell division and is progressively reprogrammed to a pattern similar to that of the sperm methylome. The passive demethylation rate and the de novo methylation rate are similar in the maternal DNA. By the midblastula stage, the embryo's methylome is virtually identical to the sperm methylome. Moreover, inheritance of the sperm methylome facilitates the epigenetic regulation of embryogenesis. Therefore, besides DNA sequences, sperm DNA methylome is also inherited in zebrafish early embryos.


Subject(s)
DNA Methylation , Embryo, Nonmammalian/metabolism , Oocytes/metabolism , Spermatozoa/metabolism , Zebrafish/embryology , Zebrafish/genetics , 5-Methylcytosine/analysis , Animals , Epigenesis, Genetic , Female , Germ Cells/metabolism , Male , Zebrafish/metabolism
9.
Nature ; 604(7907): 763-770, 2022 04.
Article in English | MEDLINE | ID: mdl-35418678

ABSTRACT

Adhesion G-protein-coupled receptors (aGPCRs) are important for organogenesis, neurodevelopment, reproduction and other processes1-6. Many aGPCRs are activated by a conserved internal (tethered) agonist sequence known as the Stachel sequence7-12. Here, we report the cryogenic electron microscopy (cryo-EM) structures of two aGPCRs in complex with Gs: GPR133 and GPR114. The structures indicate that the Stachel sequences of both receptors assume an α-helical-bulge-ß-sheet structure and insert into a binding site formed by the transmembrane domain (TMD). A hydrophobic interaction motif (HIM) within the Stachel sequence mediates most of the intramolecular interactions with the TMD. Combined with the cryo-EM structures, biochemical characterization of the HIM motif provides insight into the cross-reactivity and selectivity of the Stachel sequences. Two interconnected mechanisms, the sensing of Stachel sequences by the conserved 'toggle switch' W6.53 and the constitution of a hydrogen-bond network formed by Q7.49/Y7.49 and the P6.47/V6.47φφG6.50 motif (φ indicates a hydrophobic residue), are important in Stachel sequence-mediated receptor activation and Gs coupling. Notably, this network stabilizes kink formation in TM helices 6 and 7 (TM6 and TM7, respectively). A common Gs-binding interface is observed between the two aGPCRs, and GPR114 has an extended TM7 that forms unique interactions with Gs. Our structures reveal the detailed mechanisms of aGPCR activation by Stachel sequences and their Gs coupling.


Subject(s)
Peptides , Receptors, G-Protein-Coupled , Binding Sites , Cryoelectron Microscopy , Protein Domains , Protein Structure, Secondary , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship
10.
Nature ; 599(7884): 256-261, 2021 11.
Article in English | MEDLINE | ID: mdl-34707286

ABSTRACT

The identity of the earliest inhabitants of Xinjiang, in the heart of Inner Asia, and the languages that they spoke have long been debated and remain contentious1. Here we present genomic data from 5 individuals dating to around 3000-2800 BC from the Dzungarian Basin and 13 individuals dating to around 2100-1700 BC from the Tarim Basin, representing the earliest yet discovered human remains from North and South Xinjiang, respectively. We find that the Early Bronze Age Dzungarian individuals exhibit a predominantly Afanasievo ancestry with an additional local contribution, and the Early-Middle Bronze Age Tarim individuals contain only a local ancestry. The Tarim individuals from the site of Xiaohe further exhibit strong evidence of milk proteins in their dental calculus, indicating a reliance on dairy pastoralism at the site since its founding. Our results do not support previous hypotheses for the origin of the Tarim mummies, who were argued to be Proto-Tocharian-speaking pastoralists descended from the Afanasievo1,2 or to have originated among the Bactria-Margiana Archaeological Complex3 or Inner Asian Mountain Corridor cultures4. Instead, although Tocharian may have been plausibly introduced to the Dzungarian Basin by Afanasievo migrants during the Early Bronze Age, we find that the earliest Tarim Basin cultures appear to have arisen from a genetically isolated local population that adopted neighbouring pastoralist and agriculturalist practices, which allowed them to settle and thrive along the shifting riverine oases of the Taklamakan Desert.


Subject(s)
Archaeology , Genome, Human/genetics , Genomics , Human Migration/history , Mummies/history , Phylogeny , Agriculture/history , Animals , Cattle , China , Cultural Characteristics , Dental Calculus/chemistry , Desert Climate , Diet/history , Europe , Female , Goats , Grassland , History, Ancient , Humans , Male , Milk Proteins/analysis , Phylogeography , Principal Component Analysis , Proteome/analysis , Proteomics , Sheep , Whole Genome Sequencing
11.
Mol Cell ; 73(1): 130-142.e5, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30472192

ABSTRACT

Since its establishment in 2009, single-cell RNA sequencing (RNA-seq) has been a major driver behind progress in biomedical research. In developmental biology and stem cell studies, the ability to profile single cells confers particular benefits. Although most studies still focus on individual tissues or organs, the recent development of ultra-high-throughput single-cell RNA-seq has demonstrated potential power in characterizing more complex systems or even the entire body. However, although multiple ultra-high-throughput single-cell RNA-seq systems have attracted attention, no systematic comparison of these systems has been performed. Here, with the same cell line and bioinformatics pipeline, we developed directly comparable datasets for each of three widely used droplet-based ultra-high-throughput single-cell RNA-seq systems, inDrop, Drop-seq, and 10X Genomics Chromium. Although each system is capable of profiling single-cell transcriptomes, their detailed comparison revealed the distinguishing features and suitable applications for each system.


Subject(s)
Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing , Microfluidic Analytical Techniques , RNA/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Transcriptome , Automation, Laboratory , Base Sequence , Cell Line , Computational Biology , Cost-Benefit Analysis , DNA Barcoding, Taxonomic , Gene Expression Profiling/economics , High-Throughput Nucleotide Sequencing/economics , Humans , Microfluidic Analytical Techniques/economics , Reproducibility of Results , Sequence Analysis, RNA/economics , Single-Cell Analysis/economics , Workflow
12.
Mol Cell ; 75(6): 1188-1202.e11, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31399345

ABSTRACT

The maternal-to-zygotic transition (MZT) is a conserved and fundamental process during which the maternal environment is converted to an environment of embryonic-driven development through dramatic reprogramming. However, how maternally supplied transcripts are dynamically regulated during MZT remains largely unknown. Herein, through genome-wide profiling of RNA 5-methylcytosine (m5C) modification in zebrafish early embryos, we found that m5C-modified maternal mRNAs display higher stability than non-m5C-modified mRNAs during MZT. We discovered that Y-box binding protein 1 (Ybx1) preferentially recognizes m5C-modified mRNAs through π-π interactions with a key residue, Trp45, in Ybx1's cold shock domain (CSD), which plays essential roles in maternal mRNA stability and early embryogenesis of zebrafish. Together with the mRNA stabilizer Pabpc1a, Ybx1 promotes the stability of its target mRNAs in an m5C-dependent manner. Our study demonstrates an unexpected mechanism of RNA m5C-regulated maternal mRNA stabilization during zebrafish MZT, highlighting the critical role of m5C mRNA modification in early development.


Subject(s)
5-Methylcytosine/metabolism , Embryo, Nonmammalian/embryology , Embryonic Development/physiology , RNA Stability/physiology , RNA, Messenger, Stored/metabolism , Zebrafish/embryology , Animals , HeLa Cells , Humans , Mice , RNA, Messenger, Stored/genetics , Zebrafish/genetics
13.
PLoS Genet ; 20(1): e1011134, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38241355

ABSTRACT

It has been well established that cancer cells can evade immune surveillance by mutating themselves. Understanding genetic alterations in cancer cells that contribute to immune regulation could lead to better immunotherapy patient stratification and identification of novel immune-oncology (IO) targets. In this report, we describe our effort of genome-wide association analyses across 22 TCGA cancer types to explore the associations between genetic alterations in cancer cells and 74 immune traits. Results showed that the tumor microenvironment (TME) is shaped by different gene mutations in different cancer types. Out of the key genes that drive multiple immune traits, top hit KEAP1 in lung adenocarcinoma (LUAD) was selected for validation. It was found that KEAP1 mutations can explain more than 10% of the variance for multiple immune traits in LUAD. Using public scRNA-seq data, further analysis confirmed that KEAP1 mutations activate the NRF2 pathway and promote a suppressive TME. The activation of the NRF2 pathway is negatively correlated with lower T cell infiltration and higher T cell exhaustion. Meanwhile, several immune check point genes, such as CD274 (PD-L1), are highly expressed in NRF2-activated cancer cells. By integrating multiple RNA-seq data, a NRF2 gene signature was curated, which predicts anti-PD1 therapy response better than CD274 gene alone in a mixed cohort of different subtypes of non-small cell lung cancer (NSCLC) including LUAD, highlighting the important role of KEAP1-NRF2 axis in shaping the TME in NSCLC. Finally, a list of overexpressed ligands in NRF2 pathway activated cancer cells were identified and could potentially be targeted for TME remodeling in LUAD.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Genome-Wide Association Study , NF-E2-Related Factor 2/genetics , Lung Neoplasms/genetics , Adenocarcinoma of Lung/genetics , Tumor Microenvironment/genetics , Prognosis
14.
Proc Natl Acad Sci U S A ; 121(19): e2315168121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683997

