Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Exp Dermatol ; 33(7): e15136, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973310

ABSTRACT

Interstitial lung disease (ILD) has been identified as a prevalent complication and significant contributor to mortality in individuals with pemphigus. In this study, a murine model of pemphigus was developed through the subcutaneous administration of serum IgG obtained from pemphigus patients, allowing for an investigation into the association between pemphigus and ILD. Pulmonary interstitial lesions were identified in the lungs of a pemphigus mouse model through histopathology, RT-qPCR and Sircol assay analyses. The severity of these lesions was found to be positively associated with the concentration of IgG in the injected serum. Additionally, DIF staining revealed the deposition of serum IgG in the lung tissue of pemphigus mice, indicating that the subcutaneous administration of human IgG directly impacted the lung tissue of the mice, resulting in damage. This study confirms the presence of pulmonary interstitial lesions in the pemphigus mouse model and establishes a link between pemphigus and ILD.


Subject(s)
Disease Models, Animal , Immunoglobulin G , Lung Diseases, Interstitial , Pemphigus , Pemphigus/pathology , Animals , Mice , Lung Diseases, Interstitial/etiology , Lung Diseases, Interstitial/pathology , Immunoglobulin G/blood , Humans , Lung/pathology , Skin/pathology , Female , Mice, Inbred BALB C
2.
Br J Dermatol ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009432

ABSTRACT

BACKGROUND: Skin fibrosis is the most typical pathological manifestation of systemic sclerosis (SSc) and localized scleroderma (LS) with unclear etiology and few effective treatments. Though excessive collagen secretion by fibroblasts is the primary cause of skin fibrosis, many lines of evidence suggested that vascular damage was the initiating event and various cell types along with fibroblasts worked together to contribute to the pathogenesis of skin fibrosis. OBJECTIVES: We sought to explore the relationships between vascular endothelial cell lesions and immune cell infiltration, along with the cell-cell interactions among various cell types within the fibrotic skin ecosystem. METHODS: Single-cell RNA-seq (10x Genomics) was performed on skin biopsies of 3 healthy donors and 7 SSc patients in Chinese. The additional 3 localized scleroderma patients' data from NCBI database (GSE160536) were integrated by Harmony. CellChat package (v1.5.0) was applied to analyze cell communication network. Transwell assay and subcutaneous bleomycin (BLM) injection in mice were used to explore the role of ACKR1 on immune cell infiltration. Milo single-cell western blot was applied to show the activation of fibroblast subclusters. RESULTS: A total of 62,295 cells were obtained and subpopulations of stromal and immune cells were identified. Interaction network analysis revealed that multiple chemokines secreted by macrophages, pericytes, and pro-inflammatory fibroblasts could bind with Duffy antigen/receptor for chemokines (ACKR1), which is highly expressed on ACKR1+ endothelial cells of lesion skin. Transwell assay revealed that over-expressed ACKR1 in HUVEC facilitated leukocyte infiltration under the treatment of IL8. The BLM mice showed enhanced ACKR1 expression, massive immune cell infiltration, and fibrosis in skin, which could be attenuated by ACKR1 inhibition. Furthermore, infiltrated macrophages with TGFB1 or PDGFB high production could activate SFRP2/ASPN+ fibroblasts to contribute to excessive accumulation of extracellular matrix (ECM), and the SOX4-ASPN axis plays an important role in the TGF-ß signaling cascade and the etiology of skin fibrosis. CONCLUSIONS: Our results reveal that highly expressed ACKR1 in endothelial cells of fibrotic skin tissue promotes immune cell infiltration, and SFRP2/ASPN+ fibroblasts synergize to exacerbate skin fibrosis.

3.
BMC Anesthesiol ; 24(1): 37, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263038

ABSTRACT

OBJECTIVE: This study was aimed to explore the protective effect of electroacupuncture (EA) pretreatment at Zusanli point (ST36) on ventilation-induced lung injury (VILI) and its potential anti-inflammatory mechanism. METHODS: High tidal volume ventilation was used to induce the VILI in mice, and EA pretreatment at ST36 was given for 7 consecutive days. The wet/dry ratio and pathological injury score of lung tissue, and total protein content of pulmonary alveolar lavage fluid (BALF) were detected after 4 h of mechanical ventilation (MV). Meanwhile, the expressions of TLR4 and NF- κB in lung tissue were evaluated by Western Blot, and the inflammatory factors in lung tissue were detected by ELISA. RESULTS: After four hours of mechanical ventilation, mice with ventilator-induced lung injury showed significant increases in lung wet/dry ratio, tissue damage scores, and protein content in bronchoalveolar lavage fluid. Pro-inflammatory cytokines (IL-6, IL-1ß, TNF-α) and TLR4/NF-κB expression levels in the lung were also markedly elevated (P < 0.05). Conversely, ST36 acupuncture point pre-treatment significantly reduced these parameters (P < 0.05). CONCLUSION: EA pretreatment at ST36 could alleviate the inflammatory response for VILI via inhibiting TLR4/NF- κB pathway.


Subject(s)
Electroacupuncture , Ventilator-Induced Lung Injury , Animals , Mice , NF-kappa B , Toll-Like Receptor 4 , Signal Transduction
4.
Anal Chem ; 95(18): 7354-7362, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37098245

ABSTRACT

Food allergy has become a growing health concern that may impair life quality and even cause life-threatening outcomes. Accidental and continuous exposure to allergenic bioaerosols has a substantially negative impact on the respiratory health of patients. Traditional analytical methodologies for food allergens are restricted by strong reliance on bulk instrumentation and skilled personnel, particularly in low-resource settings. In this study, a fluorescent sensor array based on the enzyme-linked immunosorbent assay performed on a herringbone-shaped microfluidic chip (ELISA-HB-chip) was designed for dynamically sensitive and multiplexed quantification of foodborne allergens in aerosols that originated from liquid food extracts. Due to the high surface area of aerosol particles and sufficient mixing of immunological reagents using a herringbone micromixer, the detection sensitivity was improved by over an order of magnitude compared to traditional allergen detection in the aqueous phase. Through fluorescence imaging of multiple regions on the ELISA-HB-chip, four important foodborne allergens, namely, ovalbumin, ovomucoid, lysozyme, and tropomyosin, could be simultaneously monitored without any cross-reactivity, and the limits of detection for these allergenic species were determined to be 7.8, 1.2, 4.2, and 0.31 ng/mL, respectively. Combining with a 3D printed and portable fluorescence microscope, this platform exhibited an excellent field-deployable capacity for quick and accurate determination of allergens in the aerosol state from spiked buffer solutions, thus displaying the practicality for food safety screening at cooking or food processing sites where patients are potentially under exposure to allergenic bioaerosols that escaped from food matrices or extracts.


Subject(s)
Allergens , Food , Humans , Enzyme-Linked Immunosorbent Assay/methods , Oligonucleotide Array Sequence Analysis , Lab-On-A-Chip Devices
5.
Article in English | MEDLINE | ID: mdl-37665747

ABSTRACT

OBJECTIVES: Innate immunity significantly contributes to systemic sclerosis (SSc) pathogenesis. TLR8 is an important innate immune mediator that is implicated in autoimmunity and fibrosis. However, the expression, mechanism of action, and pathogenic role of TLR8 in SSc remain unclear. The aim of this study was to explore the roles and underlying mechanisms of TLR8 in SSc. METHODS: The expression of TLR8 was analyzed based on a public dataset and then verified in skin tissues and skin fibroblasts of SSc patients. The role of TLR8 in inflammation and fibrosis was investigated using a TLR8-overexpression vector, activator (VTX-2337), inhibitor (cu-cpt-8m), and TLR8 siRNA in skin fibroblasts. The pathogenic role of TLR8 in skin inflammation and fibrosis was further validated in a bleomycin (BLM)-induced mouse skin inflammation and fibrosis model. RESULTS: TLR8 levels were significantly elevated in SSc skin tissues and myofibroblasts, along with significant activation of the TLR8 pathway. In vitro studies showed that overexpression or activation of TLR8 by a recombinant plasmid or VTX-2337 upregulated IL-6, IL-1ß, COL I, COL III, and α-SMA in skin fibroblasts. Consistently, both TLR8-siRNA and cu-cpt-8m reversed the phenotypes observed in TLR8-activating fibroblasts. Mechanistically, TLR8 induces skin fibrosis and inflammation in a manner dependent on the MAPK, NF-κB, and SMAD2/3 pathways. Subcutaneous injection of cu-cpt-8m significantly alleviated BLM-induced skin inflammation and fibrosis in vivo. CONCLUSION: TLR8 might be a promising therapeutic target to improve the treatment strategy for SSc skin inflammation and fibrosis.

6.
Mar Drugs ; 21(10)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37888439

ABSTRACT

A systematic chemical investigation of the deep-sea-derived fungus Aspergillus versicolor 170217 resulted in the isolation of six new (1-6) and 45 known (7-51) compounds. The structures of the new compounds were established on the basis of exhaustive analysis of their spectroscopic data and theoretical-statistical approaches including GIAO-NMR, TDDFT-ECD/ORD calculations, DP4+ probability analysis, and biogenetic consideration. Citriquinolinones A (1) and B (2) feature a unique isoquinolinone-embedded citrinin scaffold, representing the first exemplars of a citrinin-isoquinolinone hybrid. Dicitrinones K-L (3-4) are two new dimeric citrinin analogues with a rare CH-CH3 bridge. Biologically, frangula-emodin (32) and diorcinol (17) displayed remarkable anti-food allergic activity with IC50 values of 7.9 ± 3.0 µM and 13.4 ± 1.2 µM, respectively, while diorcinol (17) and penicitrinol A (20) exhibited weak inhibitory activity against Vibrio parahemolyticus, with MIC values ranging from 128 to 256 µM.


Subject(s)
Citrinin , Citrinin/chemistry , Aspergillus/chemistry , Fungi , Magnetic Resonance Spectroscopy , Molecular Structure
7.
Lasers Med Sci ; 38(1): 242, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37878132

ABSTRACT

The aim of this study is to assess the influence of various Er:YAG laser energies on dentin surface micromorphology and dentine-resin shear bond strength (SBS). Eighty dentin specimens were prepared and divided randomly into ten groups: control group (CG), phosphoric acid-etched group (AG), four laser-conditioned groups treated with various pulse energies of 40, 60, 80, and 100 mJ (L40, L60, L80, L100), and four laser-conditioned acid-etched groups (LA40, LA60, LA80, LA100). Two specimens from each group underwent scanning electron microscopy examination, while the remaining six were subjected to the dentin-resin SBS test. Statistical analyses included Welch's analysis of variance (ANOVA), followed by post hoc Tamhane's T2 multiple comparisons test, Pearson's correlation, and Fisher's exact test. Pulse energies of 60, 80, and 100 mJ fully exposed the dentin tubule orifices, although 100 mJ lead to microcracks. Laser-conditioned surfaces exhibited smaller tubule diameters compared to acid-etched surfaces, and tubule diameters positively correlated with dentin-resin SBS. Laser-conditioned groups showed lower SBS values, while laser-conditioned acid-etched groups demonstrated higher SBS values. No significant relationship was observed between dentin surface roughness and SBS. The range of laser energies used for dentin conditioning had limited effects on SBS or failure modes. Laser conditioning with energies ranging from 40 to 100 mJ effectively removes the smear layer from the dentin surface. However, to enhance dentin-resin bond strength, further acid etching of the laser-conditioned surface is necessary.


Subject(s)
Dentin , Lasers, Solid-State , Analysis of Variance , Dentin/radiation effects , Microscopy, Electron, Scanning , Shear Strength
8.
Plant Dis ; 107(5): 1613-1616, 2023 May.
Article in English | MEDLINE | ID: mdl-36444142

ABSTRACT

Pantoea anthophila CL1 is a causal agent of soft rot disease in Clausena lansium (wampee) in China and has inhibitory activity against the bacterial wilt pathogen Ralstonia solanacearum. Here we report the genome sequencing and analysis of P. anthophila CL1, representing the first complete genome resource of the species. The CL1 genome consists of four circular replicons (one chromosome and three plasmids), with a total size of 4,594,065 bp, and contains 4,109 protein-coding genes and 106 RNA genes. Our bioinformatic analysis of CL1 predicted 228 virulence factors, two Type VI Secretion Systems, and six secondary metabolite biosynthesis gene clusters producing saccharides, siderophores, and terpene. The complete genome sequence of P. anthophila CL1 provides a solid foundation for further investigation of its pathogenesis and antimicrobial activity and also represents a valuable resource for the comparative genomics of Pantoea.


Subject(s)
Clausena , Pantoea , Pantoea/genetics , Clausena/genetics , Genomics , Genome, Bacterial/genetics
9.
BMC Oral Health ; 23(1): 684, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37735362

ABSTRACT

BACKGROUND: Tooth extraction is a common procedure performed by oral and maxillofacial surgeons or dentists, often resulting in dental fear and anxiety. The use of relaxing music, audiovisuals, and virtual reality (VR) technologies has been employed to reduce dental anxiety. This network meta-analysis (NMA) aimed to assess the comparative effectiveness of relaxing music, audiovisuals, and VR in reducing dental anxiety associated with tooth extraction. METHODS: Four electronic databases were searched up to March 8, 2023, to identify randomized controlled trials (RCTs) evaluating different multimedia interventions, including the application of using relaxing music, audiovisuals, and VR technologies for dental anxiety. Studies utilizing various anxiety scales for tooth extraction were considered eligible. The pooled standard mean difference (SMD) and 95% confidence interval (CI) of anxiety scale scores were analyzed using Bayesian NMA. RESULTS: A total of 11 RCTs were included in this NMA. The Bayesian NMA results demonstrated that relaxing music (SMD = -0.64, 95% CI: -1.04, -0.25) and VR (SMD = -0.54, 95% CI: -1.08, -0.02) were associated with a reduction in dental anxiety, while audiovisuals (SMD = -0.34, 95% CI: -0.97, 0.33) required further consideration. Ranking probabilities indicated that relaxing music might be the most acceptable method for individuals with dental anxiety. The frequentist NMA yielded consistent rankings in a sensitivity analysis. CONCLUSIONS: Relaxing music shows the greatest potential for reducing dental anxiety related to tooth extraction when compared to other multimedia interventions.


Subject(s)
Music Therapy , Music , Humans , Dental Anxiety/prevention & control , Network Meta-Analysis , Tooth Extraction
10.
Antimicrob Agents Chemother ; 66(1): e0139721, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34633850

ABSTRACT

KBP-7072 is a novel broad-spectrum tetracycline (aminomethylcycline) antibacterial in clinical development (oral and intravenous formulations) for the treatment of acute bacterial skin and skin structure infections, community-acquired bacterial pneumonia, and complicated intra-abdominal infections. KBP-7072 is active against many of the World Health Organization priority pathogens. In this study, KBP-7072 and tetracycline class comparators were susceptibility tested against 1,057 geographically diverse surveillance isolates from 2019 according to Clinical and Laboratory Standards Institute (CLSI) guidelines. KBP-7072 demonstrated potent in vitro activity against Gram-positive and Gram-negative bacterial pathogens. KBP-7072 was active against Staphylococcus aureus (MIC50/90, 0.06/0.12 mg/liter), methicillin-resistant S. aureus (MIC50/90, 0.06/0.12 mg/liter), S. lugdunensis (MIC50/90, 0.03/0.03 mg/liter), and other coagulase-negative staphylococci (MIC50/90, 0.06/0.25 mg/liter). KBP-7072 was active against Enterococcus faecalis (MIC50/90, 0.03/0.06 mg/liter) and vancomycin-susceptible and -nonsusceptible E. faecium (MIC50/90, 0.03/0.03 mg/liter); Streptococcus pneumoniae (MIC50/90, ≤0.015/0.03 mg/liter), including penicillin- and tetracycline-resistant strains; S. agalactiae (MIC50/90, 0.03/0.06 mg/liter), including macrolide-resistant strains; S. pyogenes (MIC50/90, 0.03/0.03 mg/liter); and viridans group streptococci, including S. anginosus group (MIC50/90, ≤0.015/0.03 mg/liter) isolates. KBP-7072 inhibited 90.2% (MIC50/90, 0.25/2 mg/liter) of all Enterobacterales isolates, including expanded-spectrum ß-lactamase-phenotype strains at ≤2 mg/liter. KBP-7072 demonstrated potent activity against Acinetobacter baumannii-calcoaceticus species complex and Stenotrophomonas maltophilia isolates (MIC50/90 values, 0.5/1 mg/liter), Haemophilus influenzae (MIC50/90, 0.12/0.25 mg/liter; 100.0% inhibited at ≤0.25 mg/liter), and Moraxella catarrhalis (MIC50/90, 0.06/0.06 mg/liter). Based on MIC90 values, KBP-7072 in vitro activity was generally superior to that the other tetracycline class comparators tested. The potent activity of KBP-7072, including resistant organism groups, merits further clinical investigation in infections where these organisms are likely to occur.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests , Tetracyclines/pharmacology
11.
Cytometry A ; 101(8): 675-681, 2022 08.
Article in English | MEDLINE | ID: mdl-35524584

ABSTRACT

Dermal papilla (DP) cells regulate hair follicle epithelial cells and melanocytes by secreting functional factors, playing a key role in hair follicle morphogenesis and hair growth. DP cells can reconstitute new hair follicles and induce hair regeneration, providing a potential therapeutic strategy for treating hair loss. However, current methods for isolating DP cells are either inefficient (physical microdissection) or only applied to genetically labeled mice. We systematically screened for the surface proteins specifically expressed in skin DP using mRNA expression databases. We identified two antibodies against receptors LEPTIN Receptor (LEPR ) and Scavenger Receptor Class A Member 5 (SCARA5) which could specifically label and isolate DP cells by flow cytometry from mice back skin at the growth phase. The sorted LEPR+ cells maintained the DP characteristics after culturing in vitro, expressing DP marker alkaline phosphatase and functional factors including RSPO1/2 and EDN3, the three major DP secretory factors that regulate hair follicle epithelial cells and melanocytes. Furthermore, the low-passage LEPR+ DP cells could reconstitute hair follicles on nude mice using chamber graft assay when combined with epithelial stem cells. The method of isolating functional DP cells we established here lays a solid foundation for developing DP cell-based therapy.


Subject(s)
Dermis , Receptors, Leptin , Animals , Cells, Cultured , Dermis/metabolism , Hair/metabolism , Hair Follicle , Mice , Mice, Nude , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Scavenger Receptors, Class A/metabolism
12.
Br J Dermatol ; 187(6): 936-947, 2022 12.
Article in English | MEDLINE | ID: mdl-35862273

ABSTRACT

BACKGROUND: The key pathophysiological changes in androgenetic alopecia (AGA) are limited to hair follicles (HFs) in frontal and vertex regions, sparing the occipital region. OBJECTIVES: To identify biological differences among HF subpopulations. METHODS: Paired vertex and occipital HFs from 10 male donors with AGA were collected for RNA sequencing assay. Furthermore, HF and cell experiments were conducted on the identified key genes to reveal their roles in AGA. RESULTS: Transcriptome profiles revealed that 506 mRNAs, 55 microRNAs and 127 long noncoding RNAs were differentially expressed in the AGA vertex HFs. Pathway analysis of mRNAs and microRNAs revealed involvement of the hypoxia-inducible factor (HIF)-1, Wnt/ß-catenin, and focal adhesion pathways. Differential expression of HIF-1 prolyl hydroxylase enzymes (EGLN1, EGLN3) and Wnt/ß-catenin pathway inhibitors (SERPINF1, SFRP2) was experimentally validated. In vitro studies revealed that reduction of EGLN1, EGLN3, SERPINF1 and SFRP2 stimulated proliferation of dermal papilla cells. Ex vivo HF studies showed that downregulation of EGLN1, EGLN3 and SERPINF1 promoted HF growth, postponed HF catagen transition, and prolonged the anagen stage, suggesting that these genes may be potentially utilized as therapeutic targets for AGA. CONCLUSIONS: We characterized key transcriptome changes in male AGA HFs, and found that HIF-1 pathway-related genes (EGLN1, EGLN3) and Wnt pathway inhibitors (SERPINF1, SFRP2) may play important roles in AGA. What is already known about this topic? Multiple differentially expressed genes and signalling pathways have been found between hair follicles (HFs) in the balding area (frontal and vertex regions) and nonbalding area (occipital region) of individuals with androgenetic alopecia (AGA). A whole-transcriptome atlas of the vertex and occipital region is lacking. What does this study add? We identified a number of differentially expressed genes and pathways between balding vertex and nonbalding occipital AGA HFs by using whole-transcriptome analyses. We identified pathways not previously reported in AGA, such as the hypoxia-inducible factor (HIF)-1 signalling pathway. We verified that HIF-1 pathway-related genes (EGLN1, EGLN3) and Wnt pathway inhibitors (PEDF, SFRP2) played important roles in dermal papilla cell activity, hair growth and the hair cycle. What is the translational message? The EGLN1, EGLN3, SERPINF1 and SFRP2 genes may be potentially utilized as therapeutic targets for AGA.


Subject(s)
Alopecia , Hypoxia-Inducible Factor 1 , MicroRNAs , Wnt Signaling Pathway , Humans , Male , Alopecia/genetics , beta Catenin/metabolism , Gene Expression Profiling , Hair Follicle/metabolism , Hypoxia-Inducible Factor 1/genetics , Hypoxia-Inducible Factor 1/metabolism , MicroRNAs/metabolism , RNA, Messenger/metabolism , Wnt Signaling Pathway/genetics
13.
Bioorg Chem ; 129: 106191, 2022 12.
Article in English | MEDLINE | ID: mdl-36270169

ABSTRACT

PPARγ full agonists, thiazolidinediones (TZDs), have been known as a class of most effective drugs for the treatment of type 2 diabetes mellitus (T2DM). However, recently their therapeutic benefits have been compromised by several undesirable side effects. In this study, a host-based repurposing strategy and in combination with comprehensive biological evaluations were synergistically employed to seek for potent PPARγ ligands, which led to the identification of an anti-thrombotic drug, dicoumarol (Dic), as the novel and safer selectively PPARγ modulator (SPPARγM) with advantages over current TZD drugs. The results in vitro showed that Dic had a potent binding affinity and weakly agonistic activity for PPARγ and its downstream key genes. Moreover, in diabetic model, it significantly reduced blood glucose without leading to the weight gain of both body and main organ tissues. Further mechanistic investigations revealed that Dic possessed such desired pharmacological properties mainly through effectively inhibiting the phosphorylation of PPARγ-Ser273 and selectively regulating the expressions of insulin-sensitive and resistance genes. Finally, the docking studies on the analysis of the potent binding mode of Dic with PPARγ revealed a remarkable difference on interaction region compared with other developed PPARγ agonists, which not only gave a proof of concept for the abovementioned mechanism but also provided the molecular basis for the discrimination of Dic from other PPARγ ligands, especially TZD drugs. Taken together, our findings suggested that Dic could serve as a new and promising candidate with good therapeutic index for treating T2DM, especially for those T2DM patients with thrombosis.


Subject(s)
Anticoagulants , Diabetes Mellitus, Type 2 , Dicumarol , Hypoglycemic Agents , PPAR gamma , Thrombosis , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Dicumarol/chemistry , Dicumarol/pharmacology , Dicumarol/therapeutic use , Hypoglycemic Agents/chemistry , Ligands , PPAR gamma/agonists , Thiazolidinediones/adverse effects , Thiazolidinediones/pharmacology , Thrombosis/drug therapy , Thrombosis/etiology , Anticoagulants/chemistry , Anticoagulants/pharmacology
14.
Dermatol Ther ; 35(8): e15657, 2022 08.
Article in English | MEDLINE | ID: mdl-35726636

ABSTRACT

Axillary osmidrosis (AO) and primary hyperhidrosis (PH) are common diseases, but there are still difficulties in treatment. Microwave therapy may become a new method. In order to evaluate long-time efficacy of patients with AO or PH treated by microwave and to discuss possible mechanism of microwave therapy by combining results of clinical and pathological, the study was carried out. Ten AO or PH patients with moderate or severe level were selected as subjects, and each subject received microwave treatment of bilateral armpits. The follow-up period lasted 2 years, and the changes of perspiration and odor were evaluated in subjective and objective ways. Each subject took skin biopsy in the treatment area before and after treatment or each follow-up. Hematoxylin-eosin and immunohistochemical staining were performed. Both subjective and objective index reflected the significant improvement of AO and PH after treatment (p < 0.05). Dermatology life quality index score decreased by 10.4 ± 4.6 (p < 0.05). The number of apocrine glands decreased significantly after treatment, and most of them changed from secretory phase to quiescent phase. In conclusion, microwave therapy can destroy apocrine sweat glands, reduce number of functional glands, so as to improve symptoms of AO and PH and elevate quality of life, which is safe, effective, and stable.


Subject(s)
Hyperhidrosis , Microwaves , Axilla/pathology , Humans , Hyperhidrosis/diagnosis , Hyperhidrosis/radiotherapy , Microwaves/adverse effects , Quality of Life , Treatment Outcome
15.
Curr Microbiol ; 79(5): 134, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35294641

ABSTRACT

A novel Gram-stain-negative, aerobic, yellowish-pigmented, non-motile, rod-shaped bacterial strain, designated strain BO-59T, was isolated from the activated sludge of a wastewater treatment plant in Hanam City, South Korea. Phylogenetic study based on the 16S rRNA gene sequence positioned BO-59T in a distinct lineage in the family Chitinophagaceae, sharing less than 92.8% sequence similarity with members of the closely related genera Ferruginibacter, Flavitalea, Pseudoflavitalea, Flavisolibacter, Niastella, and Terrimonas. Phylogenomic- and genomic relatedness analyses revealed that strain BO-59T is clearly distinguished from other genera in the family Chitinophagaceae by average nucleotide identity < 66.9%) and the genome-to-genome distance (< 29.5%) values. The strain BO-59T contained MK-7 as the predominant quinone, and iso-C15:0, iso-C17:0 3OH, and iso-C15:1 G as major fatty acids (> 10%). The DNA G + C content was 39.1 mol% based on genome sequence analysis. The polar lipids of strain BO-59T were phosphatidylethanolamine, an unidentified aminophospholipid and three unidentified polar lipids. 16S rRNA gene sequence similarity, physiological, and biochemical characteristics indicated that strain BO-59T represents a novel species of a new genus, for which the name Hanamia caeni gen. nov., sp. nov. is proposed. The type strain is BO-59T (= KACC 19646T = LMG 30865 T).


Subject(s)
Sewage , Bacterial Typing Techniques , DNA, Bacterial/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
16.
World J Microbiol Biotechnol ; 38(9): 162, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35834028

ABSTRACT

Brevinin2-CE (B2CE), a natural peptide containing 37 amino acids, was first isolated from the skin secretions of the Chinese forest frog Rana chensinensis. B2CE shows good antibacterial activity. In this study, a series of B2CE analogs with differences in cationicity, α-helicity, hydrophobicity and amphipathic properties were designed through chain-length deletion and amino acid substitution. The most potent, nontoxic analog, B2CE-N26V5K, was identified by examination of its antibacterial activity, hemolytic activity, and stability under physiological conditions. The increased cationicity, hydrophobicity and more obvious hydrophilic and hydrophobic surface of B2CE-N26-N16WA18KG23K did not improve the antibacterial activity but increased the hemolytic activity of this modified peptide. The helicity might promote antibacterial activity for brevinin-2 peptides, as the 15-aa analogs with lower helicity show decreased potency against different test bacteria (approximately 2- to 72-fold) compared to B2CE-N26V5K. Additionally, the results indicated that the "Rana box" does not affect the antimicrobial activity of brevinin-2 peptides, as B2CE, B2CE-nonDS and B2CE-C31-37 S have similar strong inhibitory effects on both gram-positive and gram-negative bacteria. However, the "Rana box" does affect the hemolytic activity, as the HC50 values of the 3 peptides range from 25 ~ 130 µM. Furthermore, B2CE-N26V5K caused obvious morphological alterations of the bacterial surfaces, as shown by atomic force microscopy. Additionally, B2CE-N26V5K exhibited strong membrane-disrupting activity when examined using the LIVE/DEAD Bac Light Bacterial Viability Kit. Thus, the antibacterial effect of B2CE-N26V5K on gram-negative and gram-positive bacteria may be caused by cell membrane attack. In conclusion, the excellent candidate B2CE-N26V5K was obtained and has application prospects as a novel anti-infective agent.


Subject(s)
Anti-Infective Agents , Antimicrobial Cationic Peptides , Animals , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/metabolism , Antimicrobial Cationic Peptides/chemistry , Bacteria/metabolism , Gram-Negative Bacteria , Gram-Positive Bacteria/metabolism , Hemolysis , Microbial Sensitivity Tests , Ranidae/metabolism
17.
Bioorg Chem ; 108: 104671, 2021 03.
Article in English | MEDLINE | ID: mdl-33550072

ABSTRACT

Andrastones are unusual 6,6,6,5-tetracyclic meroterpenoids that are rarely found in nature. Previously, three andrastones were obtained from the rice static fermentation extract of the deep-sea-derived fungus Penicillium allii-sativi MCCC 3A00580. Inspired by one strain many compounds (OSMAC) approach, the oat static fermentation on P. allii-sativi was conducted. As a result, 14 andrastones were isolated by UV-guided isolation. The chemical structures of the nine new compounds (1-9) was established by comprehensive analysis of the NMR, MS, ECD, and X-ray crystallography and the five known ones (10-14) were assigned by comparing their NMR, MS, and OR data with those reported in literature. Compound 1 bears a novel hemiketal moiety while 2 is the first example to possess a novel tetrahydrofuran moiety via C-7 and C-15. All isolates were tested for anti-allergic bioactivity. Compound 10, 3-deacetylcitreohybridonol, significantly decreased degranulation with the IC50 value of 14.8 µM, compared to that of 92.5 µM for the positive control, loratadine. Mechanism study indicated 10 could decrease the generation of histamine and TNF-α by reducing the accumulation of Ca2+ in RBL-2H3 cells. These findings indicate andrastones could be potential to discover new anti-allergic candidate drugs.


Subject(s)
Drug Discovery , Penicillium/chemistry , Sesquiterpenes/chemistry , Animals , Dose-Response Relationship, Drug , Fermentation , Histamine/metabolism , Molecular Structure , Penicillium/metabolism , Rats , Sesquiterpenes/isolation & purification , Sesquiterpenes/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
18.
Mar Drugs ; 19(4)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923496

ABSTRACT

Ten new (1-10) and 26 known (11-36) compounds were isolated from Penicillium griseofulvum MCCC 3A00225, a deep sea-derived fungus. The structures of the new compounds were determined by detailed analysis of the NMR and HRESIMS spectroscopic data. The absolute configurations were established by X-ray crystallography, Marfey's method, and the ICD method. All isolates were tested for in vitro anti-food allergic bioactivities in immunoglobulin (Ig) E-mediated rat basophilic leukemia (RBL)-2H3 cells. Compound 13 significantly decreased the degranulation release with an IC50 value of 60.3 µM, compared to that of 91.6 µM of the positive control, loratadine.


Subject(s)
Anti-Allergic Agents/pharmacology , Basophils/drug effects , Cell Degranulation/drug effects , Food Hypersensitivity/drug therapy , Penicillium/metabolism , Animals , Anti-Allergic Agents/isolation & purification , Basophils/immunology , Cell Line, Tumor , Food Hypersensitivity/immunology , Geologic Sediments/microbiology , Immunoglobulin E/immunology , Molecular Structure , Rats , Structure-Activity Relationship
19.
Article in English | MEDLINE | ID: mdl-32071042

ABSTRACT

KBP-7072 is a novel third-generation tetracycline (aminomethylcycline) antibacterial that overcomes common efflux and ribosomal protection resistance mechanisms that cause resistance in older-generation tetracyclines. KBP-7072 completed phase 1 clinical development studies for safety, tolerability, and pharmacokinetics (ClinicalTrials.gov identifier NCT02454361) and multiple ascending doses in healthy subjects (ClinicalTrials.gov identifier NCT02654626) in December 2015. Both oral and intravenous formulations of KBP-7072 are being developed. In this study, we evaluated the in vitro activities of KBP-7072 and comparator agents by CLSI document M07 (2018) broth microdilution against 531 recent geographically diverse and/or molecularly characterized Acinetobacter baumannii-A. calcoaceticus species complex (A. baumannii) isolates from the United States, Europe, Asia-Pacific (excluding China), and Latin America. A. baumannii isolates included carbapenem-resistant, colistin-resistant, tetracycline-resistant, and extended-spectrum-ß-lactamase (ESBL)- and metallo-ß-lactamase (MBL)-producing isolates. Overall, KBP-7072 (MIC50/90, 0.25/1 mg/liter) was comparable in activity to colistin (92.8%/92.8% susceptible [S] [CLSI/EUCAST]) against A. baumannii isolates, inhibiting 99.2% of isolates at ≤2 mg/liter and 97.6% of isolates at ≤1 mg/liter. KBP-7072 was equally active against A. baumannii isolates, including carbapenem-resistant, colistin-resistant, and tetracycline-resistant isolates, regardless of geographic location, and maintained activity against ESBL- and MBL-producing isolates. KBP-7072 outperformed comparator agents, including ceftazidime (40.3% S [CLSI]), gentamicin (48.2%/48.2% S [CLSI/EUCAST]), levofloxacin (39.5%/37.9% S [CLSI/EUCAST]), meropenem (42.0%/42.0% S [CLSI/EUCAST]), piperacillin-tazobactam (33.3% S [CLSI]), and all tetracycline-class comparator agents, which include doxycycline (67.3% S [CLSI]), minocycline (73.8% S [CLSI]), tetracycline (37.2% S [CLSI]), and tigecycline (79.5% inhibited by ≤2 mg/liter). The potent in vitro activity of KBP-7072 against recent geographically diverse, molecularly characterized, and drug-resistant A. baumannii isolates supports continued clinical development for the treatment of serious infections, including those caused by A. baumannii.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Tetracyclines/pharmacology , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/genetics , Carbapenems/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/drug effects , Microbial Sensitivity Tests , Tetracycline Resistance/drug effects , beta-Lactamases/metabolism
20.
Article in English | MEDLINE | ID: mdl-32229494

ABSTRACT

KBP-7072 is a semisynthetic aminomethylcycline with broad-spectrum activity against Gram-positive and Gram-negative pathogens, including multidrug-resistant bacterial strains. The pharmacokinetics (PK) of KBP-7072 after oral and intravenous (i.v.) administrations of single and multiple doses were investigated in animal models, including during fed and fasted states, and the protein binding and excretion characteristics were also evaluated. In Sprague-Dawley (SD) rats, beagle dogs, and CD-1 mice, KBP-7072 demonstrated a linear PK profile after the administration of single oral and i.v. and multiple oral doses. The oral bioavailability ranged from 12% to 32%. The mean time to maximum concentration (Tmax) ranged from 0.5 to 4 h, and the mean half-life ranged from approximately 6 to 11 h. The administration of oral doses in the fed state resulted in marked reductions in the maximum plasma concentration (Cmax) and the area under the concentration-time curve (AUC) compared with dosing in fasted animals. The mean bound fractions of KBP-7072 were 77.5%, 69.8%, 64.5%, 69.3%, and 69.2% in mouse, rat, dog, monkey, and human plasma, respectively. Following a single 22.5-mg/kg oral dose of KBP-7072 in SD rats, the cumulative excretion in feces was 64% and that in urine was 2.5% of the administered dose. The PK results in animal models are consistent with single- and multiple-ascending-dose studies in healthy volunteers and confirm the suitability of KBP-7072 for once-daily oral and i.v. administration in clinical studies.


Subject(s)
Anti-Bacterial Agents , Administration, Oral , Animals , Area Under Curve , Dogs , Half-Life , Mice , Models, Animal , Protein Binding , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL