Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 337
Filter
Add more filters

Publication year range
1.
Cell ; 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35777355

ABSTRACT

The host-seeking activity of hematophagous arthropods is essential for arboviral transmission. Here, we demonstrate that mosquito-transmitted flaviviruses can manipulate host skin microbiota to produce a scent that attracts mosquitoes. We observed that Aedes mosquitoes preferred to seek and feed on mice infected by dengue and Zika viruses. Acetophenone, a volatile compound that is predominantly produced by the skin microbiota, was enriched in the volatiles from the infected hosts to potently stimulate mosquito olfaction for attractiveness. Of note, acetophenone emission was higher in dengue patients than in healthy people. Mechanistically, flaviviruses infection suppressed the expression of RELMα, an essential antimicrobial protein on host skin, thereby leading to the expansion of acetophenone-producing commensal bacteria and, consequently, a high acetophenone level. Given that RELMα can be specifically induced by a vitamin A derivative, the dietary administration of isotretinoin to flavivirus-infected animals interrupted flavivirus life cycle by reducing mosquito host-seeking activity, thus providing a strategy of arboviral control.

2.
Proc Natl Acad Sci U S A ; 121(4): e2312556121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38227655

ABSTRACT

Hemorrhagic fever with renal syndrome (HFRS) is a zoonotic disease caused by the rodent-transmitted orthohantaviruses (HVs), with China possessing the most cases globally. The virus hosts in China are Apodemus agrarius and Rattus norvegicus, and the disease spread is strongly influenced by global climate dynamics. To assess and predict the spatiotemporal trends of HFRS from 2005 to 2098, we collected historical HFRS data in mainland China (2005-2020), historical and projected climate and population data (2005-2098), and spatial variables including biotic, environmental, topographical, and socioeconomic. Spatiotemporal predictions and mapping were conducted under 27 scenarios incorporating multiple integrated representative concentration pathway models and population scenarios. We identify the type of magistral HVs host species as the best spatial division, including four region categories. Seven extreme climate indices associated with temperature and precipitation have been pinpointed as key factors affecting the trends of HFRS. Our predictions indicate that annual HFRS cases will increase significantly in 62 of 356 cities in mainland China. Rattus regions are predicted to be the most active, surpassing Apodemus and Mixed regions. Eighty cities are identified as at severe risk level for HFRS, each with over 50 reported cases annually, including 22 new cities primarily located in East China and Rattus regions after 2020, while 6 others develop new risk. Our results suggest that the risk of HFRS will remain high through the end of this century, with Rattus norvegicus being the most active host, and that extreme climate indices are significant risk factors. Our findings can inform evidence-based policymaking regarding future risk of HFRS.


Subject(s)
Hemorrhagic Fever with Renal Syndrome , Rats , Animals , Hemorrhagic Fever with Renal Syndrome/epidemiology , Hemorrhagic Fever with Renal Syndrome/etiology , Climate , Zoonoses , China/epidemiology , Murinae , Incidence
3.
Nature ; 572(7767): 56-61, 2019 08.
Article in English | MEDLINE | ID: mdl-31316207

ABSTRACT

The radiation-based sterile insect technique (SIT) has successfully suppressed field populations of several insect pest species, but its effect on mosquito vector control has been limited. The related incompatible insect technique (IIT)-which uses sterilization caused by the maternally inherited endosymbiotic bacteria Wolbachia-is a promising alternative, but can be undermined by accidental release of females infected with the same Wolbachia strain as the released males. Here we show that combining incompatible and sterile insect techniques (IIT-SIT) enables near elimination of field populations of the world's most invasive mosquito species, Aedes albopictus. Millions of factory-reared adult males with an artificial triple-Wolbachia infection were released, with prior pupal irradiation of the released mosquitoes to prevent unintentionally released triply infected females from successfully reproducing in the field. This successful field trial demonstrates the feasibility of area-wide application of combined IIT-SIT for mosquito vector control.