ABSTRACT

Accurate prediction of the efficacy of immunotherapy for cancer patients through the characterization of both genetic and phenotypic heterogeneity in individual patient cells holds great promise in informing targeted treatments, and ultimately in improving care pathways and clinical outcomes. Here, we describe the nanoplatform for interrogating living cell host-gene and (micro-)environment (NICHE) relationships, that integrates micro- and nanofluidics to enable highly efficient capture of circulating tumor cells (CTCs) from blood samples. The platform uses a unique nanopore-enhanced electrodelivery system that efficiently and rapidly integrates stable multichannel fluorescence probes into living CTCs for in situ quantification of target gene expression, while on-chip coculturing of CTCs with immune cells allows for the real-time correlative quantification of their phenotypic heterogeneities in response to immune checkpoint inhibitors (ICI). The NICHE microfluidic device provides a unique ability to perform both gene expression and phenotypic analysis on the same single cells in situ, allowing us to generate a predictive index for screening patients who could benefit from ICI. This index, which simultaneously integrates the heterogeneity of single cellular responses for both gene expression and phenotype, was validated by clinically tracing 80 non-small cell lung cancer patients, demonstrating significantly higher AUC (area under the curve) (0.906) than current clinical reference for immunotherapy prediction.


Subject(s)
Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Microfluidics/methods , Single-Cell Analysis/methods , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/blood , Phenotype , Cell Line, Tumor , Immunotherapy/methods , Gene Expression Profiling/methods , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/blood , Microfluidic Analytical Techniques/methods , Microfluidic Analytical Techniques/instrumentation
15.
Development ; 150(20)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37227070

ABSTRACT

The crosstalk between hematopoietic lineages is important for developmental hematopoiesis. However, the role of primitive red blood cells (RBCs) in the formation of definitive hematopoietic stem and progenitor cells (HSPCs) is largely unknown. Primitive RBC deficiencies in mammals always lead to early embryonic lethality, but zebrafish lines with RBC deficiencies can survive to larval stage. By taking advantage of a zebrafish model, we find that the survival of nascent HSPCs is impaired in alas2- or alad-deficient embryos with aberrant heme biosynthesis in RBCs. Heme-deficient primitive RBCs induce ferroptosis of HSPCs through the disruption of iron homeostasis. Mechanistically, heme-deficient primitive RBCs cause blood iron-overload via Slc40a1, and an HSPC iron sensor, Tfr1b, mediates excessive iron absorption. Thus, iron-induced oxidative stress stimulates the lipid peroxidation, which directly leads to HSPC ferroptosis. Anti-ferroptotic treatments efficiently reverse HSPC defects in alas2 or alad mutants. HSPC transplantation assay reveals that the attenuated erythroid reconstitution efficiency may result from the ferroptosis of erythrocyte-biased HSPCs. Together, these results illustrate that heme-deficient primitive RBCs are detrimental to HSPC production and may provide potential implications for iron dysregulation-induced hematological malignancies.


