Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Development ; 150(16)2023 08 15.
Article in English | MEDLINE | ID: mdl-37497597

ABSTRACT

Morphological development of the lung requires complex signal crosstalk between the mesenchymal and epithelial progenitors. Elucidating the genetic cascades underlying signal crosstalk is essential to understanding lung morphogenesis. Here, we identified Nolz1 as a mesenchymal lineage-specific transcriptional regulator that plays a key role in lung morphogenesis. Nolz1 null mutation resulted in a severe hypoplasia phenotype, including a decreased proliferation of mesenchymal cells, aberrant differentiation of epithelial cells and defective growth of epithelial branches. Nolz1 deletion also downregulated Wnt2, Lef1, Fgf10, Gli3 and Bmp4 mRNAs. Mechanistically, Nolz1 regulates lung morphogenesis primarily through Wnt2 signaling. Loss-of-function and overexpression studies demonstrated that Nolz1 transcriptionally activated Wnt2 and downstream ß-catenin signaling to control mesenchymal cell proliferation and epithelial branching. Exogenous Wnt2 could rescue defective proliferation and epithelial branching in Nolz1 knockout lungs. Finally, we identified Fgf9 as an upstream regulator of Nolz1. Collectively, Fgf9-Nolz1-Wnt2 signaling represents a novel axis in the control of lung morphogenesis. These findings are relevant to lung tumorigenesis, in which a pathological function of Nolz1 is implicated.


Subject(s)
Lung , Signal Transduction , Signal Transduction/physiology , Cell Differentiation/genetics , Epithelial Cells , Morphogenesis/genetics , Mesoderm , Gene Expression Regulation, Developmental
2.
Brain ; 146(8): 3542-3557, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37137515

ABSTRACT

Human speech and language are among the most complex motor and cognitive abilities. The discovery of a mutation in the transcription factor FOXP2 in KE family members with speech disturbances has been a landmark example of the genetic control of vocal communication in humans. Cellular mechanisms underlying this control have remained unclear. By leveraging FOXP2 mutation/deletion mouse models, we found that the KE family FOXP2R553H mutation directly disables intracellular dynein-dynactin 'protein motors' in the striatum by induction of a disruptive high level of dynactin1 that impairs TrkB endosome trafficking, microtubule dynamics, dendritic outgrowth and electrophysiological activity in striatal neurons alongside vocalization deficits. Dynactin1 knockdown in mice carrying FOXP2R553H mutations rescued these cellular abnormalities and improved vocalization. We suggest that FOXP2 controls vocal circuit formation by regulating protein motor homeostasis in striatal neurons, and that its disruption could contribute to the pathophysiology of FOXP2 mutation/deletion-associated speech disorders.


Subject(s)
Corpus Striatum , Speech , Humans , Mice , Animals , Speech/physiology , Corpus Striatum/metabolism , Neurons/metabolism , Neostriatum/metabolism , Speech Disorders , Mutation/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Vocalization, Animal/physiology
3.
Proc Natl Acad Sci U S A ; 117(13): 7418-7429, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32170006

ABSTRACT

The striatal complex of basal ganglia comprises two functionally distinct districts. The dorsal district controls motor and cognitive functions. The ventral district regulates the limbic function of motivation, reward, and emotion. The dorsoventral parcellation of the striatum also is of clinical importance as differential striatal pathophysiologies occur in Huntington's disease, Parkinson's disease, and drug addiction disorders. Despite these striking neurobiologic contrasts, it is largely unknown how the dorsal and ventral divisions of the striatum are set up. Here, we demonstrate that interactions between the two key transcription factors Nolz-1 and Dlx1/2 control the migratory paths of striatal neurons to the dorsal or ventral striatum. Moreover, these same transcription factors control the cell identity of striatal projection neurons in both the dorsal and the ventral striata including the D1-direct and D2-indirect pathways. We show that Nolz-1, through the I12b enhancer, represses Dlx1/2, allowing normal migration of striatal neurons to dorsal and ventral locations. We demonstrate that deletion, up-regulation, and down-regulation of Nolz-1 and Dlx1/2 can produce a striatal phenotype characterized by a withered dorsal striatum and an enlarged ventral striatum and that we can rescue this phenotype by manipulating the interactions between Nolz-1 and Dlx1/2 transcription factors. Our study indicates that the two-tier system of striatal complex is built by coupling of cell-type identity and migration and suggests that the fundamental basis for divisions of the striatum known to be differentially vulnerable at maturity is already encoded by the time embryonic striatal neurons begin their migrations into developing striata.


