Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 849
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 186(24): 5347-5362.e24, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37963465

ABSTRACT

Trace amine-associated receptor 1 (TAAR1) senses a spectrum of endogenous amine-containing metabolites (EAMs) to mediate diverse psychological functions and is useful for schizophrenia treatment without the side effects of catalepsy. Here, we systematically profiled the signaling properties of TAAR1 activation and present nine structures of TAAR1-Gs/Gq in complex with EAMs, clinical drugs, and synthetic compounds. These structures not only revealed the primary amine recognition pocket (PARP) harboring the conserved acidic D3.32 for conserved amine recognition and "twin" toggle switch for receptor activation but also elucidated that targeting specific residues in the second binding pocket (SBP) allowed modulation of signaling preference. In addition to traditional drug-induced Gs signaling, Gq activation by EAM or synthetic compounds is beneficial to schizophrenia treatment. Our results provided a structural and signaling framework for molecular recognition by TAAR1, which afforded structural templates and signal clues for TAAR1-targeted candidate compounds design.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Humans , Amines/metabolism , Receptors, G-Protein-Coupled/metabolism , Schizophrenia/metabolism
2.
Cell ; 186(6): 1279-1294.e19, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36868220

ABSTRACT

Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.


Subject(s)
Euphausiacea , Genome , Animals , Circadian Clocks/genetics , Ecosystem , Euphausiacea/genetics , Euphausiacea/physiology , Genomics , Sequence Analysis, DNA , DNA Transposable Elements , Biological Evolution , Adaptation, Physiological
3.
Cell ; 184(5): 1362-1376.e18, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33545087

ABSTRACT

Lungfishes are the closest extant relatives of tetrapods and preserve ancestral traits linked with the water-to-land transition. However, their huge genome sizes have hindered understanding of this key transition in evolution. Here, we report a 40-Gb chromosome-level assembly of the African lungfish (Protopterus annectens) genome, which is the largest genome assembly ever reported and has a contig and chromosome N50 of 1.60 Mb and 2.81 Gb, respectively. The large size of the lungfish genome is due mainly to retrotransposons. Genes with ultra-long length show similar expression levels to other genes, indicating that lungfishes have evolved high transcription efficacy to keep gene expression balanced. Together with transcriptome and experimental data, we identified potential genes and regulatory elements related to such terrestrial adaptation traits as pulmonary surfactant, anxiolytic ability, pentadactyl limbs, and pharyngeal remodeling. Our results provide insights and key resources for understanding the evolutionary pathway leading from fishes to humans.


Subject(s)
Adaptation, Biological , Biological Evolution , Fishes/genetics , Whole Genome Sequencing , Animal Fins/anatomy & histology , Animal Fins/physiology , Animals , Extremities/anatomy & histology , Extremities/physiology , Fishes/anatomy & histology , Fishes/classification , Fishes/physiology , Phylogeny , Respiratory Physiological Phenomena , Respiratory System/anatomy & histology , Vertebrates/genetics
4.
Nature ; 618(7963): 193-200, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225986

ABSTRACT

Odorants are detected as smell in the nasal epithelium of mammals by two G-protein-coupled receptor families, the odorant receptors and the trace amine-associated receptors1,2 (TAARs). TAARs emerged following the divergence of jawed and jawless fish, and comprise a large monophyletic family of receptors that recognize volatile amine odorants to elicit both intraspecific and interspecific innate behaviours such as attraction and aversion3-5. Here we report cryo-electron microscopy structures of mouse TAAR9 (mTAAR9) and mTAAR9-Gs or mTAAR9-Golf trimers in complex with ß-phenylethylamine, N,N-dimethylcyclohexylamine or spermidine. The mTAAR9 structures contain a deep and tight ligand-binding pocket decorated with a conserved D3.32W6.48Y7.43 motif, which is essential for amine odorant recognition. In the mTAAR9 structure, a unique disulfide bond connecting the N terminus to ECL2 is required for agonist-induced receptor activation. We identify key structural motifs of TAAR family members for detecting monoamines and polyamines and the shared sequence of different TAAR members that are responsible for recognition of the same odour chemical. We elucidate the molecular basis of mTAAR9 coupling to Gs and Golf by structural characterization and mutational analysis. Collectively, our results provide a structural basis for odorant detection, receptor activation and Golf coupling of an amine olfactory receptor.


Subject(s)
Biogenic Amines , Odorants , Olfactory Perception , Polyamines , Receptors, Odorant , Animals , Mice , Biogenic Amines/analysis , Biogenic Amines/chemistry , Biogenic Amines/metabolism , Cryoelectron Microscopy , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/metabolism , GTP-Binding Protein alpha Subunits, Gs/ultrastructure , Odorants/analysis , Olfactory Perception/physiology , Polyamines/analysis , Polyamines/chemistry , Polyamines/metabolism , Receptors, Biogenic Amine/chemistry , Receptors, Biogenic Amine/genetics , Receptors, Biogenic Amine/metabolism , Receptors, Biogenic Amine/ultrastructure , Receptors, Odorant/chemistry , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Receptors, Odorant/ultrastructure , Smell/physiology , Spermidine/analysis , Spermidine/chemistry , Spermidine/metabolism
5.
Mol Cell ; 81(19): 3919-3933.e7, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34453889

ABSTRACT

Heat-shock proteins of 70 kDa (Hsp70s) are vital for all life and are notably important in protein folding. Hsp70s use ATP binding and hydrolysis at a nucleotide-binding domain (NBD) to control the binding and release of client polypeptides at a substrate-binding domain (SBD); however, the mechanistic basis for this allostery has been elusive. Here, we first characterize biochemical properties of selected domain-interface mutants in bacterial Hsp70 DnaK. We then develop a theoretical model for allosteric equilibria among Hsp70 conformational states to explain the observations: a restraining state, Hsp70R-ATP, restricts ATP hydrolysis and binds peptides poorly, whereas a stimulating state, Hsp70S-ATP, hydrolyzes ATP rapidly and has high intrinsic substrate affinity but rapid binding kinetics. We support this model for allosteric regulation with DnaK structures obtained in the postulated stimulating state S with biochemical tests of the S-state interface and with improved peptide-binding-site definition in an R-state structure.


Subject(s)
Escherichia coli Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Allosteric Regulation , Binding Sites , Escherichia coli Proteins/genetics , HSP70 Heat-Shock Proteins/genetics , Hydrolysis , Kinetics , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Structure-Activity Relationship
6.
Nature ; 600(7887): 164-169, 2021 12.
Article in English | MEDLINE | ID: mdl-34789875

ABSTRACT

In the clades of animals that diverged from the bony fish, a group of Mas-related G-protein-coupled receptors (MRGPRs) evolved that have an active role in itch and allergic signals1,2. As an MRGPR, MRGPRX2 is known to sense basic secretagogues (agents that promote secretion) and is involved in itch signals and eliciting pseudoallergic reactions3-6. MRGPRX2 has been targeted by drug development efforts to prevent the side effects induced by certain drugs or to treat allergic diseases. Here we report a set of cryo-electron microscopy structures of the MRGPRX2-Gi1 trimer in complex with polycationic compound 48/80 or with inflammatory peptides. The structures of the MRGPRX2-Gi1 complex exhibited shallow, solvent-exposed ligand-binding pockets. We identified key common structural features of MRGPRX2 and describe a consensus motif for peptidic allergens. Beneath the ligand-binding pocket, the unusual kink formation at transmembrane domain 6 (TM6) and the replacement of the general toggle switch from Trp6.48 to Gly6.48 (superscript annotations as per Ballesteros-Weinstein nomenclature) suggest a distinct activation process. We characterized the interfaces of MRGPRX2 and the Gi trimer, and mapped the residues associated with key single-nucleotide polymorphisms on both the ligand and G-protein interfaces of MRGPRX2. Collectively, our results provide a structural basis for the sensing of cationic allergens by MRGPRX2, potentially facilitating the rational design of therapies to prevent unwanted pseudoallergic reactions.


Subject(s)
Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Pruritus/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/chemistry , Receptors, Neuropeptide/metabolism , Allergens/immunology , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Consensus Sequence , Cryoelectron Microscopy , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Humans , Models, Molecular , Nerve Tissue Proteins/immunology , Nerve Tissue Proteins/ultrastructure , Receptors, G-Protein-Coupled/immunology , Receptors, G-Protein-Coupled/ultrastructure , Receptors, Neuropeptide/immunology , Receptors, Neuropeptide/ultrastructure
7.
Proc Natl Acad Sci U S A ; 120(49): e2310664120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38039272

ABSTRACT

In eukaryotes, targeted protein degradation (TPD) typically depends on a series of interactions among ubiquitin ligases that transfer ubiquitin molecules to substrates leading to degradation by the 26S proteasome. We previously identified that the bacterial effector protein SAP05 mediates ubiquitin-independent TPD. SAP05 forms a ternary complex via interactions with the von Willebrand Factor Type A (vWA) domain of the proteasomal ubiquitin receptor Rpn10 and the zinc-finger (ZnF) domains of the SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) and GATA BINDING FACTOR (GATA) transcription factors (TFs). This leads to direct TPD of the TFs by the 26S proteasome. Here, we report the crystal structures of the SAP05-Rpn10vWA complex at 2.17 Å resolution and of the SAP05-SPL5ZnF complex at 2.20 Å resolution. Structural analyses revealed that SAP05 displays a remarkable bimodular architecture with two distinct nonoverlapping surfaces, a "loop surface" with three protruding loops that form electrostatic interactions with ZnF, and a "sheet surface" featuring two ß-sheets, loops, and α-helices that establish polar interactions with vWA. SAP05 binding to ZnF TFs involves single amino acids responsible for multiple contacts, while SAP05 binding to vWA is more stable due to the necessity of multiple mutations to break the interaction. In addition, positioning of the SAP05 complex on the 26S proteasome points to a mechanism of protein degradation. Collectively, our findings demonstrate how a small bacterial bimodular protein can bypass the canonical ubiquitin-proteasome proteolysis pathway, enabling ubiquitin-independent TPD in eukaryotic cells. This knowledge holds significant potential for the creation of TPD technologies.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin , Proteolysis , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Carrier Proteins/metabolism , Protein Binding , Eukaryota/metabolism
8.
Brief Bioinform ; 24(6)2023 09 22.
Article in English | MEDLINE | ID: mdl-37982712

ABSTRACT

Interpretation of cryo-electron microscopy (cryo-EM) maps requires building and fitting 3D atomic models of biological molecules. AlphaFold-predicted models generate initial 3D coordinates; however, model inaccuracy and conformational heterogeneity often necessitate labor-intensive manual model building and fitting into cryo-EM maps. In this work, we designed a protein model-building workflow, which combines a deep-learning cryo-EM map feature enhancement tool, CryoFEM (Cryo-EM Feature Enhancement Model) and AlphaFold. A benchmark test using 36 cryo-EM maps shows that CryoFEM achieves state-of-the-art performance in optimizing the Fourier Shell Correlations between the maps and the ground truth models. Furthermore, in a subset of 17 datasets where the initial AlphaFold predictions are less accurate, the workflow significantly improves their model accuracy. Our work demonstrates that the integration of modern deep learning image enhancement and AlphaFold may lead to automated model building and fitting for the atomistic interpretation of cryo-EM maps.


Subject(s)
Deep Learning , Cryoelectron Microscopy/methods , Models, Molecular , Molecular Conformation , Protein Conformation
9.
Am J Pathol ; 194(6): 1078-1089, 2024 06.
Article in English | MEDLINE | ID: mdl-38417697

ABSTRACT

Ferroptosis is a new form of cell death characterized by iron-dependent lipid peroxidation. Whether ferroptosis is involved in retinal microvascular dysfunction under diabetic condition is not known. Herein, the expression of ferroptosis-related genes in patients with proliferative diabetic retinopathy and in diabetic mice was determined with quantitative RT-PCR. Reactive oxygen species, iron content, lipid peroxidation products, and ferroptosis-associated proteins in the cultured human retinal microvascular endothelial cells (HRMECs) and in the retina of diabetic mice were examined. The association of ferroptosis with the functions of endothelial cells in vitro was evaluated. After administration of ferroptosis-specific inhibitor, Fer-1, the retinal microvasculature in diabetic mice was assessed. Characteristic changes of ferroptosis-associated markers, including glutathione peroxidase 4, ferritin heavy chain 1, long-chain acyl-CoA synthetase 4, transferrin receptor protein 1, and cyclooxygenase-2, were detected in the retinal fibrovascular membrane of patients with proliferative diabetic retinopathy, cultured HRMECs, and the retina of diabetic mice. Elevated levels of reactive oxygen species, lipid peroxidation, and iron content were found in the retina of diabetic mice and in cultured HRMECs. Ferroptosis was found to be associated with HRMEC dysfunction under high-glucose condition. Inhibition of ferroptosis with specific inhibitor Fer-1 in diabetic mice significantly reduced the severity of retinal microvasculopathy. Ferroptosis contributes to microvascular dysfunction in diabetic retinopathy, and inhibition of ferroptosis might be a promising strategy for the therapy of early-stage diabetic retinopathy.


Subject(s)
Diabetic Retinopathy , Ferroptosis , Reactive Oxygen Species , Diabetic Retinopathy/pathology , Diabetic Retinopathy/metabolism , Animals , Humans , Mice , Male , Reactive Oxygen Species/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Lipid Peroxidation , Mice, Inbred C57BL , Microvessels/pathology , Microvessels/metabolism , Iron/metabolism , Retinal Vessels/metabolism , Retinal Vessels/pathology
10.
Cell ; 141(3): 446-57, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20434985

ABSTRACT

The CED-4 homo-oligomer or apoptosome is required for initiation of programmed cell death in Caenorhabditis elegans by facilitating autocatalytic activation of the CED-3 caspase zymogen. How the CED-4 apoptosome assembles and activates CED-3 remains enigmatic. Here we report the crystal structure of the complete CED-4 apoptosome and show that it consists of eight CED-4 molecules, organized as a tetramer of an asymmetric dimer via a previously unreported interface among AAA(+) ATPases. These eight CED-4 molecules form a funnel-shaped structure. The mature CED-3 protease is monomeric in solution and forms an active holoenzyme with the CED-4 apoptosome, within which the protease activity of CED-3 is markedly stimulated. Unexpectedly, the octameric CED-4 apoptosome appears to bind only two, not eight, molecules of mature CED-3. The structure of the CED-4 apoptosome reveals shared principles for the NB-ARC family of AAA(+) ATPases and suggests a mechanism for the activation of CED-3.


Subject(s)
Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans/metabolism , Calcium-Binding Proteins/chemistry , Amino Acid Sequence , Animals , Apoptosomes/metabolism , Apoptotic Protease-Activating Factor 1/metabolism , Caenorhabditis elegans/chemistry , Caspases/chemistry , Crystallography, X-Ray , Models, Molecular , Sequence Alignment , X-Ray Diffraction
11.
Proc Natl Acad Sci U S A ; 119(30): e2201160119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35867834

ABSTRACT

Metabolic extremes provide opportunities to understand enzymatic and metabolic plasticity and biotechnological tools for novel biomaterial production. We discovered that seed oils of many Thunbergia species contain up to 92% of the unusual monounsaturated petroselinic acid (18:1Δ6), one of the highest reported levels for a single fatty acid in plants. Supporting the biosynthetic origin of petroselinic acid, we identified a Δ6-stearoyl-acyl carrier protein (18:0-ACP) desaturase from Thunbergia laurifolia, closely related to a previously identified Δ6-palmitoyl-ACP desaturase that produces sapienic acid (16:1Δ6)-rich oils in Thunbergia alata seeds. Guided by a T. laurifolia desaturase crystal structure obtained in this study, enzyme mutagenesis identified key amino acids for functional divergence of Δ6 desaturases from the archetypal Δ9-18:0-ACP desaturase and mutations that result in nonnative enzyme regiospecificity. Furthermore, we demonstrate the utility of the T. laurifolia desaturase for the production of unusual monounsaturated fatty acids in engineered plant and bacterial hosts. Through stepwise metabolic engineering, we provide evidence that divergent evolution of extreme petroselinic acid and sapienic acid production arises from biosynthetic and metabolic functional specialization and enhanced expression of specific enzymes to accommodate metabolism of atypical substrates.


Subject(s)
Acanthaceae , Fatty Acids, Monounsaturated , Plant Proteins , Stearoyl-CoA Desaturase , Acanthaceae/metabolism , Acyl Carrier Protein/metabolism , Evolution, Molecular , Fatty Acids, Monounsaturated/metabolism , Mutagenesis , Plant Oils/chemistry , Plant Proteins/analysis , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/enzymology , Stearoyl-CoA Desaturase/analysis , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
12.
BMC Plant Biol ; 24(1): 647, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977968

ABSTRACT

BACKGROUND: The ginseng endophyte Paenibacillus polymyxa Pp-7250 (Pp-7250) has multifaceted roles such as preventing ginseng diseases, promoting growth, increasing ginsenoside accumulation, and degrading pesticide residues, however, these effects still have room for improvements. Composite fungicides are an effective means to improve the biocontrol effect of fungicides, but the effect of Pp-7250 in combination with its symbiotic bacteria on ginseng needs to be further investigated, and its mechanism of action has not been elucidated. In this study, a series of experiments was conducted to elucidate the effect of Paenibacillus polymyxa and Bacillus cereus co-bacterial agent on the yield and quality of understory ginseng, and to investigate their mechanism of action. RESULTS: The results indicated that P. polymyxa and B. cereus co-bacterial agent (PB) treatment improved ginseng yield, ginsenoside accumulation, disease prevention, and pesticide degradation. The mechanism is that PB treatment increased the abundance of beneficial microorganisms, including Rhodanobacter, Pseudolabrys, Gemmatimonas, Bacillus, Paenibacillus, Cortinarius, Russula, Paecilomyces, and Trechispora, and decreased the abundance of pathogenic microorganisms, including Ellin6067, Acidibacter, Fusarium, Tetracladium, Alternaria, and Ilyonectria in ginseng rhizosphere soil. PB co-bacterial agents enhanced the function of microbial metabolic pathways, biosynthesis of secondary metabolites, biosynthesis of antibiotics, biosynthesis of amino acids, carbon fixation pathways in prokaryotes, DNA replication, and terpenoid backbone biosynthesis, and decreased the function of microbial plant pathogens and animal pathogens. CONCLUSION: The combination of P. polymyxa and B. cereus may be a potential biocontrol agent to promote the resistance of ginseng to disease and improve the yield, quality, and pesticide degradation.


Subject(s)
Ginsenosides , Paenibacillus polymyxa , Panax , Plant Diseases , Rhizosphere , Panax/microbiology , Panax/growth & development , Panax/drug effects , Plant Diseases/microbiology , Plant Diseases/prevention & control , Bacillus cereus/drug effects , Bacillus cereus/growth & development , Soil Microbiology , Endophytes/physiology , Endophytes/drug effects , Microbiota/drug effects
13.
BMC Plant Biol ; 24(1): 350, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684982

ABSTRACT

BACKGROUND: Dactylicapnos is a climbing herbaceous vine, distributed from the Himalayas to southwestern China, and some of the species have important medicinal values. However, the chloroplast genomes of Dactylicapnos have never been investigated. In this study, chloroplast genomes of seven Dactylicapnos species covering all three sections and one informal group of Dactylicapnos were sequenced and assembled, and the detailed comparative analyses of the chloroplast genome structure were provided for the first time. RESULTS: The results showed that the chloroplast genomes of Dactylicapnos have a typical quadripartite structure with lengths from 172,344 bp to 176,370 bp, encoding a total of 133-140 genes, containing 88-94 protein-coding genes, 8 rRNAs and 37-39 tRNAs. 31 codons were identified as relative synonymous codon usage values greater than one in the chloroplast genome of Dactylicapnos genus based on 80 protein-coding genes. The results of the phylogenetic analysis showed that seven Dactylicapnos species can be divided into three main categories. Phylogenetic analysis revealed that seven species form three major clades which should be treated as three sections. CONCLUSIONS: This study provides the initial report of the chloroplast genomes of Dactylicapnos, their structural variation, comparative genomic and phylogenetic analysis for the first time. The results provide important genetic information for development of medical resources, species identification, infrageneric classification and diversification of Dactylicapnos.


Subject(s)
Genome, Chloroplast , Phylogeny , Evolution, Molecular
14.
Small ; 20(42): e2403457, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38853138

ABSTRACT

A stable stripping/plating process of the zinc anode is extremely critical for the practical application of aqueous zinc metal batteries. However, obstacles, including parasitic reactions and dendrite growth, notoriously deteriorate the stability and reversibility of zinc anode. Herein, Methyl l-α-aspartyl-l-phenylalaninate (Aspartame) is proposed as an effective additive in the ZnSO4 system to realize high stability and reversibility. Aspartame molecule with rich polar functional groups successfully participates in the solvation sheath of Zn2+ to suppress water-induced side reactions. The self-driven adsorption of Aspartame on zinc anode improves uniform deposition with a dose of 10 mm. These synergetic functions endow the zinc anode with a significantly long cycling lifespan of 4500 h. The cell coupled with a vanadium-based cathode also exhibited a high-capacity retention of 71.8% after 1000 cycles, outperforming the additive-free counterparts.

15.
Small ; 20(28): e2312207, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38299717

ABSTRACT

The flexible aqueous rechargeable sodium-ion batteries (ARSIBs) are a promising portable energy storage system that can meet the flexibility and safety requirements of wearable electronic devices. However, it faces huge challenges in mechanical stability and facile manufacturing processes. Herein, the first fully-printed flexible ARSIBs with appealing mechanical performance by screen-printing technique is prepared, which utilizes Na3V2(PO4)2F3/C (NVPF/C) as the cathode and 2% nitrogenous carbon-loaded Na3MnTi(PO4)3/C (NMTP/C/NC) as the anode. In particular, the organic co-solvent ethylene glycol (EG) is cleverly added to 17 m (mol kg-1) NaClO4 electrolyte to prepare a 17 m NaClO4-EG mixed electrolyte. This mixed electrolyte can withstand low temperatures of -20 °C in practical applications. Encouragingly, the fully-printed flexible ARSIBs (NMTP/C/NC//NVPF/C) exhibit a discharge capacity of 40.1 mAh g-1, an energy density of 40.1 Wh kg-1, and outstanding cycle performance. Moreover, these batteries with various shapes can be used as an energy wristband for an electronic watch in the bending states. The fully-printed flexible ARSIBs in this work are expected to shed light on the development of energy for wearable electronics.

16.
Article in English | MEDLINE | ID: mdl-39404790

ABSTRACT

PURPOSE: This head-to-head comparison study aimed to compare the performance of [68Ga]Ga-FAPI-RGD (LNC1007) and 2-[18F]FDG PET/CT in the evaluation of patients with metastatic differentiated thyroid cancer (mDTC). METHODS: Ten unexplained hyperthyroglobulinemia (UHTg) patients and 20 patients with definite metastatic lesions of thyroid cancer (DmDTC) were enrolled in the study. All patients underwent both [68Ga]Ga-LNC1007 and 2-[18F]FDG PET/CT within 1 week. The final diagnosis was based on histopathological results and a comprehensive evaluation of laboratory tests and multimodal imaging characteristics. RESULTS: In patients with UHTg, [68Ga]Ga-LNC1007 PET/CT detected more metastatic lymph nodes (LNs) (17 vs. 15, P = 0.317) and lung lesions (2 vs. 0) than 2-[18F]FDG. In patients with DmDTC, [68Ga]Ga-LNC1007 PET/CT also detected more true positive lesions than 2-[18F]FDG (Total: 133 vs. 103, LN: 20 vs. 15, lung: 18 vs. 10, bone: 87 vs.73). [68Ga]Ga-LNC1007 PET/CT demonstrated significantly higher SUVmax (Total: 6.30 vs. 3.84, LN: 8.28 vs. 4.82, Lung: 3.31 vs. 1.49, Bone: 5.73 vs. 3.87, all P < 0.05) and TBR (Total: 6.92 vs. 4.93, LN: 6.48 vs. 4.16, Lung: 5.16 vs. 2.57, Bone: 7.22 vs. 5.41, all P < 0.05) in true positive lesions compared to 2-[18F]FDG. Specifically, the sensitivity of [68Ga]Ga-LNC1007 PET/CT was higher than that of 2-[18F]FDG in detecting lung and bone metastases (94.7% vs. 52.6% and 100% vs. 83.9%, all P < 0.05). [68Ga]Ga-LNC1007 PET/CT exhibited better specificity and accuracy in diagnosing LNs (96.9% vs. 66.7% and 96.3% vs. 68.5%, all P < 0.05). However, the specificity of [68Ga]Ga-LNC1007 for bone metastasis was inferior to 2-[18F]FDG (15.4% vs. 88.5%, P < 0.05). CONCLUSION: Compared with 2-[18F]FDG, [68Ga]Ga-LNC1007 PET/CT could detect more metastatic lesions, with higher SUVmax and TBR, in patients with mDTC. [68Ga]Ga-LNC1007 had better accuracy in the diagnosis of LN and lung metastasis. Trial registration ClinicalTrials.gov NCT05515783. Registered 01 May 2022. URL of registry https://classic. CLINICALTRIALS: gov/ct2/show/NCT05515783.

17.
Langmuir ; 40(10): 5518-5526, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38416792

ABSTRACT

Hydrogen (H2) stands as a clean energy alternative to fossil fuels, especially within the domain of the hydrogen evolution reaction (HER), offering prospective solutions to mitigate both environmental and energy-related challenges. In this work, we successfully synthesized a sea-urchin-like catalyst, specifically a nickel-cobalt phosphide nanoneedle array on N-doped carbon nanospheres (Ni0.5Co1.5P@NCSs), for efficient HER by a sequential hydrothermal and low-temperature phosphating process. The catalyst exhibits sea-urchin-like structures, offering a specific surface area of 298 m2 g-1 and consequently furnishing a greater abundance of active sites. Comparing with non-sea-urchin-like Ni0.5Co1.5P@CN catalysts, the Ni0.5Co1.5P@NCSs exhibit an overpotential of 163 mV at 10 mA cm-2, a Tafel slope of 60 mV dec-1, and a maintained current density of approximately 90% during 50 h of continuous electrolysis. Experiments demonstrate that the outstanding electrochemical properties of the Ni0.5Co1.5P@NCSs originate from nitrogen doping of carbon spheres, the distinctive morphology of sea-urchin-like nanoneedle arrays, and simultaneous enhancements in intermediate adsorption energy, charge transfer, and electrolyte diffusion channel shortening. This work emphasizes a preparation strategy for synthesizing an attractive electrocatalyst with a low cost and efficient HER performance.

18.
Oecologia ; 204(1): 133-146, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38147134

ABSTRACT

Plant nutrient uptake and productivity are driven by a multitude of factors that have been modified by human activities, like climate change and the activity of decomposers. However, interactive effects of climate change and key decomposer groups like earthworms have rarely been studied. In a field microcosm experiment, we investigated the effects of a mean future climate scenario with warming (+ 0.50 °C to + 0.62 °C) and altered precipitation (+ 10% in spring and autumn, - 20% in summer) and earthworms (anecic-two Lumbricus terrestris, endogeic-four Allolobophora chlorotica and both together within 10 cm diameter tubes) on plant biomass and stoichiometry in two land-use types (intensively used meadow and conventional farming). We found little evidence for earthworm effects on aboveground biomass. However, future climate increased above- (+40.9%) and belowground biomass (+44.7%) of grass communities, which was mainly driven by production of the dominant Festulolium species during non-summer drought periods, but decreased the aboveground biomass (- 36.9%) of winter wheat. Projected climate change and earthworms interactively affected the N content and C:N ratio of grasses. Earthworms enhanced the N content (+1.2%) thereby decreasing the C:N ratio (- 4.1%) in grasses, but only under ambient climate conditions. The future climate treatment generally decreased the N content of grasses (aboveground: - 1.1%, belowground: - 0.15%) and winter wheat (- 0.14%), resulting in an increase in C:N ratio of grasses (aboveground: + 4.2%, belowground: +6.3%) and wheat (+5.9%). Our results suggest that climate change diminishes the positive effects of earthworms on plant nutrient uptakes due to soil water deficit, especially during summer drought.


Subject(s)
Ecosystem , Oligochaeta , Humans , Animals , Oligochaeta/physiology , Biomass , Plants , Poaceae , Soil
19.
J Math Biol ; 89(3): 30, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017723

ABSTRACT

To describe the transmission dynamics of maize streak virus infection, in the paper, we first formulate a stochastic maize streak virus infection model, in which the stochastic fluctuations are depicted by a logarithmic Ornstein-Uhlenbeck process. This approach is reasonable to simulate the random impacts of main parameters both from the biological significance and the mathematical perspective. Then we investigate the detailed dynamics of the stochastic system, including the existence and uniqueness of the global solution, the existence of a stationary distribution, the exponential extinction of the infected maize and infected leafhopper vector. Especially, by solving the five-dimensional algebraic equations corresponding to the stochastic system, we obtain the specific expression of the probability density function near the quasi-endemic equilibrium of the stochastic system, which provides valuable insights into the stationary distribution. Finally, the model is discretized using the Milstein higher-order numerical method to illustrate our theoretical results numerically. Our findings provide a groundwork for better methods of preventing the spread of this type of virus.


Subject(s)
Maize streak virus , Mathematical Concepts , Models, Biological , Plant Diseases , Stochastic Processes , Zea mays , Plant Diseases/virology , Plant Diseases/statistics & numerical data , Zea mays/virology , Animals , Maize streak virus/physiology , Computer Simulation , Insect Vectors/virology , Epidemics/statistics & numerical data , Hemiptera/virology
20.
BMC Public Health ; 24(1): 836, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500120

ABSTRACT

BACKGROUND: Hemodialysis patients require a reasonable dietary intake to manage their disease progression effectively. However, there is limited research on these patients' overall dietary knowledge, attitude, and practice (KAP) status. This study aimed to investigate the dietary KAP status and latent profiles in hemodialysis patients and identify sociodemographic and disease-related factors associated with these profiles and dietary practice. METHODS: A multicenter cross-sectional study involving 425 hemodialysis patients was conducted. A dietary KAP questionnaire in hemodialysis patients was used to evaluate the dietary KAP of the patients. A structural equation model was employed to analyze the correlations between dietary knowledge, attitude, and practice. Multiple linear regression analysis was used to identify factors associated with dietary practice scores. Latent profile analysis was conducted to determine the latent profiles of dietary KAP, and binary logistic regression was used to explore the sociodemographic and disease-related characteristics associated with each KAP profile in hemodialysis patients. RESULTS: The normalized average scores for dietary knowledge, attitude, and practice in hemodialysis patients were 0.58, 0.82, and 0.58, respectively. The structural equation model revealed significant positive correlations between dietary knowledge and attitude, and attitude and practice. Attitude played an indirect effect between knowledge and practice. Gender, cerebrovascular disease, and dietary attitude scores were identified as independent influencing factors for dietary practice scores. Two dietary KAP profiles were developed: a profile with general knowledge and attitude but low practice (40.2%) and a profile with general knowledge and attitude and high practice (59.8%). Binary logistic regression analysis indicated gender and monthly income per household significantly predicted membership in each KAP profile. CONCLUSIONS: The dietary practice of hemodialysis patients requires improvement. It is necessary to develop more individualized dietary interventions for these patients. Further exploration is needed to understand the motivation of patients to change their dietary behavior.


Subject(s)
Diet , Nutritional Status , Humans , Cross-Sectional Studies , Income , Family Characteristics , Health Knowledge, Attitudes, Practice
SELECTION OF CITATIONS
SEARCH DETAIL