Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Hepatol ; 79(1): 126-140, 2023 07.
Article in English | MEDLINE | ID: mdl-36889359

ABSTRACT

BACKGROUND & AIMS: The immune landscape of hepatocellular carcinoma (HCC) following transarterial chemoembolisation (TACE) remains to be clarified. This study aimed to characterise the immune landscape following TACE and the underlying mechanism of HCC progression. METHODS: Tumour samples from five patients with treatment-naive HCC and five patients who received TACE therapy were collected and subjected to single-cell RNA sequencing. Another 22 paired samples were validated using immunofluorescence staining and flow cytometry. To clarify the underlying mechanisms, in vitro co-culture experiments and two types of TREM2-KO/WT mouse models, namely, an HCC cell orthotopic injection model and a spontaneous HCC model, were used. RESULTS: A reduced number of CD8+ T cells and an increased number of tumour-associated macrophages (TAMs) were observed in the post-TACE microenvironment. TACE therapy reduced the cluster CD8_C4, which was highly enriched with tumour-specific CD8+ T cells of pre-exhausted phenotype. TREM2 was found to be highly expressed in TAMs following TACE, which was associated with a poor prognosis. TREM2+ TAMs secreted less CXCL9 but more galectin-1 than did TREM2- TAMs. Galectin-1 promoted PD-L1 overexpression in vessel endothelial cells, impeding CD8+ T cell recruitment. TREM2 deficiency also increased CD8+ T cell infiltration, which inhibited tumour growth in both in vivo HCC models. More importantly, TREM2 deficiency enhanced the therapeutic effect of anti-PD-L1 blockade. CONCLUSIONS: This study shows that TREM2+ TAMs play an important role in suppressing CD8+ T cells. TREM2 deficiency increased the therapeutic effect of anti-PD-L1 blockade by enhancing antitumour activity of CD8+ T cells. These findings explain the reasons for recurrence and progression after TACE and provide a new target for HCC immunotherapy after TACE. IMPACT AND IMPLICATIONS: Studying the immune landscape in post-TACE HCC is important to uncover the mechanisms of HCC progression. By using scRNA sequencing and functional assays, we discovered that both the number and function of CD8+ T cells are compromised, whereas the number of TREM2+ TAMs is increased in post-TACE HCC, correlating with worse prognosis. Moreover, TREM2 deficiency dramatically increases CD8+ T cell infiltration and augments the therapeutic efficacy of anti-PD-L1 blockade. Mechanistically, TREM2+ TAMs display lower CXCL9 and increased Gal-1 secretion than do TREM2- TAMs, with Gal-1 mediating the overexpression of PD-L1 in vessel endothelial cells. These results suggest that TREM2 could be a novel immunotherapeutic target for patients treated with TACE in HCC. This provides an opportunity to break the plateau of limited therapeutic effect. This study has the value of understanding the tumour microenvironment of post-TACE HCC and thinking a new strategy of immunotherapy in the field of HCC. It is therefore of key impact for physicians, scientists and drug developers in the field of liver cancer and gastrointestinal oncology.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Galectin 1/therapeutic use , CD8-Positive T-Lymphocytes , Endothelial Cells/pathology , Macrophages , Tumor Microenvironment
2.
Lipids Health Dis ; 17(1): 78, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29642923

ABSTRACT

BACKGROUND: Macrosomia is a serious public health problem worldwide due to its increasing prevalence and adverse influences on maternal and neonatal outcomes. Maternal dyslipidemia exerts potential and adverse impacts on pregnant women and newborns. However, the association between maternal serum lipids and the risk of macrosomia has not yet been clearly elucidated. We explored the association between the maternal lipids profile at late gestation and the risk of having macrosomia among women without diabetes mellitus (DM). METHODS: The medical records of 5407 pregnant women giving birth to single live babies at term were retrospectively analyzed. Subjects with DM, hypertension, thyroid disorders and fetal malformation were excluded. Maternal fasting serum lipids were measured during late pregnancy. Logistic regression analysis was used to analyze the variables associated with the risk of macrosomia. RESULTS: Maternal serum triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) levels were related to macrosomia; each 1 mmol/L increase in TG resulted in a 27% increase in macrosomia risk, while each 1 mmol/L increase in HDL-C level resulted in a 37% decrease in macrosomia risk, even after adjusting for potential confounders. Notably, the risk of macrosomia increased progressively with increased maternal serum TG levels and decreased HDL-C levels. Compared with women with serum TG levels < 2.5 mmol/L, women with TG levels greater than 3.92 mmol/L had an approximately 2.8-fold increased risk of macrosomia. Compared with women with serum HDL-C levels above 2.23 mmol/L, women with HDL-C levels of less than 1.62 mmol/L had a 1.9-fold increased risk of giving birth to an infan with macrosomia. In addition, a higher risk of macrosomia was observed in women with simultaneous hypertriglyceridemia and low serum HDL-C levels (odds ratio [OR] 2.400, 95% confidence interval [CI]: 1.760-3.274) compared to those with hypertriglyceridemia or low serum HDL-C alone (OR 2.074, 95% CI: 1.609-2.673 and OR 1.363, 95% CI: 1.028-1.809, respectively). CONCLUSIONS: Maternal serum TG levels and HDL-C levels at late gestation are independent predictors of macrosomia in women without DM.


Subject(s)
Diabetes, Gestational/blood , Fetal Macrosomia/blood , Lipids/blood , Adult , Birth Weight , Cholesterol, HDL/blood , Female , Humans , Infant, Newborn , Logistic Models , Multivariate Analysis , Pregnancy , Risk Factors , Triglycerides/blood
3.
Anal Chem ; 88(15): 7447-52, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27348262

ABSTRACT

We report the development of a novel plasmon coupling enhanced Raman scattering (PCERS) method, PCERS nanobeacon, for ultrasensitive, single-step, homogeneous detection of cholera toxin (CT). This method relies on our design of the plasmonic nanoparticles, which have a bilayer phospholipid coating with embedded Raman indicators and CT-binding ligands of monosialoganglioside (GM1). This design allows a facile synthesis of the plasmonic nanoparticle via two-step self-assembly without any specific modification or chemical immobilization. The realization of tethering GM1 on the surface imparts the plasmonic nanoparticles with high affinity, excellent specificity, and multivalence for interaction with CT. The unique lipid-based bilayer coated structure also affords excellent biocompatibility and stability for the plasmonic nanoparticles. The plasmonic nanoparticles are able to show substantial enhancement of the surface-enhanced Raman scattering (SERS) signals in a single-step interaction with CT, because of their assembly into aggregates in response to the CT-sandwiched interactions. The results reveal that the developed nanobeacon provides a simple but ultrasensitive sensor for rapid detection of CT with a large signal-to-background ratio and excellent reproducibility in a wide dynamic range, implying its potential for point-of-care applications in preventive and diagnostic monitoring of cholera.


Subject(s)
Biosensing Techniques/methods , Cholera Toxin/analysis , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Cholera Toxin/chemistry , G(M1) Ganglioside/chemistry , Gold/chemistry , Lipid Bilayers/chemistry , Surface Plasmon Resonance , Triglycerides/chemistry
4.
Front Pharmacol ; 14: 1235440, 2023.
Article in English | MEDLINE | ID: mdl-37492083

ABSTRACT

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune systemic disease with a wide range of clinical symptoms, complex development processes, and uncertain prognosis. The clinical treatment of SLE is mainly based on hormones and immunosuppressants. Research on novel therapy strategies for SLE has flourished in recent years, especially the emergence of new targeted drugs and natural products that can modulate related symptoms. This review discusses the current experience including B-cell targeted drugs (belimumab, tabalumab, blisibimod, atacicept, rituximab, ofatumumab, ocrelizumab, obexelimab, and epratuzumab), T-cell targeted drugs (abatacept, dapirolizumab, and inhibitor of syk and CaMKIV), cytokines targeted drugs (anifrolumab and sifalimumab), and natural products (curcumin, oleuropein, punicalagin, sulforaphane, icariin, apigenin, and resveratrol). The aim of this paper is to combine the existing in vitro and in vivo models and clinical research results to summarize the efficacy and mechanism of natural drugs and targeted drugs in SLE for the reference and consideration of researchers.

5.
Acta Pharm Sin B ; 13(2): 632-647, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36873191

ABSTRACT

Cryoablation (CRA) and microwave ablation (MWA) are two main local treatments for hepatocellular carcinoma (HCC). However, which one is more curative and suitable for combining with immunotherapy is still controversial. Herein, CRA induced higher tumoral PD-L1 expression and more T cells infiltration, but less PD-L1highCD11b+ myeloid cells infiltration than MWA in HCC. Furthermore, CRA had better curative effect than MWA for anti-PD-L1 combination therapy in mouse models. Mechanistically, anti-PD-L1 antibody facilitated infiltration of CD8+ T cells by enhancing the secretion of CXCL9 from cDC1 cells after CRA therapy. On the other hand, anti-PD-L1 antibody promoted the infiltration of NK cells to eliminate PD-L1highCD11b+ myeloid cells by antibody-dependent cell-mediated cytotoxicity (ADCC) effect after CRA therapy. Both aspects relieved the immunosuppressive microenvironment after CRA therapy. Notably, the wild-type PD-L1 Avelumab (Bavencio), compared to the mutant PD-L1 atezolizumab (Tecentriq), was better at inducing the ADCC effect to target PD-L1highCD11b+ myeloid cells. Collectively, our study uncovered the novel insights that CRA showed superior curative effect than MWA in combining with anti-PD-L1 antibody by strengthening CTL/NK cell immune responses, which provided a strong rationale for combining CRA and PD-L1 blockade in the clinical treatment for HCC.

6.
RSC Adv ; 12(27): 17264-17275, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35765428

ABSTRACT

Herbal medicines often contain bioactive polysaccharides. However, many medicinal herbs have not been explored for any active saccharides that may play key roles in their bioactivities. Herein, we extracted a novel polysaccharide from Mirabilis himalaica (Edgew) heim (denoted MHHP), a popular medicinal ingredient in traditional medicines. The structural and morphological characteristics of MHHP were measured and elucidated by high-performance gel permeation chromatography, gas chromatography connected with mass spectrometry, Fourier transform infrared and nuclear magnetic resonance spectroscopy as well as scanning electron microscopy. MHHP was homogeneous with a molecular weight of 16.1 kDa, M w/M n = 1.33, containing mainly α-d-glucan residues with (1→4)-linkage. The biological activities of MHHP upon proliferation of splenic lymphocyte, activation of related cytokine and production of nitric oxide (NO) in RAW264.7 cells were investigated in vitro. MHHP induced proliferation of mouse spleen lymphocytes and significantly promoted the secretion in TNF-α, IL-6 and NO production in RAW264.7 cells. Meanwhile, MHHP exhibited relatively low antioxidant abilities. Our data suggested that MHHP may have potential immunoregulatory and anti-inflammatory activity, with a moderate antioxidant activity.

7.
ACS Appl Mater Interfaces ; 14(6): 7579-7591, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35129950

ABSTRACT

Transcatheter arterial chemoembolization (TACE) is the first choice for patients with intermediate hepatocellular carcinoma (HCC), but clinical applications still face some problems, such as the difficulties in clearing all cancer cells and lack of targeting, which would damage normal liver cells. Recently, photothermal therapy (PTT) and nanodelivery systems have been used to improve the efficacy of TACE. However, most of these strategies achieve only a single function, and the synthesis process is complicated. Here, a simple one-step solvothermal method was used to develop multifunctional nanoparticles (UiO-66/Bi2S3@DOX), which can simultaneously achieve photothermal effects and low pH-triggered DOX release. UiO-66/Bi2S3 exhibited a pH-responsive release behavior and an excellent photothermal effect in a series of in vitro and in vivo studies. Biocompatibility was confirmed by cytotoxicity and hemocompatibility evaluations. The rat N1S1 liver tumor model was established to investigate the therapeutic effect and biosafety of the nanoplatforms using TACE. The results revealed that the combination of TACE and PTT resulted in remarkable tumor growth inhibition, and the histopathological assay further revealed extensive necrosis, downregulated angiogenesis, increased apoptosis, and proliferation in the tumor response. These results demonstrated that this nanosystem platform was a promising therapeutic agent for enhancing TACE therapy for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Nanocomposites , Animals , Carcinoma, Hepatocellular/drug therapy , Chemoembolization, Therapeutic/methods , Doxorubicin/therapeutic use , Humans , Liver Neoplasms/drug therapy , Metal-Organic Frameworks , Nanocomposites/therapeutic use , Photothermal Therapy , Phthalic Acids , Rats
8.
J Plant Physiol ; 169(15): 1477-88, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22742946

ABSTRACT

Enzymatic antioxidant system plays an important role in maintaining seed vigor and regulating plant growth and development. It involves a number of enzymes that scavenge excessive reactive oxygen species (ROS) produced during seed aging and also modulate the level of these compounds during plant developmental processes. This study investigated the transcriptional regulation of enzymatic antioxidative capacity in pea during the pre- and post-germinative phases and in response to seed aging by analyzing the spatio-temporal expression of five antioxidative genes: PsAPX, PsSOD, PsGRcyt, PsGRcm and PsCAT. Transcripts of all these genes were found in mature dry seeds, embryo axes and cotyledons of germinating seeds, and cotyledons, roots and shoots of young seedlings. However, PsAPX and PsSOD were predominant and exhibited developmental regulation, suggesting that these genes play important roles in controlling the intracellular homeostasis of ROS for promoting cell elongation, and thereby embryo axis expansion and early seedling growth in pea. Accelerated aging of pea seeds led to reduction in seed viability and seedling growth, and this effect was correlated with substantial decrease in the transcriptional activation of the prominent antioxidative genes. Furthermore, our proteomic analysis indicated the association of seed aging with changes in the abundance of specific proteins, revealing additional mechanisms underlying seed aging in pea.


Subject(s)
Antioxidants/metabolism , Germination/genetics , Pisum sativum/genetics , Pisum sativum/metabolism , Plant Proteins/metabolism , Plant Proteins/physiology , Seeds/growth & development , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL