Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 548
Filter
Add more filters

Publication year range
1.
Nature ; 621(7978): 300-305, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37704763

ABSTRACT

Crystal phase is a key factor determining the properties, and hence functions, of two-dimensional transition-metal dichalcogenides (TMDs)1,2. The TMD materials, explored for diverse applications3-8, commonly serve as templates for constructing nanomaterials3,9 and supported metal catalysts4,6-8. However, how the TMD crystal phase affects the growth of the secondary material is poorly understood, although relevant, particularly for catalyst development. In the case of Pt nanoparticles on two-dimensional MoS2 nanosheets used as electrocatalysts for the hydrogen evolution reaction7, only about two thirds of Pt nanoparticles were epitaxially grown on the MoS2 template composed of the metallic/semimetallic 1T/1T' phase but with thermodynamically stable and poorly conducting 2H phase mixed in. Here we report the production of MoS2 nanosheets with high phase purity and show that the 2H-phase templates facilitate the epitaxial growth of Pt nanoparticles, whereas the 1T' phase supports single-atomically dispersed Pt (s-Pt) atoms with Pt loading up to 10 wt%. We find that the Pt atoms in this s-Pt/1T'-MoS2 system occupy three distinct sites, with density functional theory calculations indicating for Pt atoms located atop of Mo atoms a hydrogen adsorption free energy of close to zero. This probably contributes to efficient electrocatalytic H2 evolution in acidic media, where we measure for s-Pt/1T'-MoS2 a mass activity of 85 ± 23 A [Formula: see text] at the overpotential of -50 mV and a mass-normalized exchange current density of 127 A [Formula: see text] and we see stable performance in an H-type cell and prototype proton exchange membrane electrolyser operated at room temperature. Although phase stability limitations prevent operation at high temperatures, we anticipate that 1T'-TMDs will also be effective supports for other catalysts targeting other important reactions.

2.
Bioinformatics ; 40(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38885409

ABSTRACT

MOTIVATION: Multi-strain infection is a common yet under-investigated phenomenon of many pathogens. Currently, biologists analyzing SNP information sometimes have to discard mixed infection samples as many downstream analyses require monogenomic inputs. Such a protocol impedes our understanding of the underlying genetic diversity, co-infection patterns, and genomic relatedness of pathogens. A scalable tool to learn and resolve the SNP-haplotypes from polygenomic data is an urgent need in molecular epidemiology. RESULTS: We develop a slice sampling Markov Chain Monte Carlo algorithm, named SNP-Slice, to learn not only the SNP-haplotypes of all strains in the populations but also which strains infect which hosts. Our method reconstructs SNP-haplotypes and individual heterozygosities accurately without reference panels and outperforms the state-of-the-art methods at estimating the multiplicity of infections and allele frequencies. Thus, SNP-Slice introduces a novel approach to address polygenomic data and opens a new avenue for resolving complex infection patterns in molecular surveillance. We illustrate the performance of SNP-Slice on empirical malaria and HIV datasets and provide recommendations for using our method on empirical datasets. AVAILABILITY AND IMPLEMENTATION: The implementation of the SNP-Slice algorithm, as well as scripts to analyze SNP-Slice outputs, are available at https://github.com/nianqiaoju/snp-slice.


Subject(s)
Algorithms , Haplotypes , Polymorphism, Single Nucleotide , Humans , HIV Infections/genetics , Coinfection , Malaria/genetics , Markov Chains , Monte Carlo Method , Gene Frequency
3.
Nat Mater ; 23(4): 479-485, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38216725

ABSTRACT

In anisotropic crystals, the direction-dependent effective mass of carriers can have a profound impact on spin transport dynamics. The puckered crystal structure of black phosphorus leads to direction-dependent charge transport and optical response, suggesting that it is an ideal system for studying anisotropic spin transport. To this end, we fabricate and characterize high-mobility encapsulated ultrathin black-phosphorus-based spin valves in a four-terminal geometry. Our measurements show that in-plane spin lifetimes are strongly gate tunable and exceed one nanosecond. Through high out-of-plane magnetic fields, we observe a fivefold enhancement in the out-of-plane spin signal case compared to in-plane and estimate a colossal spin-lifetime anisotropy of ∼6. This finding is further confirmed by oblique Hanle measurements. Additionally, we estimate an in-plane spin-lifetime anisotropy ratio of up to 1.8. Our observation of strongly anisotropic spin transport along three orthogonal axes in this pristine material could be exploited to realize directionally tunable spin transport.

4.
Nat Mater ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589543

ABSTRACT

Unconventional 1T'-phase transition metal dichalcogenides (TMDs) have aroused tremendous research interest due to their unique phase-dependent physicochemical properties and applications. However, due to the metastable nature of 1T'-TMDs, the controlled synthesis of 1T'-TMD monolayers (MLs) with high phase purity and stability still remains a challenge. Here we report that 4H-Au nanowires (NWs), when used as templates, can induce the quasi-epitaxial growth of high-phase-purity and stable 1T'-TMD MLs, including WS2, WSe2, MoS2 and MoSe2, via a facile and rapid wet-chemical method. The as-synthesized 4H-Au@1T'-TMD core-shell NWs can be used for ultrasensitive surface-enhanced Raman scattering (SERS) detection. For instance, the 4H-Au@1T'-WS2 NWs have achieved attomole-level SERS detections of Rhodamine 6G and a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins. This work provides insights into the preparation of high-phase-purity and stable 1T'-TMD MLs on metal substrates or templates, showing great potential in various promising applications.

5.
Chem Rev ; 123(23): 13489-13692, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37962496

ABSTRACT

As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.

6.
Anal Chem ; 96(4): 1515-1521, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38232235

ABSTRACT

Pure shift nuclear magnetic resonance (NMR) spectroscopy presents a promising solution to provide sufficient spectral resolution and has been increasingly applied in various branches of chemistry, but the optimal resolution is generally accompanied by long experimental times. We present a proof of concept of deep learning for fast, high-quality, and reliable pure shift NMR reconstruction. The deep learning (DL) protocol allows one to eliminate undersampling artifacts, distinguish peaks with close chemical shifts, and reconstruct high-resolution pure shift NMR spectroscopy along with accelerated acquisition. More meaningfully, the lightweight neural network delivers satisfactory reconstruction performance on personal computers by several hundred simulated data learning, which somewhat lifts the prohibiting demand for a large volume of real training samples and advanced computing hardware generally required in DL projects. Additionally, an M-to-S strategy applicable to common DL cases is further exploited to boost the network generalization capability. As a result, this study takes a meaningful step toward deep learning protocols for broad chemical applications.

7.
Anal Chem ; 96(21): 8484-8491, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38753368

ABSTRACT

It is challenging to prepare a highly selective mass spectrometry (MS) ion source for the rapid and highly sensitive detection of analytes, especially mycotoxins. In this study, an amino and tetrazine bifunctionalized multiarm PEG derivative (NH2HCl-4armPEG10K-(MTz)3), which can be easily immobilized on the substrate by the addition reaction between amino and polydopamine, was used for the preparation of MS ionization substrate. NH2HCl-4armPEG10K-(MTz)3 can also be used as a linker to immobilize sufficient streptavidin (SA) on the surface of the substrate by a click reaction. The process further promotes the immobilization of broad-spectrum antibodies (3D4), which were used as the recognition element for ZEN and its metabolites. The prepared SSS-Au-PDA-4armPEG10K-SA-3D4 not only can rapidly enrich ZEN and its metabolites with high selectivity but also shows good antifouling properties in the matrix. After simple sample preparation, the prepared SSS-Au-PDA-4armPEG10K-SA-3D4 can be directly coupled with MS to achieve high sensitivity (LODs: 0.18-0.66 ng/mL, LOQs: 0.5-1.0 ng/mL) and selective detection of ZEN and its metabolites in the matrix. At the same time, satisfactory recoveries (83.60-97.80%) and precision (RSD: 2.80-9.10%) can also be obtained. The prepared SSS-Au-PDA-4armPEG10K-SA-3D4 is expected to provide a powerful tool for the rapid and highly sensitive determination of multiple targets by MS.


Subject(s)
Polyethylene Glycols , Polyethylene Glycols/chemistry , Mass Spectrometry , Animals , Biofouling/prevention & control , Limit of Detection
8.
Small ; 20(9): e2307506, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37857574

ABSTRACT

Main group element-based materials are emerging catalysts for ammonia (NH3 ) production via a sustainable electrochemical nitrogen reduction reaction (N2 RR) pathway under ambient conditions. However, their N2 RR performances are less explored due to the limited active behavior and unclear mechanism. Here, an aluminum-based defective metal-organic framework (MOF), aluminum-fumarate (Al-Fum), is investigated. As a proof of concept, the pristine Al-Fum MOF is synthesized by the solvothermal reaction process, and the defect engineering method namely solvent-assisted linker exchange, is applied to create the defective Al sites. The defective Al sites play an important role in ensuring the N2 RR activity for defective Al-Fum. It is found that only the defective Al-Fum enables stable and effective electrochemical N2 RR, in terms of the highest production rate of 53.9 µg(NH3 ) h-1 mgcat -1 (in 0.4 m K2 SO4 ) and the Faradaic efficiency of 73.8% (in 0.1 m K2 SO4 ) at -0.15 V vs reversible hydrogen electrode) under ambient conditions. Density functional theory calculations confirm that the N2 activation can be achieved on the defective Al sites. Such sites also allow the subsequent protonation process via the alternating associative mechanism. This defect characteristic gives the main group Al-based MOFs the ability to serve as promising electrocatalysts for N2 RR and other attractive applications.

9.
J Transl Med ; 22(1): 286, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493143

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a degenerative disease characterized by chronic inflammation of the joint. As the disease progresses, patients will gradually develop symptoms such as pain, physical limitations and even disability. The risk factors for OA include genetics, gender, trauma, obesity, and age. Unfortunately, due to limited understanding of its pathological mechanism, there are currently no effective drugs or treatments to suspend the progression of osteoarthritis. In recent years, some studies found that low-intensity pulsed ultrasound (LIPUS) may have a positive effect on osteoarthritis. Nonetheless, the exact mechanism by which LIPUS affects osteoarthritis remains unknown. It is valuable to explore the specific mechanism of LIPUS in the treatment of OA. METHODS: In this study, we validated the potential therapeutic effect of LIPUS on osteoarthritis by regulating the YAP-RIPK1-NF-κB axis at both cellular and animal levels. To verify the effect of YAP on OA, the expression of YAP was knocked down or overexpressed by siRNA and plasmid in chondrocytes and adeno-associated virus was injected into the knee joint of rats. The effect of LIPUS was investigated in inflammation chondrocytes induced by IL-1ß and in the post-traumatic OA model. RESULTS: In this study, we observed that YAP plays an important role in the development of osteoarthritis and knocking down of YAP significantly inhibited the inflammation and alleviated cartilage degeneration. We also demonstrated that the expression of YAP was increased in osteoarthritis chondrocytes and YAP could interact with RIPK1, thereby regulating the NF-κB signal pathway and influencing inflammation. Moreover, we also discovered that LIPUS decreased the expression of YAP by restoring the impaired autophagy capacity and inhibiting the binding between YAP and RIPK1, thereby delaying the progression of osteoarthritis. Animal experiment showed that LIPUS could inhibit cartilage degeneration and alleviate the progression of OA. CONCLUSIONS: These results showed that LIPUS is effective in inhibiting inflammation and cartilage degeneration and alleviate the progression of OA. As a result, our results provide new insight of mechanism by which LIPUS delays the development of osteoarthritis, offering a novel therapeutic regimen for osteoarthritis.


