ABSTRACT
Current un-sustainable plastic management is exacerbating plastic pollution, an urgent shift is thus needed to create a recycling society. Such recovering carbon (C) and hydrogen (H) from waste plastic has been considered as one practical route to achieve a circular economy. Here, we performed a simple pyrolysis-catalysis deconstruction of waste plastic via a monolithic multilayer stainless-steel mesh catalyst to produce multiwalled carbon nanotubes (MWCNTs) and H2, which are important carbon material and energy carrier to achieve sustainable development. Results revealed that the C and H recovery efficiencies were as high as 86% and 70%, respectively. The unique oxidation-reduction process and improvement of surface roughness led to efficient exposure of active sites, which increased MWCNTs by suppressing macromolecule hydrocarbons. The C recovery efficiency declined by only 5% after 10 cycles, proving the long-term employment of the catalyst. This catalyst can efficiently convert aromatics to MWCNTs by the vapor-solid-solid mechanism and demonstrate good universality in processing different kinds of waste plastics. The produced MWCNTs showed potential in applications of lithium-ion batteries and telecommunication. Owing to the economic profits and environmental benefits of the developed route, we highlighted its potential as a promising alternative to conventional incineration, simultaneously achieving the waste-to-resource strategy and circular economy.
ABSTRACT
Solar-driven photothermal catalytic H2 production from lignocellulosic biomass was achieved by using 1T-2H MoS2 with tunable Lewis acidic sites as catalysts in an alkaline aqueous solution, in which the number of Lewis acidic sites derived from the exposed Mo edges of MoS2 was successfully regulated by both the formation of an edge-terminated 1T-2H phase structure and tunable layer number. Owing to the abundant Lewis acidic sites for the oxygenolysis of lignocellulosic biomass, the 1T-2H MoS2 catalyst shows high photothermal catalytic lignocellulosic biomass-to-H2 transformation performance in polar wood chips, bamboo, rice straw corncobs, and rice hull aqueous solutions, and the highest H2 generation rate and solar-to-H2 (STH) efficiency respectively achieves 3661 µmol·h-1·g-1 and 0.18% in the polar wood chip system under 300 W Xe lamp illumination. This study provides a sustainable and cost-effective method for the direct transformation of renewable lignocellulosic biomass to H2 fuel driven by solar energy.
ABSTRACT
Understanding the mechanisms of C-H activation of alkanes is a very important research topic. The reactions of metal clusters with alkanes have been extensively studied to reveal the electronic features governing C-H activation, while the experimental cluster reactivity was qualitatively interpreted case by case in the literature. Herein, we prepared and mass-selected over 100 rhodium-based clusters (RhxVyOz- and RhxCoyOz-) to react with light alkanes, enabling the determination of reaction rate constants spanning six orders of magnitude. A satisfactory model being able to quantitatively describe the rate data in terms of multiple cluster electronic features (average electron occupancy of valence s orbitals, the minimum natural charge on the metal atom, cluster polarizability, and energy gap involved in the agostic interaction) has been constructed through a machine learning approach. This study demonstrates that the general mechanisms governing the very important process of C-H activation by diverse metal centers can be discovered by interpreting experimental data with artificial intelligence.
ABSTRACT
The increasing prevalence of extensively drug-and pan-drug-resistant Pseudomonas aeruginosa is a major concern for global public health. Therefore, it is crucial to develop novel antimicrobials that specifically target P. aeruginosa and its biofilms. In the present study, we determined that berberine hydrochloride inhibited the growth of planktonic bacteria as well as prevented the formation of biofilms. Moreover, we observed downregulation in the expression of pslA and pelA biofilm-related genes. Compared with existing antibiotics, berberine hydrochloride exhibits multiple modes of action against P. aeruginosa. Our findings suggest that berberine hydrochloride exerts its antimicrobial effects by damaging bacterial cell membranes, generating reactive oxygen species (ROS), and reducing intracellular adenosine triphosphate (ATP) levels. Furthermore, berberine hydrochloride showed minimal cytotoxicity and reduced susceptibility to drug resistance. In a mouse model of peritonitis, it significantly inhibited the growth of P. aeruginosa and exhibited a strong bacteriostatic action. In conclusion, berberine hydrochloride is a safe and effective antibacterial agent that inhibits the growth of P. aeruginosa.
Subject(s)
Adenosine Triphosphate , Anti-Bacterial Agents , Berberine , Biofilms , Disease Models, Animal , Microbial Sensitivity Tests , Plankton , Pseudomonas Infections , Pseudomonas aeruginosa , Reactive Oxygen Species , Berberine/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Biofilms/drug effects , Biofilms/growth & development , Animals , Mice , Anti-Bacterial Agents/pharmacology , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy , Reactive Oxygen Species/metabolism , Adenosine Triphosphate/metabolism , Plankton/drug effects , Peritonitis/microbiology , Peritonitis/drug therapy , Cell Membrane/drug effects , Cell Membrane/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolismABSTRACT
The activation of N2 under mild conditions remains a significant challenge in chemistry. Understanding how the composition of ligands modulates the reactivity of metal centers is pivotal for the rational design of efficient catalysts for nitrogen fixation. Herein, the reactions between polynuclear niobium oxynitride anions Nb4N5-xOx- (x = 0-5) and N2 were investigated by employing mass spectrometry, photoelectron imaging spectroscopy, and theoretical calculations. The rate constants of Nb4N5-xOx-/N2 gradually decrease for x = 0 to x = 4, and then increase again for x = 5. The sharp increase of the rate constants of Nb4O5-/N2 corresponds to a decrease in the electron detachment energy of the Nb4O5- cluster in the photoelectron spectroscopic experiment. Theoretical calculations suggest that the low-coordinated Nb-Nb site in Nb4N5-xOx- (x = 0-5) behaves as the active center to bind N2 in the side-on/end-on manner. Mechanistic analysis reveals that raising the O/N ratio leads to higher electron densities on the active Nb-Nb center and decreased positive charge on the metal atoms, which hinders the approach of N2 to the clusters. This finding discloses fundamental insights into the impact of N/O ratios in fine-tuning the reactivity of metal centers towards N2 adsorption in related catalytic processes.
ABSTRACT
Activation and transformation of methane is one of the "holy grails" in catalysis. Understanding the nature of active sites and mechanistic details via spectroscopic characterization of the reactive sites and key intermediates is of great challenge but crucial for the development of novel strategies for methane transformation. Herein, by employing photoelectron velocity-map imaging (PEVMI) spectroscopy in conjunction with quantum chemistry calculations, the Lewis acid-base pair (LABP) of [Taδ+-Nδ-] unit in Ta2N3 - acting as an active center to accomplish the heterolytic cleavage of C-H bond in CH4 has been confirmed by direct characterization of the reactant ion Ta2N3 - and the CH4-adduct intermediate Ta2N3CH4 -. Two active vibrational modes for the reactant (Ta2N3 -) and four active vibrational modes for the intermediate (Ta2N3CH4 -) were observed from the vibrationally resolved PEVMI spectra, which unequivocally determined the structure of Ta2N3 - and Ta2N3CH4 -. Upon heating, the LABP intermediate (Ta2N3CH4 -) containing the NH and Ta-CH3 unit can undergo the processes of C-N coupling and dehydrogenation to form the product with an adsorbed HCN molecule.
ABSTRACT
In this research, the self-assembly behaviors of two different symmetry carboxylic acid derivatives (H3BTE and H4BTE) regulated by solvent and guest molecule (coronene, COR) were explored at the liquid/solid interface by scanning tunneling microscopy, and the formation mechanism was investigated by density functional theory. In 1-phenyloctane, only H3BTE molecules dissolved with extremely low concentration and self-assembled into a honeycomb structure and a new strip structure, while H4BTE could not. In 1-heptanoic acid, H3BTE and H4BTE were easily dissolved, in which H3BTE formed a regular row structure and H4BTE formed a tetragonal structure, respectively. The host-guest interaction was investigated by introducing the COR molecules into their self-assembly structures, and due to the different symmetry, H3BTE and H4BTE displayed different accommodation behavior.
ABSTRACT
The first mixed alkali metal borosulfate compound, Li2NaB3S2O12 (LNBSO), which contains [BO3] groups, was designed and synthesized by using a high boron-to-sulfur ratio strategy through the high temperature solution method. LNBSO exhibits a birefringence of 0.057@546.1 nm in experiments, which was mainly contributed by the [BO3] groups, and possesses a short absorption edge at 184 nm, and the space group of LNBSO is P21/c. This newly synthesized borosulfate compound holds potential as a promising birefringent material within the deep-ultraviolet wavelength range. Moreover, the investigation on the relationship among the ratio of boron to sulfur, the dimensionality of the anionic framework, and the formation of [BO3] groups has been conducted on available borosulfate, providing insights for the synthesis of borosulfate with desirable performances.
ABSTRACT
Cost-effective and readily accessible 3d transition metals (TMs) have been considered as promising candidates for alkane activation while 3d TMs especially the early TMs are usually not very reactive with light alkanes. In this study, the reactivity of Vn+ and VnO+ (n = 1-9) cluster cations towards ethane under thermal collision conditions has been investigated using mass spectrometry and density functional theory calculations. Among Vn+ (n = 1-9) clusters, only V3-5+ can react with C2H6 to generate dehydrogenation products and the reaction rate constants are below 10-13 cm3 molecule-1 s-1. In contrast, the reaction rate constants for all VnO+ (n = 1-9) with C2H6 significantly increase by about 2-4 orders of magnitude. Theoretical analysis evidences that the addition of ligand O affects the charge distribution of the metal centers, resulting in a significant increase in the cluster reactivity. The analysis of frontier orbitals indicates that the agostic interaction determines the size-dependent reactivity of VnO+ cluster cations. This study provides a novel approach for improving the reactivity of early 3d TMs.
ABSTRACT
Metal oxide clusters with atomic oxygen radical anions are important model systems to study the mechanisms of activating and transforming very stable alkane molecules under ambient conditions. It is extremely challenging to characterize the activation and conversion of methane, the most stable alkane molecule, by metal oxide cluster anions due to the low reactivity of the anionic species. In this study, using a ship-lock type reactor that could be run at relatively high pressure conditions to provide a high number of collisions in ion-molecule reactions, the rate constants of the reactions between (MoO3)NO- (N = 1-21) cluster anions and the light alkanes (C1-C4) were measured under thermal collision conditions. The relationships among the reaction rates of different alkanes were obtained to establish a model to predict the low rate constants with methane from the high rate constants with C2-C4 alkanes. The model was tested by using available experimental results in literature. This study provides a new method to estimate the relatively low reactivity of atomic oxygen radical anions with methane on metal oxide clusters.
ABSTRACT
Three samples whose growth temperatures were 450°C, 500°C, and 560°C for S E S A M 1, S E S A M 2, and S E S A M 3, respectively, were tested by femto-second time-resolved transient absorption spectroscopy. The results indicate that the carrier dynamics of excited state absorption were dominant, and the lifetimes of carriers trapped by defect levels were about tens of pico-seconds. To further study the influence of carrier dynamics and recovery time of samples by ion-implantation, B + ions of 80 and 130 KeV were implanted into the samples with dose of 1014/c m 2. The modified samples showed a dominance of ultra-fast carrier dynamics of ground-state bleaching and direct recombination, which lasted for hundreds of femto-seconds, over excited state absorption. Additionally, carrier fast trapping was observed to be competitive with the excited state absorption process. After ion-implantation, the carrier dynamics of carrier trapping were enhanced, which contributed to forming an ultra-short laser, while the carrier dynamics of absorption of the excited state were suppressed. The conclusion that defect levels were partially eliminated by B + ion-implantation can be drawn.
ABSTRACT
Among various non-covalent interactions, selenium-centered chalcogen bonds (SeChBs) have garnered considerable attention in recent years as a result of their important contributions to crystal engineering, organocatalysis, molecular recognition, materials science, and biological systems. Herein, we systematically investigated π-hole-type SeâââO/S ChBs in the binary complexes of SeO2 with a series of O-/S-containing Lewis bases by means of high-level ab initio computations. The results demonstrate that there exists an attractive interaction between the Se atom of SeO2 and the O/S atom of Lewis bases. The interaction energies computed at the MP2/aug-cc-pVTZ level range from -4.68 kcal/mol to -10.83 kcal/mol for the SeâââO chalcogen-bonded complexes and vary between -3.53 kcal/mol and -13.77 kcal/mol for the SeâââS chalcogen-bonded complexes. The SeâââO/S ChBs exhibit a relatively short binding distance in comparison to the sum of the van der Waals radii of two chalcogen atoms. The SeâââO/S ChBs in all of the studied complexes show significant strength and a closed-shell nature, with a partially covalent character in most cases. Furthermore, the strength of these SeâââO/S ChBs generally surpasses that of the C/O-HâââO hydrogen bonds within the same complex. It should be noted that additional C/O-HâââO interactions have a large effect on the geometric structures and strength of SeâââO/S ChBs. Two subunits are connected together mainly via the orbital interaction between the lone pair of O/S atoms in the Lewis bases and the BD*(OSe) anti-bonding orbital of SeO2, except for the SeO2âââHCSOH complex. The electrostatic component emerges as the largest attractive contributor for stabilizing the examined complexes, with significant contributions from induction and dispersion components as well.
Subject(s)
Chalcogens , Lewis Bases , Oxygen , Selenium , Sulfur , Lewis Bases/chemistry , Chalcogens/chemistry , Selenium/chemistry , Sulfur/chemistry , Oxygen/chemistry , Models, Molecular , Hydrogen Bonding , Selenium Oxides/chemistry , ThermodynamicsABSTRACT
Environmental capacity (EC) serves as the basis for environmental planning and management, as a key indicator for assessing environmental risk and quality, and as a foundation for achieving sustainable development. Studies on EC typically address agricultural or urban rather than pastoral areas, with few examining agro-pastoral areas. The EC of the Tibetan Plateau is particularly important, considering its importance as an agricultural area and ecological reserve. To address this gap, the Qingshizui area in Menyuan County, a typical agro-pastoral area on the Tibetan Plateau, was selected to quantify soil EC and its spatial distribution. In terms of the dynamic and static annual soil EC for this region, the heavy metals were ranked as follows, in ascending order: Cd, Hg, Co, As, Sb, Ni, Cu, Pb, Cr, and Zn. Most of the areas with high residual EC were in the west. For the 10 heavy metals, residual EC was significantly affected by geological background. For all the heavy metals except Zn and Hg, residual EC was significantly affected by soil type. The heavy metal elements in the agro-pastoral area's soil are mildly enriched, suggesting minimal human impact. The composite EC index of this soil is 0.98, indicating an intermediate EC and low health risk. This study underscores that integrating agriculture and pastoralism can optimize land use and mitigate ecological pressures associated with these practices when done separately. Our research provides valuable insights for resource optimization, environmental conservation, and enhancing the welfare of farmers and herders in the Qinghai-Tibet region.
Subject(s)
Agriculture , Environmental Monitoring , Metals, Heavy , Soil Pollutants , Metals, Heavy/analysis , Soil Pollutants/analysis , Tibet , Soil/chemistry , ChinaABSTRACT
The Qinghai-Tibet Plateau has low anthropogenic carbon emissions and large carbon stock in its ecosystems. As a crucial region in terrestrial ecosystems responding to climate change, an accurate understanding of the distribution characteristics of soil carbon density holds significance in estimating the soil carbon storage capacity in forests and grasslands. It performs a crucial role in achieving carbon neutrality goals in China. The distribution characteristics of carbon and carbon density in the surface, middle, and deep soil layers are calculated, and the main influencing factors of soil carbon density changes are analyzed. The carbon density in the surface soil ranges from a minimum of 1.62 kg/m2 to a maximum of 52.93 kg/m2. The coefficient of variation for carbon is 46%, indicating a considerable variability in carbon distribution across different regions. There are substantial disparities, with geological background, land use types, and soil types significantly influencing soil organic carbon density. Alpine meadow soil has the highest carbon density compared with other soil types. The distribution of soil organic carbon density at three different depths is as follows: grassland > bare land > forestland > water area. The grassland systems in the Qinghai-Tibet Plateau have considerable soil carbon sink and storage potential; however, they are confronted with the risk of grassland degradation. The grassland ecosystems on the Qinghai-Tibet Plateau harbor substantial soil carbon sinks and storage potential. However, they are at risk of grassland degradation. It is imperative to enhance grassland management, implement sustainable grazing practices, and prevent the deterioration of the grassland carbon reservoirs to mitigate the exacerbation of greenhouse gas emissions and global warming. This highlights the urgency of implementing more studies to uncover the potential of existing grassland ecological engineering projects for carbon sequestration.
Subject(s)
Ecosystem , Soil , Tibet , Carbon/analysis , GrasslandABSTRACT
Late transition metal-bonded atomic oxygen radicals (LTM-Oâ - ) have been frequently proposed as important active sites to selectively activate and transform inert alkane molecules. However, it is extremely challenging to characterize the LTM-Oâ - -mediated elementary reactions for clarifying the underlying mechanisms limited by the low activity of LTM-Oâ - radicals that is inaccessible by the traditional experimental methods. Herein, benefiting from our newly-designed ship-lock type reactor, the reactivity of iron-vanadium bimetallic oxide cluster anions FeV3 O10 - and FeV5 O15 - featuring with Fe-Oâ - radicals to abstract a hydrogen atom from C2 -C4 alkanes has been experimentally characterized at 298â K, and the rate constants are determined in the orders of magnitude of 10-14 to 10-16 â cm3 molecule-1 s-1 , which are four orders of magnitude slower than the values of counterpart ScV3 O10 - and ScV5 O15 - clusters bearing Sc-Oâ - radicals. Theoretical results reveal that the rearrangements of the electronic and geometric structures during the reaction process function to modulate the activity of Fe-Oâ - . This study not only quantitatively characterizes the elementary reactions of LTM-Oâ - radicals with alkanes, but also provides new insights into structure-activity relationship of M-Oâ - radicals.
ABSTRACT
A fundamental understanding on the dynamically structural evolution of catalysts induced by reactant gases under working conditions is challenging but pivotal in catalyst design. Herein, in combination with state-of-the-art mass spectrometry for cluster reactions, cryogenic photoelectron imaging spectroscopy, and quantum-chemical calculations, we identified that NO adsorption on rhodium-cerium bimetallic oxide cluster RhCeO2 - can create a Ce3+ ion in product RhCeO2 NO- that serves as the starting point to trigger the catalysis of NO reduction by CO. Theoretical calculations substantiated that the reduction of another two NO molecules into N2 O takes place exclusively on the Ce3+ ion while Rh behaves like a promoter to buffer electrons and cooperates with Ce3+ to drive NO reduction. Our finding demonstrates the importance of NO in regulating the catalytic behavior of Rh under reaction conditions and provides much-needed insights into the essence of NO reduction over Rh/CeO2 , one of the most efficient components in three-way catalysts for NOx removal.
ABSTRACT
BACKGROUND: Imminent new vertebral fracture (NVF) is highly prevalent after vertebral augmentation (VA). An accurate assessment of the imminent risk of NVF could help to develop prompt treatment strategies. PURPOSE: To develop and validate predictive models that integrated the radiomic features and clinical risk factors based on machine learning algorithms to evaluate the imminent risk of NVF. MATERIALS AND METHODS: In this retrospective study, a total of 168 patients with painful osteoporotic vertebral compression fractures treated with VA were evaluated. Radiomic features of L1 vertebrae based on lumbar T2-weighted images were obtained. Univariate and LASSO-regression analyses were applied to select the optimal features and construct radiomic signature. The radiomic signature and clinical signature were integrated to develop a predictive model by using machine learning algorithms including LR, RF, SVM, and XGBoost. Receiver operating characteristic curve and calibration curve analyses were used to evaluate the predictive performance of the models. RESULTS: The radiomic-XGBoost model with the highest AUC of 0.93 of the training cohort and 0.9 of the test cohort among the machine learning algorithms. The combined-XGBoost model with the best performance with an AUC of 0.9 in the training cohort and 0.9 in the test cohort. The radiomic-XGBoost model and combined-XGBoost model achieved better performance to assess the imminent risk of NVF than that of the clinical risk factors alone (p < 0.05). CONCLUSION: Radiomic and machine learning modeling based on T2W images of preoperative lumbar MRI had an excellent ability to evaluate the imminent risk of NVF after VA.
Subject(s)
Fractures, Compression , Spinal Fractures , Humans , Spinal Fractures/diagnostic imaging , Spinal Fractures/surgery , Fractures, Compression/diagnostic imaging , Fractures, Compression/surgery , Retrospective Studies , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Magnetic Resonance ImagingABSTRACT
BACKGROUND: Accurately predicting the occurrence of imminent new vertebral fractures (NVFs) in patients with osteoporotic vertebral compression fractures (OVCFs) undergoing vertebral augmentation (VA) is challenging with yet no effective approach. This study aim to examine a machine learning model based on radiomics signature and clinical factors in predicting imminent new vertebral fractures after vertebral augmentation. METHODS: A total of 235 eligible patients with OVCFs who underwent VA procedures were recruited from two independent institutions and categorized into three groups, including training set (n = 138), internal validation set (n = 59), and external validation set (n = 38). In the training set, radiomics features were computationally retrieved from L1 or adjacent vertebral body (T12 or L2) on T1-w MRI images, and a radiomics signature was constructed using the least absolute shrinkage and selection operator algorithm (LASSO). Predictive radiomics signature and clinical factors were fitted into two final prediction models using the random survival forest (RSF) algorithm or COX proportional hazard (CPH) analysis. Independent internal and external validation sets were used to validate the prediction models. RESULTS: The two prediction models were integrated with radiomics signature and intravertebral cleft (IVC). The RSF model with C-indices of 0.763, 0.773, and 0.731 and time-dependent AUC (2 years) of 0.855, 0.907, and 0.839 (p < 0.001 for all) was found to be better predictive than the CPH model in training, internal and external validation sets. The RSF model provided better calibration, larger net benefits (determined by decision curve analysis), and lower prediction error (time-dependent brier score of 0.156, 0.151, and 0.146, respectively) than the CPH model. CONCLUSIONS: The integrated RSF model showed the potential to predict imminent NVFs following vertebral augmentation, which will aid in postoperative follow-up and treatment.
Subject(s)
Spinal Fractures , Spine , Vertebroplasty , Spinal Fractures/diagnostic imaging , Spinal Fractures/surgery , Spine/diagnostic imaging , Magnetic Resonance Imaging , Machine Learning , Bone Cements , Humans , Middle Aged , Aged , Aged, 80 and over , Reproducibility of Results , Male , FemaleABSTRACT
Spatial-temporal variations of active sonar echo intensity can provide effective motion information for characterizing intruding small targets and play a key role in follow-up tracking, behavioral analysis, and recognition, etc. Inspired by the idea of optical flow, which can be used to calculate subtle spatial-temporal variations of each pixel in image sequences, a different motion acoustic flow field (MAFF) is proposed for estimating the motion of underwater small targets in successive active sonar echographs from harbor environments. This is because directly applying current calculation framework for optical flow presents two challenges in this case. The first challenge is that the echo intensity fluctuation breaks its potential assumption of brightness consistency in the pre-processing stage. The second challenge is that the small size of the blob targets could be smoothed out as outliers by its median filter-based post-processing. Hence starting from the classical optical flow equation, MAFF introduces a novel spatial-temporal connected component pre-processing and a novel blob shape segmentation refinement post-processing. Experiments on a set of real-world harbor datasets demonstrate the efficacy of our MAFF calculation framework.
ABSTRACT
Active tracking of underwater small targets is a great challenge with kinematic information alone. This is because the active sonar often encounters multipath propagation and the induced clutter can even mask target echoes. Recently, high-order time lacunarity (HOT-Lac) has shown its ability in effectively highlighting "blob" targets from high clutter harbor environments. Hence, this paper proposes a HOT-Lac aided track scoring mechanism to solve the ambiguity of data association within the framework of Multiple Hypotheses Tracking (MHT). Specifically, the trajectory consistency of potential targets is captured by a momentum accumulation of the HOT Lac feature, which can inherit the historical information for the whole track. Meanwhile, due to the separability of the distribution of target and clutter in the HOT-Lac feature space, the probabilities of the target hypothesis and null hypothesis are modeled by the online computation of the HOT-Lac feature. Finally, the cumulative likelihood ratio based on HOT-Lac is integrated into MHT to score the potential tracks. Experiments in several real-world harbor scenarios demonstrate that the proposed HOT-Lac feature-aided tracker can suppress false tracks accurately and quickly.