Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Immunity ; 54(8): 1728-1744.e7, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34343498

ABSTRACT

Inflammatory bowel disease (IBD) mainly includes Crohn's disease (CD) and ulcerative colitis (UC). Immune disorders play an essential role in the pathogenesis of these two IBDs, but the differences in the immune microenvironment of the colon and their underlying mechanisms remain poorly investigated. Here we examined the immunological features and metabolic microenvironment of untreated individuals with IBD by multiomics analyses. Modulation of CD-specific metabolites, particularly reduced selenium, can obviously shape type 1 T helper (Th1) cell differentiation, which is specifically enriched in CD. Selenium supplementation suppressed the symptoms and onset of CD and Th1 cell differentiation via selenoprotein W (SELW)-mediated cellular reactive oxygen species scavenging. SELW promoted purine salvage pathways and inhibited one-carbon metabolism by recruiting an E3 ubiquitin ligase, tripartite motif-containing protein 21, which controlled the stability of serine hydroxymethyltransferase 2. Our work highlights selenium as an essential regulator of T cell responses and potential therapeutic targets in CD.


Subject(s)
Antioxidants/pharmacology , Crohn Disease/drug therapy , Crohn Disease/immunology , Selenium/pharmacology , Selenoprotein W/metabolism , Th1 Cells/cytology , Cell Differentiation/immunology , Cell Polarity , Colon/immunology , Colon/pathology , Glycine Hydroxymethyltransferase/metabolism , Humans , Reactive Oxygen Species/metabolism , Ribonucleoproteins/metabolism , Th1 Cells/immunology , Ubiquitin-Protein Ligases/metabolism
2.
EMBO Rep ; 24(1): e55387, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36394357

ABSTRACT

Interferon regulatory factor (IRF) 3 and IRF7 are master regulators of type I interferon (IFN-I)-dependent antiviral innate immunity. Upon viral infection, a positive feedback loop is formed, wherein IRF7 promotes further induction of IFN-I in the later stage. Thus, it is critical to maintain a suitably low level of IRF7 to avoid the hyperproduction of IFN-I. In this study, we find that early expression of IFN-I-dependent STAT1 promotes the expression of XAF1 and that XAF1 is associated specifically with IRF7 and inhibits the activity of XIAP. XAF1-knockout and XIAP-transgenic mice display resistance to viral infection, and this resistance is accompanied by increases in IFN-I production and IRF7 stability. Mechanistically, we find that the XAF1-XIAP axis controls the activity of KLHL22, an adaptor of the BTB-CUL3-RBX1 E3 ligase complex through a ubiquitin-dependent pathway. CUL3-KLHL22 directly targets IRF7 and catalyzes its K48-linked ubiquitination and proteasomal degradation. These findings reveal unexpected functions of the XAF1-XIAP axis and KLHL22 in the regulation of IRF7 stability and highlight an important target for antiviral innate immunity.


Subject(s)
Interferon Type I , Virus Diseases , Mice , Animals , Virus Diseases/genetics , Antiviral Agents , Immunity, Innate , Ubiquitination , Interferon Regulatory Factor-7/genetics , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins
3.
J Autoimmun ; 96: 74-85, 2019 01.
Article in English | MEDLINE | ID: mdl-30245026

ABSTRACT

The proliferation of T cells in peripheral lymphoid tissues requires T cell receptor (TCR)-mediated cell cycle entry. However, the underlying mechanism regulating cell cycle progression in mature T cells is incompletely understood. Here, we have identified an E3 ubiquitin ligase, CRL4DCAF2, as a critical mediator controlling M phase exit in activated T cells. DCAF2 expression is induced upon TCR stimulation and its deficiency attenuates T cell expansion. Additionally, DCAF2 T cell-specific knockout mice display impaired peripheral T cell maintenance and reduced severity of various autoimmune diseases. Continuous H4K20me1 modification caused by DCAF2 deficiency inhibits the induction of Aurkb expression, which regulates 26S proteasome activity during G2/M phase. CRL4DCAF2 deficiency causes M phase arrest through proteasome-dependent mechanisms in peripheral T cells. Our findings establish DCAF2 as a novel target for T cell-mediated autoimmunity or inflammatory diseases.


Subject(s)
Aurora Kinase B/metabolism , Autoimmune Diseases/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Proteasome Endopeptidase Complex/metabolism , Spinal Cord/pathology , T-Lymphocytes/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Animals , Autoimmunity , Cell Cycle , Cell Movement , Cell Proliferation , Disease Models, Animal , Female , Humans , Lymphocyte Activation , Mice , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/immunology , Peptide Fragments/immunology , T-Lymphocytes/immunology , Ubiquitin-Protein Ligase Complexes/genetics
4.
J Clin Invest ; 129(7): 2856-2871, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31135381

ABSTRACT

Calcineurin acts as a calcium-activated phosphatase that dephosphorylates various substrates, including members of the nuclear factor of activated T cells (NFAT) family, to trigger their nuclear translocation and transcriptional activity. However, the detailed mechanism regulating the recruitment of NFATs to calcineurin remains poorly understood. Here, we report that calcineurin A (CNA), encoded by PPP3CB or PPP3CC, is constitutively ubiquitinated on lysine 327, and this polyubiquitin chain is rapidly removed by ubiquitin carboxyl-terminal hydrolase 16 (USP16) in response to intracellular calcium stimulation. The K29-linked ubiquitination of CNA impairs NFAT recruitment and transcription of NFAT-targeted genes. USP16 deficiency prevents calcium-triggered deubiquitination of CNA in a manner consistent with defective maintenance and proliferation of peripheral T cells. T cell-specific USP16 knockout mice exhibit reduced severity of experimental autoimmune encephalitis and inflammatory bowel disease. Our data reveal the physiological function of CNA ubiquitination and its deubiquitinase USP16 in peripheral T cells. Notably, our results highlight a critical mechanism for the regulation of calcineurin activity and a novel immunosuppressive drug target for the treatment of autoimmune diseases.


Subject(s)
Autoimmune Diseases , Calcineurin , T-Lymphocytes , Ubiquitin Thiolesterase , Ubiquitination , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Calcineurin/genetics , Calcineurin/immunology , HEK293 Cells , Humans , Mice , Mice, Knockout , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/immunology , Ubiquitination/genetics , Ubiquitination/immunology
SELECTION OF CITATIONS
SEARCH DETAIL