Subject(s)
Ferroptosis , Zebrafish , Animals , Heme , Hematopoietic Stem Cells , Hematopoiesis , Erythrocytes , Embryonic Development , Homeostasis , Iron , Mammals
16.
Development ; 150(14)2023 07 15.
Article in English | MEDLINE | ID: mdl-37439449

ABSTRACT

For a long time, self-renewing and multipotent hematopoietic stem cells (HSCs) have been thought to make a major contribution to both embryonic and adult hematopoiesis. The canonical hematopoietic hierarchy illustrating HSC self-renewal and multipotency has been established mainly based on invasive functional assays (e.g. transplantation or colony-forming units in the spleen and in culture), which evaluate the cellular potentials of HSCs. With the extensive applications of non-invasive cell fate-mapping strategies, recent lineage tracing-based studies have suggested that not all native hematopoiesis is established via the hierarchical differentiation of HSCs. By contrast, hematopoietic progenitor cells (HPCs) are a dominant contributor to both embryonic and young adult hematopoiesis. These new findings help redefine the cellular origins of embryonic and adult hematopoiesis under native conditions, and emphasize the differences in revealing HSC potential versus HSC fate using distinct approaches during stress and native hematopoiesis. Here, we review recent advances in HPC and HSC development, and provide an updated perspective to incorporate these new findings with our traditional understanding of developmental and adult hematopoiesis.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Cell Differentiation , Hematopoiesis , Cell Lineage
17.
Development ; 150(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37874038

ABSTRACT

In vertebrates, the earliest hematopoietic stem and progenitor cells (HSPCs) are derived from a subset of specialized endothelial cells, hemogenic endothelial cells, in the aorta-gonad-mesonephros region through endothelial-to-hematopoietic transition. HSPC generation is efficiently and accurately regulated by a variety of factors and signals; however, the precise control of these signals remains incompletely understood. Post-transcriptional regulation is crucial for gene expression, as the transcripts are usually bound by RNA-binding proteins (RBPs) to regulate RNA metabolism. Here, we report that the RBP protein Csde1-mediated translational control is essential for HSPC generation during zebrafish early development. Genetic mutants and morphants demonstrated that depletion of csde1 impaired HSPC production in zebrafish embryos. Mechanistically, Csde1 regulates HSPC generation through modulating Wnt/ß-catenin signaling activity. We demonstrate that Csde1 binds to ctnnb1 mRNAs (encoding ß-catenin, an effector of Wnt signaling) and regulates translation but not stability of ctnnb1 mRNA, which further enhances ß-catenin protein level and Wnt signal transduction activities. Together, we identify Csde1 as an important post-transcriptional regulator and provide new insights into how Wnt/ß-catenin signaling is precisely regulated at the post-transcriptional level.


Subject(s)
Hemangioblasts , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , beta Catenin/metabolism , Wnt Signaling Pathway/genetics , Hematopoietic Stem Cells/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Hemangioblasts/metabolism
18.
PLoS Pathog ; 20(1): e1011902, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38166150

ABSTRACT

Fungal infections have emerged as a major concern among immunocompromised patients, causing approximately 2 million deaths each year worldwide. However, the regulatory mechanisms underlying antifungal immunity remain elusive and require further investigation. The E3 ligase Trim26 belongs to the tripartite motif (Trim) protein family, which is involved in various biological processes, including cell proliferation, antiviral innate immunity, and inflammatory responses. Herein, we report that Trim26 exerts protective antifungal immune functions after fungal infection. Trim26-deficient mice are more susceptible to fungemia than their wild-type counterparts. Mechanistically, Trim26 restricts inflammatory neutrophils infiltration and limits proinflammatory cytokine production, which can attenuate kidney fungal load and renal damage during Candida infection. Trim26-deficient neutrophils showed higher proinflammatory cytokine expression and impaired fungicidal activity. We further demonstrated that excessive neutrophils infiltration in the kidney was because of the increased production of chemokines CXCL1 and CXCL2, which are mainly synthesized in the macrophages or dendritic cells of Trim26-deficient mice after Candida albicans infections. Together, our study findings unraveled the vital role of Trim26 in regulating antifungal immunity through the regulation of inflammatory neutrophils infiltration and proinflammatory cytokine and chemokine expression during candidiasis.


Subject(s)
Candidiasis , Neutrophils , Animals , Mice , Antifungal Agents , Candida albicans , Candidiasis/metabolism , Candidiasis/microbiology , Cytokines/metabolism , Neutrophil Infiltration , Tripartite Motif Proteins , Ubiquitin-Protein Ligases
19.
Nature ; 583(7816): 437-440, 2020 07.
Article in English | MEDLINE | ID: mdl-32434211

ABSTRACT

In December 2019, coronavirus disease 2019 (COVID-19), which is caused by the new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in Wuhan (Hubei province, China)1; it soon spread across the world. In this ongoing pandemic, public health concerns and the urgent need for effective therapeutic measures require a deep understanding of the epidemiology, transmissibility and pathogenesis of COVID-19. Here we analysed clinical, molecular and immunological data from 326 patients with confirmed SARS-CoV-2 infection in Shanghai. The genomic sequences of SARS-CoV-2, assembled from 112 high-quality samples together with sequences in the Global Initiative on Sharing All Influenza Data (GISAID) dataset, showed a stable evolution and suggested that there were two major lineages with differential exposure history during the early phase of the outbreak in Wuhan. Nevertheless, they exhibited similar virulence and clinical outcomes. Lymphocytopenia, especially reduced CD4+ and CD8+ T cell counts upon hospital admission, was predictive of disease progression. High levels of interleukin (IL)-6 and IL-8 during treatment were observed in patients with severe or critical disease and correlated with decreased lymphocyte count. The determinants of disease severity seemed to stem mostly from host factors such as age and lymphocytopenia (and its associated cytokine storm), whereas viral genetic variation did not significantly affect outcomes.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Coronavirus Infections/virology , Host-Pathogen Interactions/immunology , Lymphopenia/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Respiratory Distress Syndrome/virology , Adolescent , Adult , Aged , Aged, 80 and over , Aging , Animals , Asymptomatic Infections/epidemiology , Betacoronavirus/classification , Betacoronavirus/isolation & purification , COVID-19 , China/epidemiology , Cohort Studies , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Critical Illness/epidemiology , Disease Progression , Evolution, Molecular , Female , Genetic Variation , Genome, Viral/genetics , Hospitalization/statistics & numerical data , Humans , Inflammation Mediators/immunology , Interleukin-6/blood , Interleukin-6/immunology , Interleukin-8/blood , Interleukin-8/immunology , Lymphocyte Count , Lymphopenia/complications , Male , Middle Aged , Pandemics , Phylogeny , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Respiratory Distress Syndrome/complications , SARS-CoV-2 , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Time Factors , Treatment Outcome , Virulence/genetics , Virus Shedding , Young Adult , Zoonoses/transmission , Zoonoses/virology
20.
Nature ; 577(7792): 682-688, 2020 01.
Article in English | MEDLINE | ID: mdl-31942069

ABSTRACT

Mycobacterium tuberculosis is an intracellular pathogen that uses several strategies to interfere with the signalling functions of host immune molecules. Many other bacterial pathogens exploit the host ubiquitination system to promote pathogenesis1,2, but whether this same system modulates the ubiquitination of M. tuberculosis proteins is unknown. Here we report that the host E3 ubiquitin ligase ANAPC2-a core subunit of the anaphase-promoting complex/cyclosome-interacts with the mycobacterial protein Rv0222 and promotes the attachment of lysine-11-linked ubiquitin chains to lysine 76 of Rv0222 in order to suppress the expression of proinflammatory cytokines. Inhibition of ANAPC2 by specific short hairpin RNA abolishes the inhibitory effect of Rv0222 on proinflammatory responses. Moreover, mutation of the ubiquitination site on Rv0222 impairs the inhibition of proinflammatory cytokines by Rv0222 and reduces virulence during infection in mice. Mechanistically, lysine-11-linked ubiquitination of Rv0222 by ANAPC2 facilitates the recruitment of the protein tyrosine phosphatase SHP1 to the adaptor protein TRAF6, preventing the lysine-63-linked ubiquitination and activation of TRAF6. Our findings identify a previously unrecognized mechanism that M. tuberculosis uses to suppress host immunity, and provide insights relevant to the development of effective immunomodulators that target M. tuberculosis.


Subject(s)
Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Host-Pathogen Interactions/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Ubiquitination , Anaphase-Promoting Complex-Cyclosome/chemistry , Animals , Apc2 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cells, Cultured , Cytokines/antagonists & inhibitors , Cytokines/immunology , Cytokines/metabolism , Female , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Lysine/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Signal Transduction , TNF Receptor-Associated Factor 6/antagonists & inhibitors , TNF Receptor-Associated Factor 6/metabolism , Transcription Factor AP-1/metabolism , Tuberculosis/microbiology , Virulence/immunology
SELECTION OF CITATIONS
SEARCH DETAIL