Subject(s)
Aedes/microbiology , Aedes/physiology , Mosquito Control/methods , Mosquito Vectors/microbiology , Mosquito Vectors/physiology , Wolbachia/pathogenicity , Aedes/growth & development , Animals , China , Copulation , Feasibility Studies , Female , Humans , Insect Bites and Stings/prevention & control , Larva/growth & development , Larva/microbiology , Larva/physiology , Male , Mosquito Vectors/growth & development , Quality Control , Reproduction
4.
BMC Genomics ; 25(1): 262, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459433

ABSTRACT

Plague, as an ancient zoonotic disease caused by Yersinia pestis, has brought great disasters. The natural plague focus of Marmota himalayana in the Qinghai-Tibet Plateau is the largest, which has been constantly active and the leading source of human plague in China for decades. Understanding the population genetics of M. himalayana and relating that information to the biogeographic distribution of Yersinia pestis and plague outbreaks are greatly beneficial for the knowledge of plague spillover and arecrucial for pandemic prevention. In the present research, we assessed the population genetics of M. himalayana. We carried out a comparative study of plague outbreaks and the population genetics of M. himalayana on the Qinghai-Tibet Plateau. We found that M. himalayana populations are divided into two main clusters located in the south and north of the Qinghai-Tibet Plateau. Fourteen DFR genomovars of Y. pestis were found and exhibited a significant region-specific distribution. Additionally, the increased genetic diversity of plague hosts is positively associated with human plague outbreaks. This insight gained can improve our understanding of biodiversity for pathogen spillover and provide municipally directed targets for One Health surveillance development, which will be an informative next step toward increased monitoring of M. himalayana dynamics.


Subject(s)
Marmota , Yersinia pestis , Animals , Humans , Tibet/epidemiology , China/epidemiology , Disease Outbreaks , Yersinia pestis/genetics , Genetic Variation
5.
Environ Res ; 252(Pt 3): 119044, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38697599

ABSTRACT

Rising temperatures can increase the risk of mental disorders. As climate change intensifies, the future disease burden due to mental disorders may be underestimated. Using data on the number of daily emergency department visits for mental disorders at 30 hospitals in Beijing, China during 2016-2018, the relationship between daily mean temperature and such visits was assessed using a quasi-Poisson model integrated with a distributed lag nonlinear model. Emergency department visits for mental disorders attributed to temperature changes were projected using 26 general circulation models under four climate change scenarios. Stratification analyses were then conducted by disease subtype, sex, and age. The results indicate that the temperature-related health burden from mental disorders was projected to increase consistently throughout the 21st century, mainly driven by high temperatures. The future temperature-related health burden was higher for patients with mental disorders due to the use of psychoactive substances and schizophrenia as well as for women and those aged <65 years. These findings enhance our knowledge of how climate change could affect mental well-being and can be used to advance and refine targeted approaches to mitigating and adapting to climate change with a view on addressing mental disorders.


Subject(s)
Climate Change , Emergency Service, Hospital , Mental Disorders , Humans , Mental Disorders/epidemiology , Beijing/epidemiology , Emergency Service, Hospital/statistics & numerical data , Female , Middle Aged , Male , Adult , Aged , Young Adult , Adolescent , Temperature , China/epidemiology , Emergency Room Visits
6.
Pestic Biochem Physiol ; 201: 105880, 2024 May.
Article in English | MEDLINE | ID: mdl-38685246