Subject(s)
Basal Ganglia/cytology , Corpus Striatum/cytology , Ventral Striatum/cytology , Animals , Basal Ganglia/metabolism , Cell Differentiation , Corpus Striatum/metabolism , Female , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Interneurons/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Nucleus Accumbens/cytology , Nucleus Accumbens/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ventral Striatum/metabolism
4.
FASEB J ; 31(10): 4458-4471, 2017 10.
Article in English | MEDLINE | ID: mdl-28687613

ABSTRACT

The striatum comprises two neurochemical compartments: striosomes and the matrix. Striosomal and matrix compartments receive inputs from limbic system-related and sensorimotor cortices, respectively. Here, we investigate the impact on the corticostriosomal pathway in the valproic acid (VPA)-induced autism spectrum disorder mouse model. VPA administration during the neurogenesis time windows of striosomes, but not the matrix, resulted in aberrant compartmentation [i.e., maternal VPA injections at embryonic day (E)12.75 decreased µ-opioid receptor-positive striosomes, but increased calbindin-positive matrix in the rostral striatum]. VPAE12.75 treatment also impaired the aggregation of cells pulse labeled with 5-bromo-2'-deoxyuridine at E12.75 into striosomal cell clusters, which suggests defective segregation of striosomal cells from matrix cells. This possibility was supported by our findings that VPAE12.75 treatment altered the expression of ephrinA5 and EphA4, two molecules that are related to compartmental segregation. In the VPAE12.75 neocortex, Foxp2-positive neurons were decreased in layer VI, but increased in layer V, which projects to the striosomal compartment. We also investigated VPA effects on the corticostriosomal pathway. VPAE12.75 treatment decreased the putative corticostriosomal synapses of striosomal neurons and induced an aberrant pattern of isolation stress-induced ultrasonic vocalizations. Of interest, risperidone treatments conjointly improved ultrasonic vocalizations and restored the striosomal compartment in VPAE12.75 pups. Collectively, dysfunctional corticostriatal pathways, particularly via the aberrant striosomal compartment, may be involved in autism spectrum disorder pathophysiology.-Kuo, H.-Y., Liu, F.-C. Valproic acid induces aberrant development of striatal compartments and corticostriatal pathways in a mouse model of autism spectrum disorder.


Subject(s)
Autism Spectrum Disorder/drug therapy , Corpus Striatum/drug effects , Neurogenesis/drug effects , Neurons/drug effects , Valproic Acid/pharmacology , Animals , Autism Spectrum Disorder/chemically induced , Bromodeoxyuridine/pharmacology , Disease Models, Animal , Female , Mice , Neurons/metabolism , Pregnancy
5.
Proc Natl Acad Sci U S A ; 111(1): E168-77, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24351932

ABSTRACT

Striatal projection neurons comprise two populations of striatonigral and striatopallidal neurons. These two neuronal populations play distinct roles in controlling movement-related functions in the basal ganglia circuits. An important issue is how striatal progenitors are developmentally specified into these two distinct neuronal populations. In the present study, we characterized the function of Islet-1 (Isl1), a LIM-homeodomain transcription factor, in striatal development. Genetic fate mapping showed that Isl1(+) progeny specifically developed into a subpopulation of striatonigral neurons that transiently expressed Isl1. In Nestin-Cre;Isl1(f/f) KO mouse brain, differentiation of striatonigral neurons was defective, as evidenced by decreased expression of striatonigral-enriched genes, including substance P, prodynorphin, solute carrier family 35, member D3 (Slc35d3), and PlexinD1. Striatonigral axonal projections were also impaired, and abnormal apoptosis was observed in Isl1 KO striatum. It was of particular interest that striatopallidal-enriched genes, including dopamine D2 receptor (Drd2), proenkephalin, A2A adenosine receptor (A2aR) and G protein-coupled receptor 6 (Gpr6), were concomitantly up-regulated in Isl1 mutant striatum, suggesting derepression of striatopallidal genes in striatonigral neurons in the absence of Isl1. The suppression of striatopallidal genes by Isl1 was further examined by overexpression of Isl1 in the striatum of Drd2-EGFP transgenic mice using in utero electroporation. Ectopic Isl1 expression was sufficient to repress Drd2-EGFP signals in striatopallidal neurons. Taken together, our study suggests that Isl1 specifies the cell fate of striatonigral neurons not only by orchestrating survival, differentiation, and axonal projections of striatonigral neurons but also by suppressing striatopallidal-enriched genes. The dual action of developmental control by Isl1 in promoting appropriate striatonigral but repressing inappropriate striatopallidal genetic profiles may ensure sharpening of the striatonigral identity during development.


Subject(s)
Brain/metabolism , Gene Expression Regulation , LIM-Homeodomain Proteins/metabolism , Substantia Nigra/metabolism , Transcription Factors/metabolism , Animals , Apoptosis , Axons/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Cell Differentiation , Cell Lineage , Cell Survival , Corpus Striatum/metabolism , Genotype , Globus Pallidus/metabolism , Green Fluorescent Proteins/metabolism , Immunohistochemistry , Intracellular Signaling Peptides and Proteins , Membrane Glycoproteins , Mice , Mice, Knockout , Microscopy, Fluorescence , Mutation , Nerve Tissue Proteins , Neurons/metabolism , Plasmids/metabolism , Receptors, Dopamine D1/metabolism , Substance P/metabolism
6.
Genes Dev ; 23(10): 1183-94, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19451219

ABSTRACT

CISD2, the causative gene for Wolfram syndrome 2 (WFS2), is a previously uncharacterized novel gene. Significantly, the CISD2 gene is located on human chromosome 4q, where a genetic component for longevity maps. Here we show for the first time that CISD2 is involved in mammalian life-span control. Cisd2 deficiency in mice causes mitochondrial breakdown and dysfunction accompanied by autophagic cell death, and these events precede the two earliest manifestations of nerve and muscle degeneration; together, they lead to a panel of phenotypic features suggestive of premature aging. Our study also reveals that Cisd2 is primarily localized in the mitochondria and that mitochondrial degeneration appears to have a direct phenotypic consequence that triggers the accelerated aging process in Cisd2 knockout mice; furthermore, mitochondrial degeneration exacerbates with age, and the autophagy increases in parallel to the development of the premature aging phenotype. Additionally, our Cisd2 knockout mouse work provides strong evidence supporting an earlier clinical hypothesis that WFS is in part a mitochondria-mediated disorder; specifically, we propose that mutation of CISD2 causes the mitochondria-mediated disorder WFS2 in humans. Thus, this mutant mouse provides an animal model for mechanistic investigation of Cisd2 protein function and help with a pathophysiological understanding of WFS2.


Subject(s)
Aging, Premature/physiopathology , Aging/genetics , Aging/metabolism , Carrier Proteins/metabolism , Mitochondria/metabolism , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/metabolism , Aging, Premature/genetics , Animals , Autophagy , Autophagy-Related Proteins , Disease Models, Animal , Female , Glucose Intolerance/genetics , Glucose Intolerance/physiopathology , Humans , Longevity/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Muscles/pathology , Neurons/pathology , Optic Nerve Diseases/genetics , Optic Nerve Diseases/physiopathology , Wolfram Syndrome/physiopathology
7.
Neuroscience ; 542: 33-46, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38354901

ABSTRACT

The forkhead box protein P2 (Foxp2), initially identified for its role in speech and language development, plays an important role in neural development. Previous studies investigated the function of the Foxp2 gene by deleting or mutating Foxp2 from developmental stages. Little is known about its physiological function in adult brains. Although Foxp2 has been well studied in the dorsal striatum, its function in the nucleus accumbens (NAc) of the ventral striatum remains elusive. Here, we examine the physiological function of Foxp2 in NAc of mouse brains. We conditionally knocked out Foxp2 by microinjections of AAV-EGFP-Cre viruses into the medial shell of NAc of Foxp2 floxed (cKO) mice. Immunostaining showed increased c-Fos positive cells in cKO NAc at basal levels, suggesting an abnormality in Foxp2-deficient NAc cells. Unbiased behavioral profiling of Foxp2 cKO mice showed abnormalities in limbic-associated function. Foxp2 cKO mice exhibited abnormal social novelty without preference for interaction with strangers and familiar mice. In appetitive reward learning, Foxp2 cKO mice failed to learn the time expectancy of food delivery. In fear learning, Foxp2 cKO mice exhibited abnormal increases in freezing levels in response to tone paired with foot shock during fear conditioning. The extinction of the fear response was also altered in Foxp2 cKO mice. In contrast, conditional knockout of Foxp2 in NAc did not affect locomotion, motor coordination, thermal pain sensation, anxiety- and depression-like behaviors. Collectively, our study suggests that Foxp2 has a multifaceted physiological role in NAc in the regulation of limbic function in the adult brain.


Subject(s)
Learning , Nucleus Accumbens , Mice , Animals , Nucleus Accumbens/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Repressor Proteins/metabolism
8.
eNeuro ; 10(6)2023 06.
Article in English | MEDLINE | ID: mdl-37253589

ABSTRACT

Synaptic modification in postnatal development is essential for the maturation of neural networks. Developmental maturation of excitatory synapses occurs at the loci of dendritic spines that are dynamically regulated by growth and pruning. Striatal spiny projection neurons (SPNs) receive excitatory input from the cerebral cortex and thalamus. SPNs of the striatonigral direct pathway (dSPNs) and SPNs of the striatopallidal indirect pathway (iSPNs) have different developmental roots and functions. The spatial and temporal dynamics of dendritic spine maturation of these two types of SPNs remain elusive. Here, we delineate the developmental trajectories of dendritic spines of dSPNs and iSPNs in the caudoputamen and nucleus accumbens (NAc). We labeled dendritic spines of SPNs by microinjecting Cre-dependent AAV-eYFP viruses into newborn Drd1-Cre or Adora2a-Cre mice, and analyzed spinogenesis at three levels, including different SPN cell types, subregions and postnatal times. In the dorsolateral striatum, spine pruning of dSPNs and iSPNs occurred at postnatal day (P)30-P50. In the dorsomedial striatum, the spine density of both dSPNs and iSPNs reached its peak between P30 and P50, and spine pruning occurred after P30 and P50, respectively, for dSPNs and iSPNs. In the NAc shell, spines of dSPNs and iSPNs were pruned after P21-P30, but no significant pruning was observed in iSPNs of lateral NAc shell. In the NAc core, the spine density of dSPNs and iSPNs reached its peak at P21 and P30, respectively, and subsequently declined. Collectively, the developmental maturation of dendritic spines in dSPNs and iSPNs follows distinct spatiotemporal trajectories in the dorsal and ventral striatum.


Subject(s)
Dendritic Spines , Nucleus Accumbens , Mice , Animals , Mice, Transgenic , Corpus Striatum/metabolism , Neurons/physiology
9.
Biomedicines ; 10(3)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35327362

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex etiology. The core syndromes of ASD are deficits in social communication and self-restricted interests and repetitive behaviors. Social communication relies on the proper integration of sensory and motor functions, which is tightly interwoven with the limbic function of reward, motivation, and emotion in the brain. Monoamine neurotransmitters, including serotonin, dopamine, and norepinephrine, are key players in the modulation of neuronal activity. Owing to their broad distribution, the monoamine neurotransmitter systems are well suited to modulate social communication by coordinating sensory, motor, and limbic systems in different brain regions. The complex and diverse functions of monoamine neurotransmission thus render themselves as primary targets of pathophysiological investigation of the etiology of ASD. Clinical studies have reported that children with maternal exposure to valproic acid (VPA) have an increased risk of developing ASD. Extensive animal studies have confirmed that maternal treatments of VPA include ASD-like phenotypes, including impaired social communication and repetitive behavior. Here, given that ASD is a neurodevelopmental disorder, we begin with an overview of the neural development of monoaminergic systems with their neurochemical properties in the brain. We then review and discuss the evidence of human clinical and animal model studies of ASD with a focus on the VPA-induced pathophysiology of monoamine neurotransmitter systems. We also review the potential interactions of microbiota and monoamine neurotransmitter systems in ASD pathophysiology. Widespread and complex changes in monoamine neurotransmitters are detected in the brains of human patients with ASD and validated in animal models. ASD animal models are not only essential to the characterization of pathogenic mechanisms, but also provide a preclinical platform for developing therapeutic approaches to ASD.

10.
Hum Mol Genet ; 18(4): 723-36, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19039037

ABSTRACT

We herein provide a thorough description of new transgenic mouse models for dentatorubral-pallidoluysian atrophy (DRPLA) harboring a single copy of the full-length human mutant DRPLA gene with 76 and 129 CAG repeats. The Q129 mouse line was unexpectedly obtained by en masse expansion based on the somatic instability of 76 CAG repeats in vivo. The mRNA expression levels of both Q76 and Q129 transgenes were each 80% of that of the endogenous mouse gene, whereas only the Q129 mice exhibited devastating progressive neurological phenotypes similar to those of juvenile-onset DRPLA patients. Electrophysiological studies of the Q129 mice demonstrated age-dependent and region-specific presynaptic dysfunction in the globus pallidus and cerebellum. Progressive shrinkage of distal dendrites of Purkinje cells and decreased currents through alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and gamma-aminobutyrate type A receptors in CA1 neurons were also observed. Neuropathological studies of the Q129 mice revealed progressive brain atrophy, but no obvious neuronal loss, associated with massive neuronal intranuclear accumulation (NIA) of mutant proteins with expanded polyglutamine stretches starting on postnatal day 4, whereas NIA in the Q76 mice appeared later with regional specificity to the vulnerable regions of DRPLA. Expression profile analyses demonstrated age-dependent down-regulation of genes, including those relevant to synaptic functions and CREB-dependent genes. These results suggest that neuronal dysfunction without neuronal death is the essential pathophysiologic process and that the age-dependent NIA is associated with nuclear dysfunction including transcriptional dysregulations. Thus, our Q129 mice should be highly valuable for investigating the mechanisms of disease pathogenesis and therapeutic interventions.