Subject(s)
NF-kappa B , Osteoarthritis , Humans , Rats , Animals , NF-kappa B/metabolism , Osteoarthritis/therapy , Osteoarthritis/pathology , Ultrasonic Waves , Inflammation/pathology , Autophagy , Chondrocytes , Interleukin-1beta/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
10.
Appl Environ Microbiol ; 90(4): e0147723, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38445906

ABSTRACT

Plastic degradation by biological systems emerges as a prospective avenue for addressing the pressing global concern of plastic waste accumulation. The intricate chemical compositions and diverse structural facets inherent to polyurethanes (PU) substantially increase the complexity associated with PU waste management. Despite the extensive research endeavors spanning over decades, most known enzymes exhibit a propensity for hydrolyzing waterborne PU dispersion (i.e., the commercial Impranil DLN-SD), with only a limited capacity for the degradation of bulky PU materials. Here, we report a novel cutinase (CpCut1) derived from Cladosporium sp. P7, which demonstrates remarkable efficiency in the degrading of various polyester-PU materials. After 12-h incubation at 55°C, CpCut1 was capable of degrading 40.5% and 20.6% of thermoplastic PU film and post-consumer foam, respectively, while achieving complete depolymerization of Impranil DLN-SD. Further analysis of the degradation intermediates suggested that the activity of CpCut1 primarily targeted the ester bonds within the PU soft segments. The versatile performance of CpCut1 against a spectrum of polyester-PU materials positions it as a promising candidate for the bio-recycling of waste plastics.IMPORTANCEPolyurethane (PU) has a complex chemical composition that frequently incorporates a variety of additives, which poses significant obstacles to biodegradability and recyclability. Recent advances have unveiled microbial degradation and enzymatic depolymerization as promising waste PU disposal strategies. In this study, we identified a gene encoding a cutinase from the PU-degrading fungus Cladosporium sp. P7, which allowed the expression, purification, and characterization of the recombinant enzyme CpCut1. Furthermore, this study identified the products derived from the CpCut1 catalyzed PU degradation and proposed its underlying mechanism. These findings highlight the potential of this newly discovered fungal cutinase as a remarkably efficient tool in the degradation of PU materials.


Subject(s)
Carboxylic Ester Hydrolases , Cladosporium , Polyurethanes , Polyurethanes/chemistry , Polyurethanes/metabolism , Cladosporium/genetics , Cladosporium/metabolism , Prospective Studies , Biodegradation, Environmental , Polyesters/metabolism , Plastics
11.
Phys Rev Lett ; 132(4): 043601, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38335360

ABSTRACT

In standard quantum weak measurements, preselection and postselection of quantum states are implemented in the same photon. Here we go beyond this restrictive setting and demonstrate that the preselection and postselection can be performed in two different photons, if the two photons are polarization entangled. The Pancharatnam-Berry phase metasurface is incorporated in the weak measurement system to perform weak coupling between probe wave function and spin observable. By introducing nonlocal weak measurement into the microscopy imaging system, it allows us to remotely switch different microscopy imaging modes of pure-phase objects, including bright-field, differential, and phase reconstruction. Furthermore, we demonstrate that the nonlocal weak-measurement scheme can prevent almost all environmental noise photons from detection and thus achieves a higher image contrast than the standard scheme at a low photon level. Our results provide the possibility to develop a quantum nonlocal weak-measurement microscope for label-free imaging of transparent biological samples.