ABSTRACT

Controlling housefly populations relies on the use of insecticides, which inevitably leads to the development of resistance. A better and more comprehensive understanding of the spatial and temporal distribution of resistance could guide the control of houseflies. However, most studies on housefly resistance in China are scattered and poorly coordinated. We collected resistance data from houseflies in the published literature and from the vector biomonitoring system of the Chinese Center for Disease Control and Prevention. A 5- or 10-year resolution was used to study the temporal dynamics of resistance to five commonly used insecticides: deltamethrin, permethrin, beta-cypermethrin, dichlorvos, and propoxur. ArcGIS was used to visualize their spatial distributions. The correlation between year and resistance coefficient was determined using SPSS 26.0 and RStudio to explore the changes in resistance over the years. A total of 2128 data were included in this study, ranging from 1982 to 2022, based on which we found significant increases in resistance over the past forty years for the five studied insecticides. Among them, pyrethroids had the most strikingly elevated resistance level and were mainly distributed in the northern and southeastern coastal areas. Dichlorvos and propoxur had intermediate increases in resistance, and most of these increases were identified in North China and the Yangtze River. Housefly resistance to commonly used insecticides in China is increasing and spatially heterogeneous. This finding also highlights the necessity of continuous routine surveillance of housefly resistance, which could guide future housefly control operations and slow the development of resistance.


Subject(s)
Houseflies , Insecticide Resistance , Insecticides , Pyrethrins , Houseflies/drug effects , Animals , China , Insecticides/pharmacology , Nitriles , Permethrin/pharmacology , Propoxur
7.
Proc Natl Acad Sci U S A ; 117(42): 26151-26157, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32989148

ABSTRACT

Emerging evidence suggests a resurgence of COVID-19 in the coming years. It is thus critical to optimize emergency response planning from a broad, integrated perspective. We developed a mathematical model incorporating climate-driven variation in community transmissions and movement-modulated spatial diffusions of COVID-19 into various intervention scenarios. We find that an intensive 8-wk intervention targeting the reduction of local transmissibility and international travel is efficient and effective. Practically, we suggest a tiered implementation of this strategy where interventions are first implemented at locations in what we call the Global Intervention Hub, followed by timely interventions in secondary high-risk locations. We argue that thinking globally, categorizing locations in a hub-and-spoke intervention network, and acting locally, applying interventions at high-risk areas, is a functional strategy to avert the tremendous burden that would otherwise be placed on public health and society.


Subject(s)
Communicable Disease Control/methods , Communicable Diseases, Emerging/prevention & control , Coronavirus Infections/prevention & control , Disease Transmission, Infectious/prevention & control , Global Health/trends , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus , COVID-19 , Climate , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/transmission , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Forecasting , Humans , International Cooperation , Models, Theoretical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , SARS-CoV-2 , Travel
8.
Exp Appl Acarol ; 90(1-2): 119-135, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37285110

ABSTRACT

The purpose of this study was to investigate tick species around Mount Fanjing and analyze bacterial communities in two species - Rhipicephalus microplus and Haemaphysalis longicornis - parasitizing cattle in Tongren, Guizhou province, Southwest China, using high-throughput sequencing methods. In April 2019, ticks were collected from five sites in Jiangkou County, Yinjiang County, and Songtao County. In total, 296 ticks were collected, comprising two genera and three species: H. longicornis, Haemaphysalis flava, and R. microplus. Rhipicephalus microplus was the most representative species (57.4%) within the collected group, being the dominant species in Tongren City, followed by H. longicornis (39.5%) and H. flava (3.0%). Beta-diversity analysis revealed differences in bacterial community composition among the tick species. The bacterial community structure of R. microplus collected in the three counties was highly similar. Chlorella and Bacillus were highly abundant in H. longicornis. Rickettsia was detected at high relative abundance in R. microplus but in low relative abundance in H. longicornis, suggesting that Rickettsia is more associated with R. microplus than with H. longicornis. More in-depth investigations are needed to determine the pathogenic risk of Rickettsia and its relationship with the host. This is the first survey on tick-borne bacterial communities in this area, which is of great significance for the prevention and control of tick-borne diseases locally.


Subject(s)
Cattle Diseases , Chlorella , Coleoptera , Ixodidae , Rhipicephalus , Rickettsia , Animals , Cattle , Ixodidae/microbiology , Rhipicephalus/microbiology , China
9.
Emerg Infect Dis ; 28(2): 363-372, 2022 02.
Article in English | MEDLINE | ID: mdl-35075994

ABSTRACT

Severe fever with thrombocytopenia syndrome virus (SFTSV) is spreading rapidly in Asia. This virus is transmitted by the Asian longhorned tick (Haemaphysalis longicornis), which has parthenogenetically and sexually reproducing populations. Parthenogenetic populations were found in ≥15 provinces in China and strongly correlated with the distribution of severe fever with thrombocytopenia syndrome cases. However, distribution of these cases was poorly correlated with the distribution of populations of bisexual ticks. Phylogeographic analysis suggested that the parthenogenetic population spread much faster than bisexual population because colonization is independent of sexual reproduction. A higher proportion of parthenogenetic ticks was collected from migratory birds captured at an SFTSV-endemic area, implicating the contribution to the long-range movement of these ticks in China. The SFTSV susceptibility of parthenogenetic females was similar to that of bisexual females under laboratory conditions. These results suggest that parthenogenetic Asian longhorned ticks, probably transported by migratory birds, play a major role in the rapid spread of SFTSV.


Subject(s)
Bunyaviridae Infections , Ixodidae , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Ticks , Animals , Bunyaviridae Infections/epidemiology , Female , Phlebovirus/genetics , Phylogeny
10.
Proc Natl Acad Sci U S A ; 116(9): 3624-3629, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808752

ABSTRACT

Dengue is a climate-sensitive mosquito-borne disease with increasing geographic extent and human incidence. Although the climate-epidemic association and outbreak risks have been assessed using both statistical and mathematical models, local mosquito population dynamics have not been incorporated in a unified predictive framework. Here, we use mosquito surveillance data from 2005 to 2015 in China to integrate a generalized additive model of mosquito dynamics with a susceptible-infected-recovered (SIR) compartmental model of viral transmission to establish a predictive model linking climate and seasonal dengue risk. The findings illustrate that spatiotemporal dynamics of dengue are predictable from the local vector dynamics, which in turn, can be predicted by climate conditions. On the basis of the similar epidemiology and transmission cycles, we believe that this integrated approach and the finer mosquito surveillance data provide a framework that can be extended to predict outbreak risk of other mosquito-borne diseases as well as project dengue risk maps for future climate scenarios.


Subject(s)
Dengue Virus/pathogenicity , Dengue/epidemiology , Disease Outbreaks , Mosquito Vectors/genetics , Animals , China , Climate Change , Culicidae/pathogenicity , Culicidae/virology , Dengue/transmission , Dengue/virology , Dengue Virus/genetics , Disease Vectors , Models, Theoretical , Mosquito Vectors/virology
11.
Proc Natl Acad Sci U S A ; 116(24): 11833-11838, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31138696

ABSTRACT

Quantitative knowledge about which natural and anthropogenic factors influence the global spread of plague remains sparse. We estimated the worldwide spreading velocity of plague during the Third Pandemic, using more than 200 years of extensive human plague case records and genomic data, and analyzed the association of spatiotemporal environmental factors with spreading velocity. Here, we show that two lineages, 2.MED and 1.ORI3, spread significantly faster than others, possibly reflecting differences among strains in transmission mechanisms and virulence. Plague spread fastest in regions with low population density and high proportion of pasture- or forestland, findings that should be taken into account for effective plague monitoring and control. Temperature exhibited a nonlinear, U-shaped association with spread speed, with a minimum around 20 °C, while precipitation showed a positive association. Our results suggest that global warming may accelerate plague spread in warm, tropical regions and that the projected increased precipitation in the Northern Hemisphere may increase plague spread in relevant regions.


Subject(s)
Genome, Bacterial/genetics , Pandemics/statistics & numerical data , Plague/genetics , Plague/transmission , Virulence/genetics , Animals , Climate Change , Databases, Factual , Genomics/methods , Humans , Yersinia pestis/genetics
12.
Ecotoxicol Environ Saf ; 229: 113082, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34929503

ABSTRACT

BACKGROUND: Ambient sulfur dioxide (SO2) has been associated with morbidity and mortality of respiratory diseases, however, its effect on length of hospital stays (LOS) and cost for these diagnoses remain unclear. METHODS: We collected hospital admission information for respiratory diseases from all 11 cities in the Shanxi Province of China during 2017-2019. We assessed individual-level exposure by using an inverse distance weighting approach based on geocoded residential addresses. A generalized additive model was built to delineate city-specific effects of SO2 on hospitalization, hospital expenditure, and length of hospital stay for respiratory diseases. The overall effects were obtained by random-effects meta-analysis. We further estimated the respiratory burden attributable to SO2 by comparing different reference concentrations. RESULTS: We observed significant effects of SO2 exposure on respiratory diseases. At the provincial level, each 10 µg/m3 increase in SO2 on lag03 was associated with a 0.63% (95% CI: 0.14-0.11) increase in hospital admission, an increase of 4.56 days (95% CI: 1.16-7.95) of hospital stay, and 3647.97 renminbi (RMB, Chinese money) (95% CI: 1091.05-6204.90) in hospital cost. We estimated about 6.13 (95% CI: 1.33-11.10) thousand hospital admissions, 65.77 million RMB (95% CI: 19.67-111.87) in hospital expenditure, and 82.13 (95% CI: 20.87-143.40) thousand days of hospital stay could have potentially been avoided had the daily SO2 concentrations been reduced to WHO's reference concentration (40 µg/m3). Variable values in correspondence with this reference concentration could reduce the hospital cost and LOS of each case by 52.67 RMB (95% CI: 15.75-89.59) and 0.07 days (95% CI: 0.02-0.117). CONCLUSION: This study provides evidence that short-term ambient SO2 exposure is an important risk factor of respiratory diseases, indicating that continually tightening policies to reduce SO2 levels could effectively reduce respiratory disease burden in Shanxi Province.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , China/epidemiology , Environmental Exposure/analysis , Health Expenditures , Hospitals , Humans , Length of Stay , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Sulfur Dioxide/analysis
13.
Exp Appl Acarol ; 87(4): 337-350, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35971047

ABSTRACT

Studies have shown that the main pathway for tick host localization and perception of mating information may be chemosensory. However, chemical communication in ticks is poorly understood, especially in those other than the Ixodes ticks. Niemann-Pick C2 (NPC2) protein and ionotropic receptors (IRs) are considered to be closely related to the perception of infochemicals in arthropods. Through bioinformatic analysis, eight NPC2 and four IR candidate genes were identified through screening and identification of the transcriptome sequencing database of Haemaphysalis longicornis. Phylogenetic tree analysis indicated that H. longicornis possesses similar homology to the genus Ixodes. A comparison of the expression of NPC2 and IR in tick forelegs (first pair of legs), hind legs (fourth pair of legs), and capitula using RT-PCR revealed that, barring HlonNPC2-8, 11 candidate genes were highly expressed in the foreleg and capitulum, which are the main sensory organs of ticks. They were also expressed in the hind legs, except for six genes that were not expressed in the males. RT-qPCR analysis showed upregulation and higher relative expression of HlonNPC2-1, HlonNPC2-3, HlonNPC2-6, and HlonNPC2-8 when stimulated by ammonium hydroxide, whereas the others were downregulated and demonstrated lower relative expression. These results further support the putative role of NPC2s as a new odorant carrier in ticks and present 12 promising candidate genes for understanding tick olfactory communication, enriching the data on these genes, especially outside the genus Ixodes.


Subject(s)
Arthropods , Ixodes , Ixodidae , Animals , Ixodes/genetics , Ixodidae/genetics , Male , Phylogeny , Transcriptome
14.
Thorax ; 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34088786

ABSTRACT

BACKGROUND: Few studies have examined the effects of ambient particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5) on hospital cost and length of hospital stay for respiratory diseases in China. METHODS: We estimated ambient air pollution exposure for respiratory cases through inverse distance-weighted averages of air monitoring stations based on their residential address and averaged at the city level. We used generalised additive models to quantify city-specific associations in 11 cities in Shanxi and a meta-analysis to estimate the overall effects. We further estimated respiratory burden attributable to PM2.5 using the standards of WHO (25 µg/m3) and China (75 µg/m3) as reference. RESULTS: Each 10 µg/m3 increase in lag03 PM2.5 corresponded to 0.53% (95% CI: 0.33% to 0.73%) increase in respiratory hospitalisation, an increment of 3.75 thousand RMB (95% CI: 1.84 to 5.670) in hospital cost and 4.13 days (95% CI: 2.51 to 5.75) in length of hospital stay. About 9.7 thousand respiratory hospitalisations, 132 million RMB in hospital cost and 145 thousand days of hospital stay could be attributable to PM2.5 exposures using WHO's guideline as reference. We estimated that 193 RMB (95% CI: 95 to 292) in hospital cost and 0.21 days (95% CI: 0.13 to 0.30) in hospital stay could be potentially avoidable for an average respiratory case. CONCLUSION: Significant respiratory burden could be attributable to PM2.5 exposures in Shanxi Province, China. The results need to be factored into impact assessment of air pollution policies to provide a more complete indication of the burden addressed by the policies.

15.
J Public Health (Oxf) ; 43(1): 209-216, 2021 04 12.
Article in English | MEDLINE | ID: mdl-31251367

ABSTRACT

BACKGROUND: China's capacity to control and prevent emerging and re-emerging infectious diseases is critical to the nation's population health. This study aimed to explore the capacity of Centers for Disease Control and Prevention (CDCs) in China to deal with infectious diseases now and in the future. METHODS: A survey was conducted in 2015 among 973 public health professionals at CDCs in Beijing and four provinces, to assess their capacity to deal with emerging and re-emerging infectious diseases. RESULTS: Although most professionals were confident with the current capacity of CDCs to cope with outbreaks, nearly all indicated more funding was required to meet future challenges. Responses indicated that Yunnan Province faced more challenges than Anhui, Henan and Liaoning Provinces in being completely prepared and able to deal with outbreaks. Participants aged 20-39 years were more likely than those aged 40 and over to believe strategies such as interdisciplinary and international collaborations for disease surveillance and control, would assist capacity building. CONCLUSION: The capacity of China's CDCs to deal with infectious diseases was excellent. However, findings suggest it is imperative to increase the number of skilled CDC staff, financial support, and strengthen county level staff training and health education programs.


Subject(s)
Communicable Diseases, Emerging , Communicable Diseases , Adult , China/epidemiology , Communicable Diseases/epidemiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , Humans , Middle Aged , Perception , Public Health
16.
BMC Public Health ; 21(1): 1389, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34256730

ABSTRACT

BACKGROUND: In China, Guangdong and Yunnan are the two most dengue-affected provinces. This study aimed to compare the epidemiological characteristics of dengue fever in Guangdong and Yunnan during 2004-2018. METHODS: Descriptive analyses were used to explore the temporal, spatial, and demographic distribution of dengue fever. RESULTS: Of the 73,761 dengue cases reported in mainland China during 2004-2018, 93.7% indigenous and 65.9% imported cases occurred in Guangdong and Yunnan, respectively. A total of 55,970 and 5938 indigenous cases occurred in 108 Guangdong and 8 Yunnan counties, respectively during 2004-2018. Whereas 1146 and 3050 imported cases occurred in 84 Guangdong and 72 Yunnan counties, respectively during 2004-2018. Guangdong had a much higher average yearly indigenous incidence rate (3.65 (1/100000) vs 0.86 (1/100000)), but a much lower average yearly imported incidence rate (0.07 (1/100000) vs 0.44(1/100000)) compared with Yunnan in 2004-2018. Furthermore, dengue fever occurred more widely in space and more frequently in time in Guangdong. Guangdong and Yunnan had similar seasonal characteristics for dengue fever, but Guangdong had a longer peak period. Most dengue cases were clustered in the south-western border of Yunnan and the Pearl River Delta region in Guangdong. Most of the imported cases (93.9%) in Guangdong and Yunnan were from 9 Southeast Asian countries. Thailand, Cambodia, and Malaysia imported mainly into Guangdong while Myanmar and Laos imported into Yunnan. There was a strong male predominance among imported cases and an almost equal gender distribution among indigenous cases. Most dengue cases occurred in individuals aged 21-50 years, accounting for 57.3% (Guangdong) vs. 62.8% (Yunnan) of indigenous and 83.2% (Guangdong) vs. 62.6% (Yunnan) of imported cases. The associated major occupations (house worker or unemployed, retiree, and businessman, for indigenous cases; and businessman, for imported cases), were similar. However, farmers accounted for a larger proportion of dengue cases in Yunnan. CONCLUSIONS: Identifying the different epidemiological characteristics of dengue fever in Guangdong and Yunnan can be helpful to formulate targeted, strategic plans, and implement effective public health prevention measures in China.


Subject(s)
Dengue , Cambodia , China/epidemiology , Dengue/epidemiology , Female , Humans , Laos , Malaysia , Male , Myanmar , Thailand
17.
Clin Infect Dis ; 71(16): 2045-2051, 2020 11 19.
Article in English | MEDLINE | ID: mdl-32302377

ABSTRACT

BACKGROUND: The unprecedented outbreak of corona virus disease 2019 (COVID-19) infection in Wuhan City has caused global concern; the outflow of the population from Wuhan was believed to be a main reason for the rapid and large-scale spread of the disease, so the government implemented a city-closure measure to prevent its transmission considering the large amount of travel before the Chinese New Year. METHODS: Based on the daily reported new cases and the population-movement data between 1 and 31 January, we examined the effects of population outflow from Wuhan on the geographical expansion of the infection in other provinces and cities of China, as well as the impacts of the city closure in Wuhan using different closing-date scenarios. RESULTS: We observed a significantly positive association between population movement and the number of the COVID-19 cases. The spatial distribution of cases per unit of outflow population indicated that the infection in some areas with a large outflow of population might have been underestimated, such as Henan and Hunan provinces. Further analysis revealed that if the city-closure policy had been implemented 2 days earlier, 1420 (95% confidence interval, 1059-1833) cases could have been prevented, and if 2 days later, 1462 (1090-1886) more cases would have been possible. CONCLUSIONS: Our findings suggest that population movement might be one important trigger for the transmission of COVID-19 infection in China, and the policy of city closure is effective in controlling the epidemic.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , China/epidemiology , Cities/epidemiology , Confidence Intervals , Humans , Pandemics
18.
Environ Res ; 183: 109190, 2020 04.
Article in English | MEDLINE | ID: mdl-32311903

ABSTRACT

OBJECTIVE: To investigate the relationship between climate variables, East Asian summer monsoon (EASM) and large outbreaks of dengue in China. METHODS: We constructed ecological niche models (ENMs) to analyse the influence of climate factors on dengue occurrence and predict dengue outbreak areas in China. Furthermore, we formulated a generalised additive model (GAM) to quantify the impact of the EASM on dengue occurrence in mainland China from 1980 to 2016. RESULTS: Mean Temperature of Coldest Quarter had a 62.6% contribution to dengue outbreaks. Southern China including Guangdong, Guangxi, Fujian and Yunnan provinces are more vulnerable to dengue emergence and resurgence. In addition, we found population density had a 68.7% contribution to dengue widely distribution in China using ENMs. Statistical analysis indicated a dome-shaped association between EASM and dengue outbreak using GAM, with the greatest impact in the South-East of China. Besides, there was a positive nonlinear association between monthly average temperature and dengue occurrence. CONCLUSION: We demonstrated the influence of climate factors and East Asian summer monsoon on dengue outbreaks, providing a framework for future studies on the association between climate change and vector-borne diseases.


Subject(s)
Climate Change , Dengue , Seasons , China/epidemiology , Dengue/epidemiology , Disease Outbreaks , Humans , Rain
19.
Environ Health ; 19(1): 3, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31915005

ABSTRACT

BACKGROUND: Typhus group rickettsiosis (TGR), which is a neglected vector-borne infectious disease, including epidemic typhus and endemic typhus. We explored the lag effects and nonlinear association between meteorological factors and TGR incidence in Xishuangbanna Dai autonomous prefecture from 2005 to 2017, China. METHODS: A Poisson regression with a distributed lag nonlinear model (DLNM) was utilized to analyze TGR cases data and the contemporaneous meteorological data. RESULTS: A J-shaped nonlinear association between weekly mean temperature and TGR incidence was found. The cumulative exposure to weekly mean temperature indicated that the RR increased with the increment of temperature. Taking the median value as the reference, lower temperatures could decrease the risk of TGR incidence, while higher temperatures could increase the risk of TGR incidence and last for 21 weeks. We also found a reversed U-shaped nonlinear association between weekly mean precipitation and TGR incidence. Precipitation between 5 mm and 13 mm could increase the risk of TGR incidence. Taking the median value as the reference, no precipitation and lower precipitation could decrease the risk of TGR incidence, while higher precipitation could increase the risk of TGR incidence and last for 18 weeks. CONCLUSIONS: The prevention and control measures of TGR should be implemented according to climatic conditions by the local government and health departments in order to improve the efficiency.


Subject(s)
Climate , Typhus, Epidemic Louse-Borne/epidemiology , Weather , China/epidemiology , Cold Temperature , Hot Temperature , Humans , Incidence , Nonlinear Dynamics , Rain
20.
J Math Biol ; 81(1): 243-276, 2020 07.
Article in English | MEDLINE | ID: mdl-32458175

ABSTRACT

Despite centuries of continuous efforts, mosquito-borne diseases (MBDs) remain enormous health threat of human life worldwide. Lately, the USA government has approved an innovative technology of releasing Wolbachia-infected male mosquitoes to suppress the wild mosquito population. In this paper we first introduce a stage-structured model for natural mosquitos, then we establish a new model considering the releasing of Wolbachia-infected male mosquitoes and the mating competition between the natural male mosquitoes and infected males on the suppression of natural mosquitoes. Dynamical analysis of the two models, including the existence and local stability of the equilibria and bifurcation analysis, reveals the existence of a forward bifurcation or a backward bifurcation with multiple attractors. Moreover, globally dynamical properties are further explored by using Lyapunov function and theory of monotone operators, respectively. Our findings suggest that infected male augmentation itself cannot always guarantee the success of population eradication, but leads to three possible levels of population suppression, so we define the corresponding suppression rate and estimate the minimum release ratio for population eradication. Furthermore, we study how the release ratio of infected males and natural ones, mating competition, the rate of cytoplasmic incompatibility and the basic offspring number affect the suppression rate of natural mosquitoes. Our results show that the successful eradication relies on assessing the reproductive capacity of natural mosquitoes, a selection of suitable Wolbachia strains and an appropriate release amount of infected males. This study will be helpful for public health authorities in designing proper strategies to control vector mosquitoes and prevent the epidemics of MBDs.


Subject(s)
Aedes , Models, Biological , Mosquito Control , Vector Borne Diseases , Wolbachia , Aedes/microbiology , Animals , Humans , Male , Mosquito Control/methods , Mosquito Control/statistics & numerical data , Mosquito Vectors/microbiology , Vector Borne Diseases/prevention & control , Wolbachia/physiology
SELECTION OF CITATIONS
SEARCH DETAIL