Subject(s)
Myoclonic Epilepsies, Progressive/physiopathology , Nerve Tissue Proteins/genetics , Trinucleotide Repeat Expansion , Age Factors , Animals , Brain/metabolism , Brain/physiopathology , Disease Models, Animal , Disease Progression , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myoclonic Epilepsies, Progressive/genetics , Myoclonic Epilepsies, Progressive/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Phenotype , Synaptic Transmission
11.
Proc Natl Acad Sci U S A ; 105(18): 6765-70, 2008 May 06.
Article in English | MEDLINE | ID: mdl-18443282

ABSTRACT

Retinoid signaling plays a crucial role in patterning rhombomeres in the hindbrain and motor neurons in the spinal cord during development. A fundamentally interesting question is whether retinoids can pattern functional organization in the forebrain that generates a high order of cognitive behavior. The striatum contains a compartmental structure of striosome (or "patch") and intervening matrix. How this highly complex mosaic design is patterned by the genetic programs during development remains elusive. We report a developmental mechanism by which retinoid receptor signaling controls compartmental formation in the striatum. We analyzed RARbeta(-/-) mutant mice and found a selective loss of striosomal compartmentalization in the rostral mutant striatum. The loss of RARbeta signaling in the mutant mice resulted in reduction of cyclin E2, a cell cycle protein regulating transition from G(1) to S phase, and also reduction of the proneural gene Mash1, which led to defective neurogenesis of late-born striosomal cells. Importantly, during striatal neurogenesis, endogenous levels of retinoic acid were spatiotemporally regulated such that transduction of high levels of retinoic acid through RARbeta selectively expanded the population of late-born striosomal progenitors, which evolved into a highly elaborate compartment in the rostral striatum. RARbeta(-/-) mutant mice, which lacked such enlarged compartment, displayed complex alternations of dopamine agonist-induced stereotypic motor behavior, including exaggeration of head bobbing movement and reduction of rearing activity. RARbeta signaling thus plays a crucial role in setting up striatal compartments that may engage in neural circuits of psychomotor control.


Subject(s)
Neostriatum/metabolism , Neostriatum/pathology , Receptors, Retinoic Acid/metabolism , Signal Transduction , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Dopamine Agonists/pharmacology , Embryo, Mammalian/pathology , Mice , Models, Biological , Mutation/genetics , Neostriatum/drug effects , Neurons/drug effects , Neurons/pathology , Receptors, Retinoic Acid/deficiency , Signal Transduction/drug effects , Stem Cells/drug effects , Stem Cells/pathology , Stereotyped Behavior/drug effects , Tretinoin/pharmacology
12.
Dev Dyn ; 239(6): 1797-806, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20503375

ABSTRACT

We report the expression of the mouse Mpped1 in the telencephalon through embryonic stages to adulthood. Using Northern blotting analysis and RNA in situ hybridization (ISH), our data show that Mpped1 is specifically expressed in the brain and is enriched in the cortical plate of the developing telencephalon. Postnatally, the expression of Mpped1 is reduced in the cerebral cortex relative to its levels in the embryonic dorsal telencephalon. Also, Mpped1 expression is sustained in the hippocampal CA1 region. Examination of the expression of Mpped1 and other cortical layer markers by ISH in a malformed beta-catenin null dorsal telencephalon show that the Mpped1-, Cux2-, and Rorbeta-expressing superficial cortical layers are reduced and form patchy patterns, and the Tbr-1-expressing deep-layer neurons are incorrectly located on superficial layers, indicative of a migration defect of cortical neurons in the absence of beta-catenin.


Subject(s)
Telencephalon/metabolism , beta Catenin/genetics , Animals , Blotting, Northern , CA1 Region, Hippocampal , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Embryo, Mammalian , Female , Genes , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Transgenic , Neurons/metabolism , Pregnancy , beta Catenin/metabolism
13.
Front Neuroanat ; 15: 669631, 2021.
Article in English | MEDLINE | ID: mdl-34054439

ABSTRACT

Schizophrenia is a devastating neuropsychiatric disease with a globally 1% life-long prevalence. Clinical studies have linked Zswim6 mutations to developmental and neurological diseases, including schizophrenia. Zswim6's function remains largely unknown. Given the involvement of Zswim6 in schizophrenia and schizophrenia as a neurodevelopmental disease, it is important to understand the spatiotemporal expression pattern of Zswim6 in the developing brain. Here, we performed a comprehensive analysis of the spatiotemporal expression pattern of Zswim6 in the mouse forebrain by in situ hybridization with radioactive and non-radioactive-labeled riboprobes. Zswim6 mRNA was detected as early as E11.5 in the ventral forebrain. At E11.5-E13.5, Zswim6 was highly expressed in the lateral ganglionic eminence (LGE). The LGE consisted of two progenitor populations. Dlx+;Er81+ cells in dorsal LGE comprised progenitors of olfactory bulb interneurons, whereas Dlx+;Isl1+ progenitors in ventral LGE gave rise to striatal projection neurons. Zswim6 was not colocalized with Er81 in the dorsal LGE. In the ventral LGE, Zswim6 was colocalized with striatal progenitor marker Nolz-1. Zswim6 was highly expressed in the subventricular zone (SVZ) of LGE in which progenitors undergo the transition from proliferation to differentiation. Double labeling showed that Zswim6 was not colocalized with proliferation marker Ki67 but was colocalized with differentiation marker Tuj1 in the SVZ, suggesting Zswim6 expression in early differentiating neurons. Zswim6 was also expressed in the adjacent structures of medial and caudal ganglionic eminences (MGE, CGE) that contained progenitors of cortical interneurons. At E15.5 and E17.5, Zswim6 was expressed in several key brain regions that were involved in the pathogenesis of schizophrenia, including the striatum, cerebral cortex, hippocampus, and medial habenular nucleus. Zswim6 was persistently expressed in the postnatal brain. Cell type analysis indicated that Zswim6 mRNA was colocalized with D1R-expressing striatonigral and D2R-expressing striatopallidal neurons of the adult striatum with a higher colocalization in striatopallidal neurons. These findings are of particular interest as striatal dopamine D2 receptors are known to be involved in the pathophysiology of schizophrenia. In summary, the comprehensive analysis provides an anatomical framework for the study of Zswim6 function and Zswim6-associated neurological disorders.

14.
Mol Brain ; 13(1): 83, 2020 05 27.
Article in English | MEDLINE | ID: mdl-32460809

ABSTRACT

The striatum comprises a mosaic structure of striosomal and matrix compartments. Imbalanced neuronal activity between striosomes and matrix is implicated in neurological deficits in psychomotor and limbic functions. Because patients with autism spectrum disorder (ASD) are impaired in social communication and psychomotor function, it raises the possibility that abnormal striatal compartments may contribute to ASD pathogenesis. Here, we provide pathological evidence from human postmortem brains to support this hypothesis. Because ASD is a neurodevelopmental disease that emerges early in childhood, we analyzed juvenile and adolescent brains. Distinct patterns of PRODYNORPHIN-positive and calbindin-poor striosomes were detected in the caudate nucleus of control brains by in situ hybridization and immunohistochemistry. By contrast, PRODYNORPHIN-positive and calbindin-poor striosomes were decreased in the caudate nucleus of young ASD brains. Moreover, calbindin, a matrix marker, was aberrantly increased in the striosomal compartment, obscuring the boundaries between calbindin-poor striosomes and calbindin-rich matrix in ASD caudate nucleus. Calbindin-positive cells were decreased in the ASD matrix compartment. Collectively, our study has uncovered for the first time that aberrant striatal compartments occur in the caudate nucleus of human ASD brains, which suggests abnormal striatal compartmentation as a pathological signature that has previously been underestimated in ASD pathogenesis.


Subject(s)
Autism Spectrum Disorder/pathology , Corpus Striatum/pathology , Adolescent , Calbindins/metabolism , Child , Child, Preschool , Female , Humans , Male
15.
J Comp Neurol ; 528(14): 2404-2419, 2020 10.
Article in English | MEDLINE | ID: mdl-32144752

ABSTRACT

GABAergic interneurons play an essential role in modulating cortical networks. The progenitor domains of cortical interneurons are localized in developing ventral forebrain, including the medial ganglionic eminence (MGE), caudal ganglionic eminence (CGE), preoptic area (POA), and preoptic hypothalamic border domain (POH). Here, we characterized the expression pattern of Zswim5, an MGE-enriched gene in the mouse forebrain. At E11.5-E13.5, prominent Zswim5 expression was detected in the subventricular zone (SVZ) of MGE, POA, and POH, but not CGE of ventral telencephalon where progenitors of cortical interneurons resided. At E15.5 and E17.5, Zswim5 expression remained in the MGE/pallidum primordium and ventral germinal zone. Zswim5 mRNA was markedly decreased after birth and was absent in the adult forebrain. Interestingly, the Zswim5 expression pattern resembled the tangential migration pathways of cortical interneurons. Zswim5-positive cells in the MGE appeared to migrate from the MGE through the SVZ of LGE to overlying neocortex. Indeed, Zswim5 was co-localized with Nkx2.1 and Lhx6, markers of progenitors and migratory cortical interneurons. Double labeling showed that Ascl1/Mash1-positive cells co-expressed Zswim5. Zswim5 expressing cells contained none or at most low levels of Ki67 but co-expressed Tuj1 in the SVZ of MGE. These results suggest that Zswim5 is immediately upregulated as progenitors exiting cell cycle become postmitotic. Given that recent studies have elucidated that the cell fate of cortical interneurons is determined shortly after becoming postmitotic, the timing of Zswim5 expression in early postmitotic interneurons suggests a potential role of Zswim5 in regulation of neurogenesis and tangential migration of cortical interneurons.


Subject(s)
Interneurons/metabolism , Neurogenesis/physiology , Prosencephalon/metabolism , Transcription Factors/metabolism , Animals , Cell Movement/physiology , Mice , Neural Stem Cells/metabolism , Prosencephalon/cytology , Transcriptome , Zinc Fingers/physiology
16.
J Neurosci Res ; 87(7): 1620-33, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19115401

ABSTRACT

Early events in the axonal tract formation from mammillary bodies remain poorly understood. In the present study, we reported an aberrant pattern of axonal projections from mammillary bodies to the dorsal thalamus in mice lacking the transcription factor Pax6. We found that Netrin-1 was ectopically up-regulated and that both Slit1 and Slit2 were down-regulated in the presumptive dorsal thalamus of Pax6 mutant mice. We then examined the effects of Netrin-1 and Slit2 on the mammillary axons by in utero electroporation techniques. Netrin-1 had an attractive action toward the mammillary axons. Moreover, mammillary trajectories were disorganized in Netrin-1-deficient mice. On the other hand, Slit2 had a repulsive effect on the mammillary axons. These findings suggest that the combination of Netrin and Slit may be involved in proper axonal projection from the mammillary bodies and that their misexpression in the diencephalon may cause the misrouting of these axons in Pax6 mutant mice.


Subject(s)
Axons/ultrastructure , Eye Proteins/genetics , Homeodomain Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mammillary Bodies/embryology , Nerve Growth Factors/metabolism , Nerve Tissue Proteins/metabolism , Paired Box Transcription Factors/genetics , Repressor Proteins/genetics , Thalamus/embryology , Tumor Suppressor Proteins/metabolism , Animals , Chemotaxis/physiology , DCC Receptor , Eye Proteins/metabolism , Gene Expression Regulation , Homeodomain Proteins/metabolism , In Vitro Techniques , Membrane Proteins/metabolism , Mice , Mice, Knockout , Mice, Mutant Strains , Nerve Growth Factors/genetics , Netrin-1 , Neural Pathways/embryology , PAX6 Transcription Factor , Paired Box Transcription Factors/metabolism , RNA, Messenger/metabolism , Receptors, Cell Surface/metabolism , Receptors, Immunologic/metabolism , Repressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Roundabout Proteins
17.
Adv Exp Med Biol ; 665: 117-29, 2009.
Article in English | MEDLINE | ID: mdl-20429420

ABSTRACT

Foxp subfamily genes were recently recognized to be members of the Fox gene family. Foxp subfamily members contain a zinc finger domain and a leucine zipper motif in addition to a forkhead domain and their DNA binding capacities and transcriptional activities are regulated by homo- and heterodimerization via a zinc finger and a leucine zipper motif. Three Foxp subfamily members are abundantly expressed in developing brains. The expression patterns of these genes are overlapping, but they are distinctly expressed in some regions. Thus these genes appear to be involved in the development control of the central nervous system. Recently, FOXP2, a member of the Foxp subfamily, was identified as the first gene to be linked to an inherited form of language and speech disorder. The discovery of a mutation in FOXP2 in a family with a speech and language disorder opened a new window to understanding the genetic cascades and neural circuits that underlie speech and language via molecular approaches. The spatiotemporal FOXP2 mRNA expression pattern suggests that the basic neural network that underlies speech and language may include motor-related circuits, including frontostriatal and/or frontocerebellar circuits. This assumption is supported by brain imaging data obtained by using fMRI and PET on the FOXP2-mutated patients and also by analysis of Foxp2 mutant mice.


Subject(s)
Forkhead Transcription Factors/genetics , Language Disorders/genetics , Neurogenesis/genetics , Speech Disorders/genetics , Animals , Humans , Language Disorders/pathology , Mice , Speech Disorders/pathology
18.
eNeuro ; 6(3)2019.
Article in English | MEDLINE | ID: mdl-31097624

ABSTRACT

The striatum is a key hub in the basal ganglia for processing neural information from the sensory, motor, and limbic cortices. The massive and diverse cortical inputs entering the striatum allow the basal ganglia to perform a repertoire of neurological functions ranging from basic level of motor control to high level of cognition. The heterogeneity of the corticostriatal circuits, however, also renders the system susceptible to a repertoire of neurological diseases. Clinical and animal model studies have indicated that defective development of the corticostriatal circuits is linked to various neuropsychiatric disorders, including attention-deficit hyperactivity disorder (ADHD), Tourette syndrome, obsessive-compulsive disorder (OCD), autism spectrum disorder (ASD), and schizophrenia. Importantly, many neuropsychiatric disease-risk genes have been found to form the molecular building blocks of the circuit wiring at the synaptic level. It is therefore imperative to understand how corticostriatal connectivity is established during development. Here, we review the construction during development of these corticostriatal circuits at the synaptic level, which should provide important insights into the pathogenesis of neuropsychiatric disorders related to the basal ganglia and help the development of appropriate therapies for these diseases.


Subject(s)
Basal Ganglia/growth & development , Brain Diseases/physiopathology , Cerebral Cortex/growth & development , Corpus Striatum/growth & development , Mental Disorders/physiopathology , Synapses/physiology , Animals , Basal Ganglia/physiopathology , Brain Diseases/etiology , Cerebral Cortex/physiopathology , Corpus Striatum/physiopathology , Humans , Mental Disorders/etiology , Neural Pathways/growth & development , Neural Pathways/physiopathology
19.
J Neurosci Res ; 86(14): 3106-16, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18561326

ABSTRACT

Many members of the Fox family are transcription factors that regulate the morphogenesis of various organs. In the present study, we examined the expression pattern of Foxp4, a member of the Foxp subfamily, and compared its pattern with the patterns of Foxp2 and Foxp1 in the developing rat brain. In general, these three Foxp genes shared partially overlapping and yet differentially regulated expression patterns in the striatum, the cerebral cortex, and the thalamus during development. In the developing dorsal telencephalon, a mediolateral gradient of Foxp4 was present in the cortical primordium, with high levels in the ventricular zone of the medial cortex. By contrast, no gradient of Foxp2 and Foxp1 was detected in the dorsal telencephalon. At later stages, Foxp4 was expressed throughout all cortical layers as opposed to the layer-specific expression of Foxp2 and Foxp1. In the developing striatum, the pattern of Foxp4 expression was distinct from the patterns of Foxp2 and Foxp1. The spatial expression pattern of Foxp4 was similar to that of Foxp2 during the early embryonic stage. However, from the late embryonic stage to postnatal day 4, Foxp4 was expressed in a mediolateral gradient and decreased in the striosomal compartment, in contrast to the striosomal expression of Foxp2 and homogeneous expression of Foxp1. Foxp4 was developmentally down-regulated such that Foxp4 was undetectable in the forebrain after postnatal day 14, whereas Foxp2 and Foxp1 were persistently expressed in adulthood. Given that Foxp4, Foxp2, and Foxp1 are capable of heterodimerization for transcriptional regulation, the partially overlapping expression patterns of Foxp4, Foxp2, and Foxp1 in different domains of the developing forebrain suggest that each member and/or different combinatory actions of the Foxp subfamily may play a pivotal role in regulating forebrain development.


Subject(s)
Forkhead Transcription Factors/biosynthesis , Gene Expression , Prosencephalon/embryology , Prosencephalon/metabolism , Animals , In Situ Hybridization , Rats , Rats, Wistar
20.
Front Cell Neurosci ; 12: 422, 2018.
Article in English | MEDLINE | ID: mdl-30524240

ABSTRACT

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with a high prevalence rate. The core symptoms of ASD patients are impaired social communication and repetitive behavior. Genetic and environmental factors contribute to pathophysiology of ASD. Regarding environmental risk factors, it is known that valproic acid (VPA) exposure during pregnancy increases the chance of ASD among offspring. Over a decade of animal model studies have shown that maternal treatment with VPA in rodents recapitulates ASD-like pathophysiology at a molecular, cellular and behavioral level. Here, we review the prevailing theories of ASD pathogenesis, including excitatory/inhibitory imbalance, neurotransmitter dysfunction, dysfunction of mTOR and endocannabinoid signaling pathways, neuroinflammation and epigenetic alterations that have been associated with ASD. We also describe the evidence linking neuropathological changes to ASD-like behavioral abnormalities in maternal VPA-treated rodents. In addition to obtaining an understanding of the neuropathological mechanisms, the VPA-induced ASD-like animal models also serve as a good platform for testing pharmacological reagents that might be use treating ASD. We therefore have summarized the various pharmacological studies that have targeted the classical neurotransmitter systems, the endocannabinoids, the Wnt signal pathway and neuroinflammation. These approaches have been shown to often be able to ameliorate the ASD-like phenotypes induced by maternal VPA treatments.

SELECTION OF CITATIONS
SEARCH DETAIL