12.
Mol Pharm ; 21(4): 1691-1704, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38430187

ABSTRACT

In the clinical application of freeze-dried highly concentrated omalizumab formulations, extensive visible bubbles (VBs) can be generated and remain for a long period of time in the reconstitution process, which greatly reduces the clinical use efficiency. It is necessary to understand the forming and breaking mechanism of VBs in the reconstitution process, which is a key factor for efficient and safe administration of biopharmaceutical injection. The effects of different thermal treatments on the volume of VBs and stability of omalizumab, mAb-1, and mAb-2 were investigated. The internal microvoids of the cake were characterized by scanning electron microscopy and mercury intrusion porosimetry. Electron paramagnetic resonance was applied to obtain the molecular mobility of the protein during annealing. A large number of VBs were generated in the reconstitution process of unannealed omalizumab and remained for a long period of time. When annealing steps were added, the volume of VBs was dramatically reduced. When annealed at an aggressive temperature (i.e., -6 °C), although the volume of VBs decreased, the aggregation and acidic species increased significantly. Thus, our observations highlight the importance of setting an additional annealing step with a suitable temperature, which contributes to reducing the VBs while maintaining the stability of the high concentration freeze-dried protein formulation.


Subject(s)
Omalizumab , Proteins , Temperature , Freeze Drying , Drug Stability
13.
Langmuir ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924705

ABSTRACT

Ordered mesoporous silica is widely used in catalysis, adsorption, and biomedicine, among which SBA-15 (Santa Barbara Amorphous-15) is one of the most widely studied. However, the synthesis of SBA-15 often requires strong acid (hydrochloric acid or sulfuric acid), which will not only corrode industrial equipment but also pollute the environment with the wastewater containing strong acid and halogen (sulfur). Here, we demonstrate a green synthetic strategy for SBA-15 under weakly acidic conditions through an anionic assembly route. With the assistance of poly(acrylic acid) (PAA) and 3-aminopropyltrimethoxysilane (APMS), the pH value of the synthesis system can be increased to 4-5, which is a mild near-neutral condition. In addition, halogen-free synthesis using organic acids is also achieved. The powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and N2 sorption characterizations show that the obtained SBA-15 has good texture properties, with a specific surface area of 430-500 m2/g and ordered 6-8 nm mesopores, which is similar to SBA-15 synthesized in traditional strong acid. This strategy provides a facile and environmentally friendly route for the large-scale production of ordered mesoporous materials.

14.
Pharm Res ; 41(2): 321-334, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38291165

ABSTRACT

PURPOSES: We previously reported an unexpected phenomenon that shaking stress could cause more protein degradation in freeze-dried monoclonal antibody (mAb) formulations than liquid ones (J Pharm Sci, 2022, 2134). The main purposes of the present study were to investigate the effects of shaking stress on protein degradation and sub-visible particle (SbVP) formation in freeze-dried mAb formulations, and to analyze the factors influencing protein degradation during production and transportation. METHODS: The aggregation behavior of mAb-X formulations during production and transportation was simulated by shaking at a rate of 300 rpm at 25°C for 24 h. The contents of particles and monomers were analyzed by micro-flow imaging, dynamic light scattering, size exclusion chromatography, and ultraviolet - visible (UV-Vis) spectroscopy to compare the protective effects of excipients on the aggregation of mAb-X. RESULTS: Shaking stress could cause protein degradation in freeze-dried mAb-X formulations, while surfactant, appropriate pH, polyol mannitol, and high protein concentration could impact SbVP generation. Water content had little effect on freeze-dried protein degradation during shaking, as far as the water content was controlled in the acceptable range as recommended by mainstream pharmacopoeias (i.e., less than 3%). CONCLUSIONS: Shaking stress can reduce the physical stability of freeze-dried mAb formulations, and the addition of surfactants, polyol mannitol, and a high protein concentration have protective effects against the degradation of model mAb formulations induced by shaking stress. The experimental results provide new insight for the development of freeze-dried mAb formulations.


Subject(s)
Antibodies, Monoclonal , Chemistry, Pharmaceutical , Antibodies, Monoclonal/chemistry , Chemistry, Pharmaceutical/methods , Excipients/chemistry , Freeze Drying/methods , Mannitol , Water , Drug Stability
15.
Prev Med ; 185: 108022, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823651

ABSTRACT

OBJECTIVE: Colorectal cancer (CRC) is the third leading cause of cancer death among both men and women in the United States. CRC-related events may increase media coverage and public attention, boosting awareness and prevention. This study examined associations between several types of CRC events (including unplanned celebrity cancer deaths and planned events like national CRC awareness months, celebrity screening behavior, and screening guideline changes) and news coverage, Twitter discussions, and Google search trends about CRC and CRC screening. METHODS: We analyzed data from U.S. national news media outlets, posts scraped from Twitter, and Google Trends on CRC and CRC screening during a three-year period from 2020 to 2022. We used burst detection methods to identify temporal spikes in the volume of news, tweets, and search after each CRC-related event. RESULTS: There is a high level of heterogeneity in the impact of celebrity CRC events. Celebrity CRC deaths were more likely to precede spikes in news and tweets about CRC overall than CRC screening. Celebrity screening preceded spikes in news and tweets about screening but not searches. Awareness months and screening guideline changes did precede spikes in news, tweets, and searches about screening, but these spikes were inconsistent, not simultaneous, and not as large as those events concerning most prominent public figures. CONCLUSIONS: CRC events provide opportunities to increase attention to CRC. Media and public health professionals should actively intervene during CRC events to increase emphasis on CRC screening and evidence-based recommendations.

16.
Neuroradiology ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38871879

ABSTRACT

PURPOSE: The diagnosis of chronic increased intracranial pressure (IIP)is often based on subjective evaluation or clinical metrics with low predictive value. We aimed to quantify cranial bone changes associated with pediatric IIP using CT images and to identify patients at risk. METHODS: We retrospectively quantified local cranial bone thickness and mineral density from the CT images of children with chronic IIP and compared their statistical differences to normative children without IIP adjusting for age, sex and image resolution. Subsequently, we developed a classifier to identify IIP based on these measurements. Finally, we demonstrated our methods to explore signs of IIP in patients with non-syndromic sagittal craniosynostosis (NSSC). RESULTS: We quantified a significant decrease of bone density in 48 patients with IIP compared to 1,018 normative subjects (P < .001), but no differences in bone thickness (P = .56 and P = .89 for age groups 0-2 and 2-10 years, respectively). Our classifier demonstrated 83.33% (95% CI: 69.24%, 92.03%) sensitivity and 87.13% (95% CI: 84.88%, 89.10%) specificity in identifying patients with IIP. Compared to normative subjects, 242 patients with NSSC presented significantly lower cranial bone density (P < .001), but no differences were found compared to patients with IIP (P = .57). Of patients with NSSC, 36.78% (95% CI: 30.76%, 43.22%) presented signs of IIP. CONCLUSION: Cranial bone changes associated with pediatric IIP can be quantified from CT images to support earlier diagnoses of IIP, and to study the presence of IIP secondary to cranial pathology such as non-syndromic sagittal craniosynostosis.

17.
Exp Cell Res ; 426(1): 113552, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36914061

ABSTRACT

It is recognized that the cerebral ischemia/reperfusion (I/R) injury triggers inflammatory activation of microglia and supports microglia-driven neuronal damage. Our previous studies have shown that ginsenoside Rg1 had a significant protective effect on focal cerebral I/R injury in middle cerebral artery occlusion (MCAO) rats. However, the mechanism still needs further clarification. Here, we firstly reported that ginsenoside Rg1 effectively suppressed the inflammatory activation of brain microglia cells under I/R conditions depending on the inhibition of Toll-likereceptor4 (TLR4) proteins. In vivo experiments showed that the ginsenoside Rg1 administration could significantly improve the cognitive function of MCAO rats, and in vitro experimental data showed that ginsenoside Rg1 significantly alleviated neuronal damage via inhibiting the inflammatory response in microglia cells co-cultured under oxygen and glucose deprivation/reoxygenation (OGD/R) condition in gradient dependent. The mechanism study showed that the effect of ginsenoside Rg1 depends on the suppression of TLR4/MyD88/NF-κB and TLR4/TRIF/IRF-3 pathways in microglia cells. In a word, our research shows that ginsenoside Rg1 has great application potential in attenuating the cerebral I/R injury by targeting TLR4 protein in the microglia cells.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Reperfusion Injury , Rats , Animals , Microglia/metabolism , Toll-Like Receptor 4/metabolism , Neuroprotective Agents/pharmacology , Brain Ischemia/drug therapy , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism
18.
Environ Res ; 249: 118361, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38325776

ABSTRACT

Bismuth-iron semiconductor materials have been widely studied in the photocatalytic field due to their excellent light responsiveness. Among them, the potential and mechanism regarding photocatalytic degradation of organic pollutants by Bi2Fe4O9 are seriously ignored. In this research, Bi2Fe4O9/reduced graphene oxide (BFO/rGO) was successfully synthesized for tetracycline (TC) removal. Under visible light irradiation, the TC degradation efficiency reached 83.73% within 60 min, which was much higher than that of pure BFO or rGO. The impacts of crucial factors (TC initial concentration, humic acid concentration, pH value and inorganic anions) were systematically analyzed. The photoelectric performance experiments indicated that the addition of rGO decreased the electron-hole pair recombination efficiency and improved the charge transfer efficiency, thus significantly enhancing the photocatalytic performance. According to quenching experiments and EPR (Electron Paramagnetic Resonance) analysis, superoxide radical (•O2-) and hole (h+) were determined as the main active species during degradation reactions. Eventually, the possible degradation routes of TC were presented by identifying intermediates.


Subject(s)
Bismuth , Graphite , Light , Nanocomposites , Tetracycline , Tetracycline/chemistry , Graphite/chemistry , Bismuth/chemistry , Nanocomposites/chemistry , Catalysis , Water Pollutants, Chemical/chemistry
19.
Nano Lett ; 23(18): 8585-8592, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37669044

ABSTRACT

Single-atom nanozymes (SAzymes) open new possibilities for the development of artificial enzymes that have catalytic activity comparable to that of natural peroxidase (POD). So far, most efforts have focused on the structural modulation of the Fe-N4 moiety to mimic the metalloprotein heme center. However, non-heme-iron POD with much higher activity, for example, HppE, has not been mimicked successfully due to its structural complexity. Herein, carbon dots (CDs)-supported SAzymes with twisted, nonplanar Fe-O3N2 active sites, highly similar to the non-heme iron center of HppE, was synthesized by exploiting disordered and subnanoscale domains in CDs. The Fe-CDs exhibit an excellent POD activity of 750 units/mg, surpassing the values of conventional SAzymes with planar Fe-N4. We further fabricated an activatable Fe-CDs-based therapeutic agent with near-infrared enhanced POD activity, a photothermal effect, and tumor-targeting ability. Our results represent a big step in the design of high-performance SAzymes and provide guidance for future applications for synergistic tumor therapy.

20.
J Am Chem Soc ; 145(38): 20761-20766, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37699413

ABSTRACT

Signal transduction processes in living organisms are mainly transmitted through conformational changes in transmembrane protein receptors. So far, the development of signal transduction models induced by artificial simulation of conformational changes remains limited. We herein report a new artificial receptor that achieves controllable "ON/OFF" signal transduction through conformational changes between the folding and unfolding of a transmembrane foldamer moiety. The receptor contains three functional modules: a lipid-anchored cholic acid headgroup, a foldamer transmembrane moiety, and a precatalyst tailgroup. After inserting in the lipid membrane, the addition of Zn2+ induces unfolding of the foldamer, which changes the molecular conformation and activates the tailgroup to enter the cavity to perform its catalytic task, resulting in signal transduction in an "ON" state. By further adding a competitive ligand to bind Zn2+, the transduction can be turned "OFF". External signals can be used to reversibly switch intravesicular catalysis on and off, which provides a new model for constructing artificial signal transduction systems.


Subject(s)
Receptors, Artificial , Signal Transduction , Molecular Conformation , Membrane Proteins , Lipids , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL