Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.004
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 20(1): 50-63, 2019 01.
Article in English | MEDLINE | ID: mdl-30478397

ABSTRACT

Recent advances highlight a pivotal role for cellular metabolism in programming immune responses. Here, we demonstrate that cell-autonomous generation of nicotinamide adenine dinucleotide (NAD+) via the kynurenine pathway (KP) regulates macrophage immune function in aging and inflammation. Isotope tracer studies revealed that macrophage NAD+ derives substantially from KP metabolism of tryptophan. Genetic or pharmacological blockade of de novo NAD+ synthesis depleted NAD+, suppressed mitochondrial NAD+-dependent signaling and respiration, and impaired phagocytosis and resolution of inflammation. Innate immune challenge triggered upstream KP activation but paradoxically suppressed cell-autonomous NAD+ synthesis by limiting the conversion of downstream quinolinate to NAD+, a profile recapitulated in aging macrophages. Increasing de novo NAD+ generation in immune-challenged or aged macrophages restored oxidative phosphorylation and homeostatic immune responses. Thus, KP-derived NAD+ operates as a metabolic switch to specify macrophage effector responses. Breakdown of de novo NAD+ synthesis may underlie declining NAD+ levels and rising innate immune dysfunction in aging and age-associated diseases.


Subject(s)
Aging/physiology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation/immunology , Macrophages/physiology , Mitochondria/metabolism , NAD/metabolism , Animals , Cells, Cultured , Homeostasis , Immunity, Innate , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Kynurenine/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Phosphorylation , Pentosyltransferases/genetics , Phagocytosis , Signal Transduction , Tryptophan/metabolism
2.
Nat Immunol ; 20(8): 1023-1034, 2019 08.
Article in English | MEDLINE | ID: mdl-31263278

ABSTRACT

Stroke is a multiphasic process in which initial cerebral ischemia is followed by secondary injury from immune responses to ischemic brain components. Here we demonstrate that peripheral CD11b+CD45+ myeloid cells magnify stroke injury via activation of triggering receptor expressed on myeloid cells 1 (TREM1), an amplifier of proinflammatory innate immune responses. TREM1 was induced within hours after stroke peripherally in CD11b+CD45+ cells trafficking to ischemic brain. TREM1 inhibition genetically or pharmacologically improved outcome via protective antioxidant and anti-inflammatory mechanisms. Positron electron tomography imaging using radiolabeled antibody recognizing TREM1 revealed elevated TREM1 expression in spleen and, unexpectedly, in intestine. In the lamina propria, noradrenergic-dependent increases in gut permeability induced TREM1 on inflammatory Ly6C+MHCII+ macrophages, further increasing epithelial permeability and facilitating bacterial translocation across the gut barrier. Thus, following stroke, peripheral TREM1 induction amplifies proinflammatory responses to both brain-derived and intestinal-derived immunogenic components. Critically, targeting this specific innate immune pathway reduces cerebral injury.


Subject(s)
Brain/immunology , Intestinal Mucosa/immunology , Macrophages/immunology , Neutrophils/immunology , Stroke/pathology , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Animals , Brain/cytology , Cell Line , Immunity, Innate/immunology , Inflammation/pathology , Intestinal Mucosa/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , RAW 264.7 Cells
3.
Mol Cell ; 82(14): 2571-2587.e9, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35597237

ABSTRACT

The efficiency of homologous recombination (HR) in the repair of DNA double-strand breaks (DSBs) is closely associated with genome stability and tumor response to chemotherapy. While many factors have been functionally characterized in HR, such as TOPBP1, their precise regulation remains unclear. Here, we report that TOPBP1 interacts with the RNA-binding protein HTATSF1 in a cell-cycle- and phosphorylation-dependent manner. Mechanistically, CK2 phosphorylates HTATSF1 to facilitate binding to TOPBP1, which promotes S-phase-specific TOPBP1 recruitment to damaged chromatin and subsequent RPA/RAD51-dependent HR, genome integrity, and cancer-cell viability. The localization of HTATSF1-TOPBP1 to DSBs is potentially independent of the transcription-coupled RNA-binding and processing capacity of HTATSF1 but rather relies on the recognition of poly(ADP-ribosyl)ated RPA by HTATSF1, which can be blunted with PARP inhibitors. Together, our study provides a mechanistic insight into TOPBP1 loading at HR-prone DSB sites via HTATSF1 and reveals how RPA-RAD51 exchange is tuned by a PARylation-phosphorylation cascade.


Subject(s)
Poly ADP Ribosylation , Rad51 Recombinase , DNA Breaks, Double-Stranded , DNA Repair , Homologous Recombination/genetics , Phosphorylation , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism
4.
Nature ; 620(7976): 1047-1053, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37459895

ABSTRACT

Zygotic genome activation (ZGA) activates the quiescent genome to enable the maternal-to-zygotic transition1,2. However, the identity of transcription factors that underlie mammalian ZGA in vivo remains elusive. Here we show that OBOX, a PRD-like homeobox domain transcription factor family (OBOX1-OBOX8)3-5, are key regulators of mouse ZGA. Mice deficient for maternally transcribed Obox1/2/5/7 and zygotically expressed Obox3/4 had a two-cell to four-cell arrest, accompanied by impaired ZGA. The Obox knockout defects could be rescued by restoring either maternal and zygotic OBOX, which suggests that maternal and zygotic OBOX redundantly support embryonic development. Chromatin-binding analysis showed that Obox knockout preferentially affected OBOX-binding targets. Mechanistically, OBOX facilitated the 'preconfiguration' of RNA polymerase II, as the polymerase relocated from the initial one-cell binding targets to ZGA gene promoters and distal enhancers. Impaired polymerase II preconfiguration in Obox mutants was accompanied by defective ZGA and chromatin accessibility transition, as well as aberrant activation of one-cell polymerase II targets. Finally, ectopic expression of OBOX activated ZGA genes and MERVL repeats in mouse embryonic stem cells. These data thus demonstrate that OBOX regulates mouse ZGA and early embryogenesis.


Subject(s)
Embryonic Development , Gene Expression Regulation, Developmental , Genome , Homeodomain Proteins , Transcription Factors , Zygote , Animals , Mice , Chromatin/genetics , Chromatin/metabolism , Embryonic Development/genetics , Enhancer Elements, Genetic/genetics , Genome/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mouse Embryonic Stem Cells/metabolism , Mutation , Promoter Regions, Genetic/genetics , RNA Polymerase II/metabolism , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription Factors/metabolism , Zygote/metabolism
5.
Mol Cell ; 77(4): 825-839.e7, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31837995

ABSTRACT

In mammals, chromatin organization undergoes drastic reorganization during oocyte development. However, the dynamics of three-dimensional chromatin structure in this process is poorly characterized. Using low-input Hi-C (genome-wide chromatin conformation capture), we found that a unique chromatin organization gradually appears during mouse oocyte growth. Oocytes at late stages show self-interacting, cohesin-independent compartmental domains marked by H3K27me3, therefore termed Polycomb-associating domains (PADs). PADs and inter-PAD (iPAD) regions form compartment-like structures with strong inter-domain interactions among nearby PADs. PADs disassemble upon meiotic resumption from diplotene arrest but briefly reappear on the maternal genome after fertilization. Upon maternal depletion of Eed, PADs are largely intact in oocytes, but their reestablishment after fertilization is compromised. By contrast, depletion of Polycomb repressive complex 1 (PRC1) proteins attenuates PADs in oocytes, which is associated with substantial gene de-repression in PADs. These data reveal a critical role of Polycomb in regulating chromatin architecture during mammalian oocyte growth and early development.


Subject(s)
Chromatin/chemistry , Oocytes/growth & development , Oogenesis/genetics , Polycomb-Group Proteins/physiology , Animals , Blastocyst/chemistry , Cell Cycle Proteins/physiology , Chromosomal Proteins, Non-Histone/physiology , Embryo, Mammalian/chemistry , Gene Silencing , Histone Code , Mice , Oocytes/chemistry , Transcription, Genetic , Cohesins
6.
Nature ; 590(7844): 122-128, 2021 02.
Article in English | MEDLINE | ID: mdl-33473210

ABSTRACT

Ageing is characterized by the development of persistent pro-inflammatory responses that contribute to atherosclerosis, metabolic syndrome, cancer and frailty1-3. The ageing brain is also vulnerable to inflammation, as demonstrated by the high prevalence of age-associated cognitive decline and Alzheimer's disease4-6. Systemically, circulating pro-inflammatory factors can promote cognitive decline7,8, and in the brain, microglia lose the ability to clear misfolded proteins that are associated with neurodegeneration9,10. However, the underlying mechanisms that initiate and sustain maladaptive inflammation with ageing are not well defined. Here we show that in ageing mice myeloid cell bioenergetics are suppressed in response to increased signalling by the lipid messenger prostaglandin E2 (PGE2), a major modulator of inflammation11. In ageing macrophages and microglia, PGE2 signalling through its EP2 receptor promotes the sequestration of glucose into glycogen, reducing glucose flux and mitochondrial respiration. This energy-deficient state, which drives maladaptive pro-inflammatory responses, is further augmented by a dependence of aged myeloid cells on glucose as a principal fuel source. In aged mice, inhibition of myeloid EP2 signalling rejuvenates cellular bioenergetics, systemic and brain inflammatory states, hippocampal synaptic plasticity and spatial memory. Moreover, blockade of peripheral myeloid EP2 signalling is sufficient to restore cognition in aged mice. Our study suggests that cognitive ageing is not a static or irrevocable condition but can be reversed by reprogramming myeloid glucose metabolism to restore youthful immune functions.


Subject(s)
Aging/metabolism , Cognitive Dysfunction/prevention & control , Myeloid Cells/metabolism , Adult , Aged , Aging/drug effects , Aging/genetics , Animals , Cell Respiration , Cells, Cultured , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/genetics , Dinoprostone/metabolism , Energy Metabolism , Glucose/metabolism , Glycogen/biosynthesis , Glycogen/metabolism , Humans , Inflammation/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Memory Disorders/drug therapy , Mice , Microglia/drug effects , Microglia/immunology , Microglia/metabolism , Mitochondria/metabolism , Myeloid Cells/immunology , Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors , Receptors, Prostaglandin E, EP2 Subtype/deficiency , Receptors, Prostaglandin E, EP2 Subtype/genetics , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Signal Transduction/drug effects , Spatial Memory/drug effects
7.
Proc Natl Acad Sci U S A ; 121(14): e2318391121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38527207

ABSTRACT

The exploitation of novel wound healing methods with real-time infection sensing and high spatiotemporal precision is highly important for human health. Pt-based metal-organic cycles/cages (MOCs) have been employed as multifunctional antibacterial agents due to their superior Pt-related therapeutic efficiency, various functional subunits and specific geometries. However, how to rationally apply these nanoscale MOCs on the macroscale with controllable therapeutic output is still challenging. Here, a centimeter-scale Pt MOC film was constructed via multistage assembly and subsequently coated on a N,N'-dimethylated dipyridinium thiazolo[5,4-d]thiazole (MPT)-stained silk fabric to form a smart wound dressing for bacterial sensing and wound healing. The MPT on silk fabric could be used to monitor wound infection in real-time through the bacteria-mediated reduction of MPT to its radical form via a color change. The MPT radical also exhibited an excellent photothermal effect under 660 nm light irradiation, which could not only be applied for photothermal therapy but also induce the disassembly of the Pt MOC film suprastructure. The highly ordered Pt MOC film suprastructure exhibited high biosafety, while it also showed improved antibacterial efficiency after thermally induced disassembly. In vitro and in vivo studies revealed that the combination of the Pt MOC film and MPT-stained silk can provide real-time information on wound infection for timely treatment through noninvasive techniques. This study paves the way for bacterial sensing and wound healing with centimeter-scale metal-organic materials.


Subject(s)
Platinum , Wound Infection , Humans , Platinum/pharmacology , Wound Healing , Bandages , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silk/chemistry , Bacteria , Hydrogels/pharmacology
8.
Circ Res ; 134(1): 9-29, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38047378

ABSTRACT

BACKGROUND: T cells are central to the immune responses contributing to hypertension. LGMN (legumain) is highly expressed in T cells; however, its role in the pathogenesis of hypertension remains unclear. METHODS: Peripheral blood samples were collected from patients with hypertension, and cluster of differentiation (CD)4+ T cells were sorted for gene expression and Western blotting analysis. TLGMNKO (T cell-specific LGMN-knockout) mice (Lgmnf/f/CD4Cre), regulatory T cell (Treg)-specific LGMN-knockout mice (Lgmnf/f/Foxp3YFP Cre), and RR-11a (LGMN inhibitor)-treated C57BL/6 mice were infused with Ang II (angiotensin II) or deoxycorticosterone acetate/salt to establish hypertensive animal models. Flow cytometry, 4-dimensional label-free proteomics, coimmunoprecipitation, Treg suppression, and in vivo Treg depletion or adoptive transfer were used to delineate the functional importance of T-cell LGMN in hypertension development. RESULTS: LGMN mRNA expression was increased in CD4+ T cells isolated from hypertensive patients and mice, was positively correlated with both systolic and diastolic blood pressure, and was negatively correlated with serum IL (interleukin)-10 levels. TLGMNKO mice exhibited reduced Ang II-induced or deoxycorticosterone acetate/salt-induced hypertension and target organ damage relative to wild-type (WT) mice. Genetic and pharmacological inhibition of LGMN blocked Ang II-induced or deoxycorticosterone acetate/salt-induced immunoinhibitory Treg reduction in the kidneys and blood. Anti-CD25 antibody depletion of Tregs abolished the protective effects against Ang II-induced hypertension in TLGMNKO mice, and LGMN deletion in Tregs prevented Ang II-induced hypertension in mice. Mechanistically, endogenous LGMN impaired Treg differentiation and function by directly interacting with and facilitating the degradation of TRAF6 (tumor necrosis factor receptor-associated factor 6) via chaperone-mediated autophagy, thereby inhibiting NF-κB (nuclear factor kappa B) activation. Adoptive transfer of LGMN-deficient Tregs reversed Ang II-induced hypertension, whereas depletion of TRAF6 in LGMN-deficient Tregs blocked the protective effects. CONCLUSIONS: LGMN deficiency in T cells prevents hypertension and its complications by promoting Treg differentiation and function. Specifically targeting LGMN in Tregs may be an innovative approach for hypertension treatment.


Subject(s)
Hypertension , TNF Receptor-Associated Factor 6 , Animals , Humans , Mice , Acetates/adverse effects , Acetates/metabolism , Angiotensin II/toxicity , Angiotensin II/metabolism , CD4-Positive T-Lymphocytes/metabolism , Desoxycorticosterone/adverse effects , Desoxycorticosterone/metabolism , Hypertension/chemically induced , Hypertension/genetics , Hypertension/prevention & control , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Regulatory , TNF Receptor-Associated Factor 6/metabolism
9.
Nature ; 587(7832): 139-144, 2020 11.
Article in English | MEDLINE | ID: mdl-33116310

ABSTRACT

Zygotic genome activation (ZGA) is the first transcription event in life1. However, it is unclear how RNA polymerase is engaged in initiating ZGA in mammals. Here, by developing small-scale Tn5-assisted chromatin cleavage with sequencing (Stacc-seq), we investigated the landscapes of RNA polymerase II (Pol II) binding in mouse embryos. We found that Pol II undergoes 'loading', 'pre-configuration', and 'production' during the transition from minor ZGA to major ZGA. After fertilization, Pol II is preferentially loaded to CG-rich promoters and accessible distal regions in one-cell embryos (loading), in part shaped by the inherited parental epigenome. Pol II then initiates relocation to future gene targets before genome activation (pre-configuration), where it later engages in full transcription elongation upon major ZGA (production). Pol II also maintains low poising at inactive promoters after major ZGA until the blastocyst stage, coinciding with the loss of promoter epigenetic silencing factors. Notably, inhibition of minor ZGA impairs the Pol II pre-configuration and embryonic development, accompanied by aberrant retention of Pol II and ectopic expression of one-cell targets upon major ZGA. Hence, stepwise transition of Pol II occurs when mammalian life begins, and minor ZGA has a key role in the pre-configuration of transcription machinery and chromatin for genome activation.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Genome/genetics , RNA Polymerase II/metabolism , Zygote/metabolism , Alleles , Animals , Chromatin/genetics , Chromatin/metabolism , Embryo, Mammalian/cytology , Embryo, Mammalian/enzymology , Embryo, Mammalian/metabolism , Epigenome/genetics , Female , Male , Maternal Inheritance/genetics , Mice , Mice, Inbred C57BL , Oocytes/enzymology , Oocytes/metabolism , Promoter Regions, Genetic/genetics , RNA Polymerase II/genetics , Zygote/cytology , Zygote/enzymology
10.
Nucleic Acids Res ; 52(12): 7211-7224, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38661216

ABSTRACT

Interval-training activities induce adaptive cellular changes without altering their fundamental identity, but the precise underlying molecular mechanisms are not fully understood. In this study, we demonstrate that interval-training depolarization (ITD) of pituitary cells triggers distinct adaptive or homeostatic splicing responses of alternative exons. This occurs while preserving the steady-state expression of the Prolactin and other hormone genes. The nature of these splicing responses depends on the exon's DNA methylation status, the methyl-C-binding protein MeCP2 and its associated CA-rich motif-binding hnRNP L. Interestingly, the steady expression of the Prolactin gene is also reliant on MeCP2, whose disruption leads to exacerbated multi-exon aberrant splicing and overexpression of the hormone gene transcripts upon ITD, similar to the observed hyperprolactinemia or activity-dependent aberrant splicing in Rett Syndrome. Therefore, epigenetic control is crucial for both adaptive and homeostatic splicing and particularly the steady expression of the Prolactin hormone gene during ITD. Disruption in this regulation may have significant implications for the development of progressive diseases.


Subject(s)
Alternative Splicing , DNA Methylation , Epigenesis, Genetic , Exons , Homeostasis , Methyl-CpG-Binding Protein 2 , Prolactin , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Prolactin/genetics , Prolactin/metabolism , Animals , Homeostasis/genetics , Alternative Splicing/genetics , Exons/genetics , Mice , Pituitary Gland/metabolism , Mice, Inbred C57BL , RNA Splicing
11.
J Biol Chem ; 300(6): 107377, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762174

ABSTRACT

Homologous recombination (HR) plays a key role in maintaining genomic stability, and the efficiency of the HR system is closely associated with tumor response to chemotherapy. Our previous work reported that CK2 kinase phosphorylates HIV Tat-specific factor 1 (HTATSF1) Ser748 to facilitate HTATSF1 interaction with TOPBP1, which in turn, promotes RAD51 recruitment and HR repair. However, the clinical implication of the CK2-HTATSF1-TOPBP1 pathway in tumorigenesis and chemotherapeutic response remains to be elucidated. Here, we report that the CK2-HTATSF1-TOPBP1 axis is generally hyperactivated in multiple malignancies and renders breast tumors less responsive to chemotherapy. In contrast, deletion mutations of each gene in this axis, which also occur in breast and lung tumor samples, predict higher HR deficiency scores, and tumor cells bearing a loss-of-function mutation of HTATSF1 are vulnerable to poly(ADP-ribose) polymerase inhibitors or platinum drugs. Taken together, our study suggests that the integrity of the CK2-HTATSF1-TOPBP1 axis is closely linked to tumorigenesis and serves as an indicator of tumor HR status and modulates chemotherapy response.


Subject(s)
Carrier Proteins , Casein Kinase II , DNA-Binding Proteins , Signal Transduction , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Signal Transduction/drug effects , Casein Kinase II/metabolism , Casein Kinase II/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Animals , Female , Mice , Cell Line, Tumor , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology
12.
Plant J ; 117(1): 107-120, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37753665

ABSTRACT

Black pepper (Piper nigrum L.), the world renown as the King of Spices, is not only a flavorsome spice but also a traditional herb. Piperine, a species-specific piper amide, is responsible for the major bioactivity and pungent flavor of black pepper. However, several key steps for the biosynthesis of piperoyl-CoA (acyl-donor) and piperidine (acyl-acceptor), two direct precursors for piperine, remain unknown. In this study, we used guilt-by-association analysis of the combined metabolome and transcriptome, to identify two feruloyldiketide-CoA synthases responsible for the production of the C5 side chain scaffold feruloyldiketide-CoA intermediate, which is considered the first and important step to branch metabolic fluxes from phenylpropanoid pathway to piperine biosynthesis. In addition, we also identified the first two key enzymes for piperidine biosynthesis derived from lysine in P. nigrum, namely a lysine decarboxylase and a copper amine oxidase. These enzymes catalyze the production of cadaverine and 1-piperideine, the precursors of piperidine. In vivo and in vitro experiments verified the catalytic capability of them. In conclusion, our findings revealed enigmatic key steps of piperine biosynthetic pathway and thus provide a powerful reference for dissecting the biosynthetic logic of other piper amides.


Subject(s)
Piper nigrum , Piper nigrum/genetics , Polyunsaturated Alkamides , Piperidines , Gene Expression Profiling , Metabolome
13.
EMBO J ; 40(21): e107277, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34558085

ABSTRACT

The dorsal and ventral human telencephalons contain different neuronal subtypes, including glutamatergic, GABAergic, and cholinergic neurons, and how these neurons are generated during early development is not well understood. Using scRNA-seq and stringent validations, we reveal here a developmental roadmap for human telencephalic neurons. Both dorsal and ventral telencephalic radial glial cells (RGs) differentiate into neurons via dividing intermediate progenitor cells (IPCs_div) and early postmitotic neuroblasts (eNBs). The transcription factor ASCL1 plays a key role in promoting fate transition from RGs to IPCs_div in both regions. RGs from the regionalized neuroectoderm show heterogeneity, with restricted glutamatergic, GABAergic, and cholinergic differentiation potencies. During neurogenesis, IPCs_div gradually exit the cell cycle and branch into sister eNBs to generate distinct neuronal subtypes. Our findings highlight a general RGs-IPCs_div-eNBs developmental scheme for human telencephalic progenitors and support that the major neuronal fates of human telencephalon are predetermined during dorsoventral regionalization with neuronal diversity being further shaped during neurogenesis and neural circuit integration.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Lineage/genetics , Gene Expression Regulation, Developmental , Neurogenesis/genetics , Neurons/metabolism , Telencephalon/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Cycle/genetics , Cell Differentiation , Choline/metabolism , Doublecortin Protein/genetics , Doublecortin Protein/metabolism , Fetus , Gene Ontology , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Glutamic Acid/metabolism , Humans , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Molecular Sequence Annotation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neuroglia/cytology , Neuroglia/metabolism , Neurons/classification , Neurons/cytology , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Signal Transduction , Stathmin/genetics , Stathmin/metabolism , Telencephalon/cytology , Telencephalon/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , gamma-Aminobutyric Acid/metabolism
14.
J Virol ; 98(6): e0050724, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38775482

ABSTRACT

Viruses employ a series of diverse translational strategies to expand their coding capacity, which produces viral proteins with common domains and entangles virus-host interactions. P3N-PIPO, which is a transcriptional slippage product from the P3 cistron, is a potyviral protein dedicated to intercellular movement. Here, we show that P3N-PIPO from watermelon mosaic virus (WMV) triggers cell death when transiently expressed in Cucumis melo accession PI 414723 carrying the Wmr resistance gene. Surprisingly, expression of the P3N domain, shared by both P3N-PIPO and P3, can alone induce cell death, whereas expression of P3 fails to activate cell death in PI 414723. Confocal microscopy analysis revealed that P3N-PIPO targets plasmodesmata (PD) and P3N associates with PD, while P3 localizes in endoplasmic reticulum in melon cells. We also found that mutations in residues L35, L38, P41, and I43 of the P3N domain individually disrupt the cell death induced by P3N-PIPO, but do not affect the PD localization of P3N-PIPO. Furthermore, WMV mutants with L35A or I43A can systemically infect PI 414723 plants. These key residues guide us to discover some WMV isolates potentially breaking the Wmr resistance. Through searching the NCBI database, we discovered some WMV isolates with variations in these key sites, and one naturally occurring I43V variation enables WMV to systemically infect PI 414723 plants. Taken together, these results demonstrate that P3N-PIPO, but not P3, is the avirulence determinant recognized by Wmr, although the shared N terminal P3N domain can alone trigger cell death.IMPORTANCEThis work reveals a novel viral avirulence (Avr) gene recognized by a resistance (R) gene. This novel viral Avr gene is special because it is a transcriptional slippage product from another virus gene, which means that their encoding proteins share the common N-terminal domain but have distinct C-terminal domains. Amazingly, we found that it is the common N-terminal domain that determines the Avr-R recognition, but only one of the viral proteins can be recognized by the R protein to induce cell death. Next, we found that these two viral proteins target different subcellular compartments. In addition, we discovered some virus isolates with variations in the common N-terminal domain and one naturally occurring variation that enables the virus to overcome the resistance. These results show how viral proteins with common domains interact with a host resistance protein and provide new evidence for the arms race between plants and viruses.


Subject(s)
Plant Diseases , Potyvirus , Viral Proteins , Plant Diseases/virology , Potyvirus/genetics , Potyvirus/pathogenicity , Viral Proteins/genetics , Viral Proteins/metabolism , Cucumis melo/virology , Disease Resistance/genetics , Cell Death , Plasmodesmata/virology , Plasmodesmata/metabolism , Virulence , Cucurbitaceae/virology , Host-Pathogen Interactions , Endoplasmic Reticulum/virology , Endoplasmic Reticulum/metabolism , Mutation , Citrullus/virology
15.
J Virol ; 98(2): e0140823, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38189252

ABSTRACT

Autophagy generally functions as a cellular surveillance mechanism to combat invading viruses, but viruses have evolved various strategies to block autophagic degradation and even subvert it to promote viral propagation. White spot syndrome virus (WSSV) is the most highly pathogenic crustacean virus, but little is currently known about whether crustacean viruses such as WSSV can subvert autophagic degradation for escape. Here, we show that even though WSSV proliferation triggers the accumulation of autophagosomes, autophagic degradation is blocked in the crustacean species red claw crayfish. Interestingly, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex including CqSNAP29, CqVAMP7, and the novel autophagosome SNARE protein CqSyx12 is required for autophagic flux to restrict WSSV replication, as revealed by gene silencing experiments. Simultaneously, the expressed WSSV tegument protein VP26, which likely localizes on autophagic membrane mediated by its transmembrane region, binds the Qb-SNARE domain of CqSNAP29 to competitively inhibit the binding of CqSyx12-Qa-SNARE with CqSNAP29-Qb-SNARE; this in turn disrupts the assembly of the CqSyx12-SNAP29-VAMP7 SNARE complex, which is indispensable for the proposed fusion of autophagosomes and lysosomes. Consequently, the autophagic degradation of WSSV is likely suppressed by the expressed VP26 protein in vivo in crayfish, thus probably protecting WSSV components from degradation via the autophagosome-lysosome pathway, resulting in evasion by WSSV. Collectively, these findings highlight how a DNA virus can subvert autophagic degradation by impairing the assembly of the SNARE complex to achieve evasion, paving the way for understanding host-DNA virus interactions from an evolutionary point of view, from crustaceans to mammals.IMPORTANCEWhite spot syndrome virus (WSSV) is one of the largest animal DNA viruses in terms of its genome size and has caused huge economic losses in the farming of crustaceans such as shrimp and crayfish. Detailed knowledge of WSSV-host interactions is still lacking, particularly regarding viral escape from host immune clearance. Intriguingly, we found that the presence of WSSV-VP26 might inhibit the autophagic degradation of WSSV in vivo in the crustacean species red claw crayfish. Importantly, this study is the first to show that viral protein VP26 functions as a core factor to benefit WSSV escape by disrupting the assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which is necessary for the proposed fusion of autophagosomes with lysosomes for subsequent degradation. These findings highlight a novel mechanism of DNA virus evasion by blocking SNARE complex assembly and identify viral VP26 as a key candidate for anti-WSSV targeting.


Subject(s)
Astacoidea , Autophagy , White spot syndrome virus 1 , Animals , Astacoidea/metabolism , Autophagosomes/metabolism , Qb-SNARE Proteins/metabolism , SNARE Proteins/genetics , SNARE Proteins/metabolism , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins , White spot syndrome virus 1/physiology
16.
Stem Cells ; 42(9): 848-859, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38804841

ABSTRACT

Cisplatin is widely used in tumor chemotherapy, but nephrotoxicity is an unavoidable side effect of cisplatin. Several studies have demonstrated that mesenchymal stromal cells (MSCs) ameliorate cisplatin-induced kidney injury, but the underlying mechanisms are unknown. In this study, the cisplatin-induced kidney injury mouse model was established by subjecting a single intraperitoneal injection with cisplatin. One hour before cisplatin injection, the mice received human bone marrow MSCs (hBM-MSCs) with or without siRNA-transfection, recombinant human tumor necrosis factor-α-stimulated gene/protein 6 (rhTSG-6), or PBS through the tail vein. In addition, cisplatin-stimulated HK-2 cells were treated with hBM-MSCs or rhTSG-6. Human BM-MSCs treatment remarkably ameliorated cisplatin-induced acute and chronic kidney injury, as evidenced by significant reductions in serum creatinine (Scr), blood urea nitrogen, tubular injury, collagen deposition, α-smooth muscle actin accumulation, as well as inflammatory responses, and by remarkable increased anti-inflammatory factor expression and Treg cells infiltration in renal tissues. Furthermore, we found that only a few hBM-MSCs engrafted into damaged kidney and that the level of human TSG-6 in the serum of mice increased significantly following hBM-MSCs administration. Moreover, hBM-MSCs significantly increased the viability of damaged HK-2 cells and decreased the levels of inflammatory cytokines in the culture supernatant. However, the knockdown of the TSG-6 gene in hBM-MSCs significantly attenuated their beneficial effects in vivo and in vitro. On the contrary, treated with rhTSG-6 achieved similar beneficial effects of hBM-MSCs. Our results indicate that systemic administration of hBM-MSCs alleviates cisplatin-induced acute and chronic kidney injury in part by paracrine TSG-6 secretion.


Subject(s)
Acute Kidney Injury , Cell Adhesion Molecules , Cisplatin , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Cisplatin/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Animals , Humans , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/therapy , Mice , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Mesenchymal Stem Cell Transplantation/methods , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Male
17.
FASEB J ; 38(13): e23802, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38979944

ABSTRACT

Intercellular adhesion molecule 1 (ICAM1) is a cell surface adhesion glycoprotein in the immunoglobulin supergene family. It is associated with several epithelial tumorigenesis processes, as well as with inflammation. However, the function of ICAM1 in the prognosis of tumor immunity is still unclear. This study aimed to examine the immune function of ICAM1 in 33 tumor types and to investigate the prognostic value of tumors. Using datasets from the Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), Cancer Cell Lines Encyclopedia (CCLE), Human Protein Atlas (HPA), and cBioPortal, we investigated the role of ICAM1 in tumors. We explored the potential correlation between ICAM1 expression and tumor prognosis, gene mutations, microsatellite instability, and tumor immune cell levels in various cancers. We observed that ICAM1 is highly expressed in multiple malignant tumors. Furthermore, ICAM1 is negatively or positively associated with different malignant tumor prognoses. The expression levels of ICAM1 were correlated with the tumor mutation burden (TMB) in 11 tumors and with MSI in eight tumors. ICAM1 is a gene associated with immune infiltrating cells, such as M1 macrophages and CD8+ T cells in gastric and colon cancer. Meanwhile, the expression of ICAM1 is associated with several immune-related functions and immune-regulation-related signaling pathways, such as the chemokine signaling pathway. Our study shows that ICAM1 can be used as a prognostic biomarker in many cancer types because of its function in tumorigenesis and malignant tumor immunity.


Subject(s)
Biomarkers, Tumor , Intercellular Adhesion Molecule-1 , Neoplasms , Humans , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/metabolism , Mutation , Gene Expression Regulation, Neoplastic , Microsatellite Instability , Tumor Microenvironment/immunology
18.
Nucleic Acids Res ; 51(21): 11668-11687, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37831098

ABSTRACT

Unscheduled R-loops are a major source of replication stress and DNA damage. R-loop-induced replication defects are sensed and suppressed by ATR kinase, whereas it is not known whether R-loop itself is actively involved in ATR activation and, if so, how this is achieved. Here, we report that the nuclear form of RNA-editing enzyme ADAR1 promotes ATR activation and resolves genome-wide R-loops, a process that requires its double-stranded RNA-binding domains. Mechanistically, ADAR1 interacts with TOPBP1 and facilitates its loading on perturbed replication forks by enhancing the association of TOPBP1 with RAD9 of the 9-1-1 complex. When replication is inhibited, DNA-RNA hybrid competes with TOPBP1 for ADAR1 binding to promote the translocation of ADAR1 from damaged fork to accumulate at R-loop region. There, ADAR1 recruits RNA helicases DHX9 and DDX21 to unwind R-loops, simultaneously allowing TOPBP1 to stimulate ATR more efficiently. Collectively, we propose that the tempo-spatially regulated assembly of ADAR1-nucleated protein complexes link R-loop clearance and ATR activation, while R-loops crosstalk with blocked replication forks by transposing ADAR1 to finetune ATR activity and safeguard the genome.


Subject(s)
DNA-Binding Proteins , R-Loop Structures , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/metabolism , DNA Replication , DNA-Binding Proteins/genetics , RNA/genetics , Humans , Animals , Mice
19.
PLoS Genet ; 18(10): e1010431, 2022 10.
Article in English | MEDLINE | ID: mdl-36227834

ABSTRACT

It is widely stated in the literature that closed mature autophagosomes (APs) fuse with lysosomes/vacuoles during macroautophagy/autophagy. Previously, we showed that unclosed APs accumulated as clusters outside vacuoles in Vps21/Rab5 and ESCRT mutants after a short period of nitrogen starvation. However, the fate of such unclosed APs remains unclear. In this study, we used a combination of cellular and biochemical approaches to show that unclosed double-membrane APs entered vacuoles and formed unclosed single-membrane autophagic bodies after prolonged nitrogen starvation or rapamycin treatment. Vacuolar hydrolases, vacuolar transport chaperon (VTC) proteins, Ypt7, and Vam3 were all involved in the entry of unclosed double-membrane APs into vacuoles in Vps21-mutant cells. Overexpression of the vacuolar hydrolases, Pep4 or Prb1, or depletion of most VTC proteins promoted the entry of unclosed APs into vacuoles in Vps21-mutant cells, whereas depletion of Pep4 and/or Prb1 delayed the entry into vacuoles. In contrast to the complete infertility of diploid cells of typical autophagy mutants, diploid cells of Vps21 mutant progressed through meiosis to sporulation, benefiting from the entry of unclosed APs into vacuoles after prolonged nitrogen starvation. Overall, these data represent a new observation that unclosed double-membrane APs can enter vacuoles after prolonged autophagy induction, most likely as a survival strategy.


Subject(s)
Saccharomyces cerevisiae Proteins , Vacuoles , Autophagosomes/metabolism , Autophagy/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Hydrolases/metabolism , Molecular Chaperones/metabolism , Nitrogen/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sirolimus/metabolism , Sirolimus/pharmacology , Vacuoles/genetics , Vacuoles/metabolism , rab GTP-Binding Proteins/metabolism
20.
J Cell Mol Med ; 28(15): e18549, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39098994

ABSTRACT

Breast cancer (BC) is the most commonly diagnosed cancer in women globally. Natural killer (NK) cells play a vital role in tumour immunosurveillance. This study aimed to establish a prognostic model using NK cell-related genes (NKRGs) by integrating single-cell transcriptomic data with machine learning. We identified 44 significantly expressed NKRGs involved in cytokine and T cell-related functions. Using 101 machine learning algorithms, the Lasso + RSF model showed the highest predictive accuracy with nine key NKRGs. We explored cell-to-cell communication using CellChat, assessed immune-related pathways and tumour microenvironment with gene set variation analysis and ssGSEA, and observed immune components by HE staining. Additionally, drug activity predictions identified potential therapies, and gene expression validation through immunohistochemistry and RNA-seq confirmed the clinical applicability of NKRGs. The nomogram showed high concordance between predicted and actual survival, linking higher tumour purity and risk scores to a reduced immune score. This NKRG-based model offers a novel approach for risk assessment and personalized treatment in BC, enhancing the potential of precision medicine.


Subject(s)
Breast Neoplasms , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Killer Cells, Natural , Machine Learning , Single-Cell Analysis , Transcriptome , Tumor Microenvironment , Humans , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Female , Prognosis , Transcriptome/genetics , Single-Cell Analysis/methods , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Biomarkers, Tumor/genetics , Nomograms
SELECTION OF CITATIONS
SEARCH DETAIL