Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Int J Mol Sci ; 24(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37628902

ABSTRACT

Clostridium botulinum neurotoxins (BoNTs) are the most potent toxins known, causing the deadly disease botulism. They function through Zn2+-dependent endopeptidase cleavage of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, preventing vesicular fusion and subsequent neurotransmitter release from motor neurons. Several serotypes of BoNTs produced by Clostridium botulinum (BoNT/A-/G and/X) have been well-characterised over the years. However, a BoNT-like gene (homologue of BoNT) was recently identified in the non-clostridial species, Enterococcus faecium, which is the leading cause of hospital-acquired multi-drug resistant infections. Here, we report the crystal structure of the catalytic domain of a BoNT homologue from Enterococcus faecium (LC/En) at 2.0 Å resolution. Detailed structural analysis in comparison with the full-length BoNT/En AlphaFold2-predicted structure, LC/A (from BoNT/A), and LC/F (from BoNT/F) revealed putative subsites and exosites (including loops 1-5) involved in recognition of LC/En substrates. LC/En also appears to possess a conserved autoproteolytic cleavage site whose function is yet to be established.


Subject(s)
Botulism , Clostridium botulinum , Cross Infection , Enterococcus faecium , Humans , Catalytic Domain , Biological Transport
2.
Int J Mol Sci ; 23(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36077016

ABSTRACT

Clostridium botulinum neurotoxin A (BoNT/A) targets the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, by cleaving synaptosomal-associated protein of 25 kDa size (SNAP-25). Cleavage of SNAP-25 results in flaccid paralysis due to repression of synaptic transmission at the neuromuscular junction. This activity has been exploited to treat a range of diseases associated with hypersecretion of neurotransmitters, with formulations of BoNT/A commercially available as therapeutics. Generally, BoNT activity is facilitated by three essential domains within the molecule, the cell binding domain (HC), the translocation domain (HN), and the catalytic domain (LC). The HC, which consists of an N-terminal (HCN) and a C-terminal (HCC) subdomain, is responsible for BoNT's high target specificity where it forms a dual-receptor complex with synaptic vesicle protein 2 (SV2) and a ganglioside receptor on the surface of motor neurons. In this study, we have determined the crystal structure of botulinum neurotoxin A6 cell binding domain (HC/A6) in complex with GD1a and describe the interactions involved in ganglioside binding. We also present a new crystal form of wild type HC/A6 (crystal form II) where a large 'hinge motion' between the HCN and HCC subdomains is observed. These structures, along with a comparison to the previously determined wild type crystal structure of HC/A6 (crystal form I), reveals the degree of conformational flexibility exhibited by HC/A6.


Subject(s)
Botulinum Toxins, Type A , Botulinum Toxins, Type A/chemistry , Cell Membrane/metabolism , Clostridium/metabolism , Neurons/metabolism , Protein Binding , Synaptic Vesicles/metabolism
3.
J Struct Biol ; 202(2): 113-117, 2018 05.
Article in English | MEDLINE | ID: mdl-29288126

ABSTRACT

Clostridium botulinum neurotoxins (BoNTs) cause the life-threatening condition, botulism. However, while they have the potential to cause serious harm, they are increasingly being utilised for therapeutic applications. BoNTs comprise of seven distinct serotypes termed BoNT/A through BoNT/G, with the most widely characterised being sub-serotype BoNT/A1. Each BoNT consists of three structurally distinct domains, a binding domain (HC), a translocation domain (HN), and a proteolytic domain (LC). The HC domain is responsible for the highly specific targeting of the neurotoxin to neuronal cell membranes. Here, we present two high-resolution structures of the binding domain of subtype BoNT/A3 (HC/A3) and BoNT/A4 (HC/A4) at 1.6 Šand 1.34 Šresolution, respectively. The structures of both proteins share a high degree of similarity to other known BoNT HC domains whilst containing some subtle differences, and are of benefit to research into therapeutic neurotoxins with novel characteristics.


Subject(s)
Botulinum Toxins, Type A/chemistry , Botulism/microbiology , Clostridium botulinum/chemistry , Amino Acid Sequence/genetics , Botulinum Toxins, Type A/genetics , Botulism/genetics , Clostridium botulinum/genetics , Clostridium botulinum/pathogenicity , Humans , Neurons/drug effects , Protein Binding , Protein Domains/genetics
4.
Nature ; 492(7428): 210-4, 2012 Dec 13.
Article in English | MEDLINE | ID: mdl-23201679

ABSTRACT

The twin-arginine translocation (Tat) pathway is one of two general protein transport systems found in the prokaryotic cytoplasmic membrane and is conserved in the thylakoid membrane of plant chloroplasts. The defining, and highly unusual, property of the Tat pathway is that it transports folded proteins, a task that must be achieved without allowing appreciable ion leakage across the membrane. The integral membrane TatC protein is the central component of the Tat pathway. TatC captures substrate proteins by binding their signal peptides. TatC then recruits TatA family proteins to form the active translocation complex. Here we report the crystal structure of TatC from the hyperthermophilic bacterium Aquifex aeolicus. This structure provides a molecular description of the core of the Tat translocation system and a framework for understanding the unique Tat transport mechanism.


Subject(s)
Gram-Negative Bacteria/chemistry , Gram-Negative Bacteria/metabolism , Membrane Transport Proteins/chemistry , Models, Molecular , Binding Sites , Escherichia coli/genetics , Gram-Negative Bacteria/genetics , Membrane Transport Proteins/metabolism , Protein Binding , Protein Sorting Signals , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
5.
Toxins (Basel) ; 14(5)2022 05 19.
Article in English | MEDLINE | ID: mdl-35622602

ABSTRACT

Botulinum neurotoxins (BoNT) are a group of clostridial toxins that cause the potentially fatal neuroparalytic disease botulism. Although highly toxic, BoNTs are utilized as therapeutics to treat a range of neuromuscular conditions. Several serotypes (BoNT/A-/G, /X) have been identified with vastly differing toxicological profiles. Each serotype can be further sub-categorised into subtypes due to subtle variations in their protein sequence. These minor changes have been attributed to differences in both the duration of action and potency for BoNT/A subtypes. BoNTs are composed of three domains-a cell-binding domain, a translocation domain, and a catalytic domain. In this paper, we present the crystal structures of the botulinum neurotoxin A2 cell binding domain, both alone and in complex with its receptor ganglioside GD1a at 1.63 and 2.10 Å, respectively. The analysis of these structures reveals a potential redox-dependent Lys-O-Cys bridge close to the ganglioside binding site and a hinge motion between the HCN and HCC subdomains. Furthermore, we make a detailed comparison with the previously reported HC/A2:SV2C structure for a comprehensive structural analysis of HC/A2 receptor binding.


Subject(s)
Botulinum Toxins, Type A , Botulism , Botulinum Toxins, Type A/metabolism , Clostridium/metabolism , Gangliosides , Humans , Protein Binding
6.
Toxins (Basel) ; 14(2)2022 02 08.
Article in English | MEDLINE | ID: mdl-35202156

ABSTRACT

Botulinum neurotoxins (BoNT) cause the potentially fatal neuroparalytic disease botulism that arises due to proteolysis of a SNARE protein. Each BoNT is comprised of three domains: a cell binding domain (HC), a translocation domain (HN), and a catalytic (Zn2+ endopeptidase) domain (LC). The HC is responsible for neuronal specificity by targeting both a protein and ganglioside receptor at the neuromuscular junction. Although highly toxic, some BoNTs are commercially available as therapeutics for the treatment of a range of neuromuscular conditions. Here we present the crystal structures of two BoNT cell binding domains, HC/A4 and HC/A5, in a complex with the oligosaccharide of ganglioside, GD1a and GM1b, respectively. These structures, along with a detailed comparison with the previously reported apo-structures, reveal the conformational changes that occur upon ganglioside binding and the interactions involved.


Subject(s)
Botulinum Toxins, Type A/chemistry , Botulism/physiopathology , Carrier Proteins/metabolism , Gangliosides/metabolism , Molecular Structure , Neuromuscular Junction/metabolism , Neurons/metabolism , Botulinum Toxins, Type A/metabolism , Crystallography, X-Ray , Humans
7.
Nat Neurosci ; 25(2): 168-179, 2022 02.
Article in English | MEDLINE | ID: mdl-34931070

ABSTRACT

Bacterial products can act on neurons to alter signaling and function. In the present study, we found that dorsal root ganglion (DRG) sensory neurons are enriched for ANTXR2, the high-affinity receptor for anthrax toxins. Anthrax toxins are composed of protective antigen (PA), which binds to ANTXR2, and the protein cargoes edema factor (EF) and lethal factor (LF). Intrathecal administration of edema toxin (ET (PA + EF)) targeted DRG neurons and induced analgesia in mice. ET inhibited mechanical and thermal sensation, and pain caused by formalin, carrageenan or nerve injury. Analgesia depended on ANTXR2 expressed by Nav1.8+ or Advillin+ neurons. ET modulated protein kinase A signaling in mouse sensory and human induced pluripotent stem cell-derived sensory neurons, and attenuated spinal cord neurotransmission. We further engineered anthrax toxins to introduce exogenous protein cargoes, including botulinum toxin, into DRG neurons to silence pain. Our study highlights interactions between a bacterial toxin and nociceptors, which may lead to the development of new pain therapeutics.


Subject(s)
Anthrax , Bacillus anthracis , Bacterial Toxins , Induced Pluripotent Stem Cells , Animals , Anthrax/microbiology , Anthrax/therapy , Bacillus anthracis/metabolism , Bacterial Toxins/metabolism , Ganglia, Spinal/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Nociceptors/metabolism , Pain , Receptors, Peptide/metabolism
8.
Nature ; 435(7042): 693-6, 2005 Jun 02.
Article in English | MEDLINE | ID: mdl-15864302

ABSTRACT

Nuclear protein import is mediated mainly by the transport factor importin-beta that binds cytoplasmic cargo, most often via the importin-alpha adaptor, and then transports it through nuclear pore complexes. This active transport is driven by disassembly of the import complex by nuclear RanGTP. The switch I and II loops of Ran change conformation with nucleotide state, and regulate its interactions with nuclear trafficking components. Importin-beta consists of 19 HEAT repeats that are based on a pair of antiparallel alpha-helices (referred to as the A- and B-helices). The HEAT repeats stack to yield two C-shaped arches, linked together to form a helicoidal molecule that has considerable conformational flexibility. Here we present the structure of full-length yeast importin-beta (Kap95p or karyopherin-beta) complexed with RanGTP, which provides a basis for understanding the crucial cargo-release step of nuclear import. We identify a key interaction site where the RanGTP switch I loop binds to the carboxy-terminal arch of Kap95p. This interaction produces a change in helicoidal pitch that locks Kap95p in a conformation that cannot bind importin-alpha or cargo. We suggest an allosteric mechanism for nuclear import complex disassembly by RanGTP.


Subject(s)
Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , beta Karyopherins/chemistry , beta Karyopherins/metabolism , ran GTP-Binding Protein/chemistry , ran GTP-Binding Protein/metabolism , Active Transport, Cell Nucleus , Allosteric Regulation , Binding Sites , Crystallography, X-Ray , Models, Molecular , Mutation/genetics , Protein Conformation , Saccharomyces cerevisiae , Structure-Activity Relationship , ran GTP-Binding Protein/genetics
9.
Toxins (Basel) ; 13(12)2021 11 24.
Article in English | MEDLINE | ID: mdl-34941672

ABSTRACT

Botulinum neurotoxins (BoNTs) are notorious toxins and powerful agents and can be lethal, causing botulism, but they are also widely used as therapeutics, particularly to treat neuromuscular disorders. As of today, the commercial BoNT treatments available are from native A or B serotypes. Serotype F has shown efficacy in a clinical trial but has scarcely been used, most likely due to its medium duration of effect. Previously, the uniqueness of the light chain of the F7 subtype was identified and reported, showing an extended interaction with its substrates, VAMPs 1, 2 and 3, and a superior catalytic activity compared to other BoNT/F subtypes. In order to more extensively study the properties of this neurotoxin, we engineered a modified F7 chimera, mrBoNT/F7-1, in which all the regions of the neurotoxin were identical to BoNT/F7 except the activation loop, which was the activation loop from BoNT/F1. Use of the activation loop from BoNT/F1 allowed easier post-translational proteolytic activation of the recombinant protein without otherwise affecting its properties. mrBoNT/F7-1 was expressed, purified and then tested in a suite of in vitro and in vivo assays. mrBoNT/F7-1 was active and showed enhanced potency in comparison to both native and recombinant BoNT/F1. Additionally, the safety profile remained comparable to BoNT/F1 despite the increased potency. This new modified recombinant toxin F7 could be further exploited to develop unique therapeutics to address unmet medical needs.


Subject(s)
Botulinum Toxins/chemistry , Botulinum Toxins/pharmacology , Muscle, Smooth/drug effects , Animals , Cell-Free System , Cloning, Molecular , Embryo, Mammalian , Escherichia coli , Female , Gene Expression Regulation, Bacterial , Glycine , Mice , Muscle, Skeletal/drug effects , Neurons/drug effects , Neurons/metabolism , Phrenic Nerve/drug effects , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Spinal Cord/cytology
10.
FEBS Open Bio ; 10(3): 298-305, 2020 03.
Article in English | MEDLINE | ID: mdl-31945264

ABSTRACT

Botulinum neurotoxins (BoNTs) are one of the most toxic proteins known to humans. Their molecular structure is comprised of three essential domains-a cell binding domain (HC ), translocation domain and catalytic domain (light chain) . The HC domain facilitates the highly specific binding of BoNTs to the neuronal membrane via a dual-receptor complex involving a protein receptor and a ganglioside. Variation in activity/toxicity across subtypes of serotype A has been attributed to changes in protein and ganglioside interactions, and their implications are important in the design of novel BoNT-based therapeutics. Here, we present the structure of BoNT/A3 cell binding domain (HC /A3) in complex with the ganglioside GD1a at 1.75 Å resolution. The structure revealed that six residues interact with the three outermost monosaccharides of GD1a through several key hydrogen bonding interactions. A detailed comparison of structures of HC /A3 with HC /A1 revealed subtle conformational differences at the ganglioside binding site upon carbohydrate binding.


Subject(s)
Botulinum Toxins, Type A/ultrastructure , Gangliosides/metabolism , Binding Sites/genetics , Botulinum Toxins/chemistry , Botulinum Toxins/metabolism , Botulinum Toxins/ultrastructure , Botulinum Toxins, Type A/metabolism , Carrier Proteins/metabolism , Cell Membrane/metabolism , Crystallography, X-Ray/methods , Humans , Neurons/metabolism , Protein Binding , Protein Domains/genetics
11.
FEBS Open Bio ; 10(8): 1474-1481, 2020 08.
Article in English | MEDLINE | ID: mdl-32654405

ABSTRACT

Clostridium botulinum neurotoxins (BoNTs) cause flaccid paralysis through inhibition of acetylcholine release from motor neurons; however, at tiny doses, this property is exploited for use as a therapeutic. Each member of the BoNT family of proteins consists of three distinct domains: a binding domain that targets neuronal cell membranes (HC ), a translocation domain (HN ) and a catalytic domain (LC). Here, we present high-resolution crystal structures of the binding domains of BoNT subtypes/A5 (HC /A5) and/A6 (HC /A6). These structures show that the core fold identified in other subtypes is maintained, but with subtle differences at the expected receptor-binding sites.


Subject(s)
Botulinum Toxins, Type A/chemistry , Botulinum Toxins, Type A/isolation & purification , Crystallography, X-Ray , Models, Molecular , Protein Conformation
12.
Sci Adv ; 5(1): eaau7196, 2019 01.
Article in English | MEDLINE | ID: mdl-30746458

ABSTRACT

Although botulinum neurotoxin serotype A (BoNT/A) products are common treatments for various disorders, there is only one commercial BoNT/B product, whose low potency, likely stemming from low affinity toward its human receptor synaptotagmin 2 (hSyt2), has limited its therapeutic usefulness. We express and characterize two full-length recombinant BoNT/B1 proteins containing designed mutations E1191M/S1199Y (rBoNT/B1MY) and E1191Q/S1199W (rBoNT/B1QW) that enhance binding to hSyt2. In preclinical models including human-induced pluripotent stem cell neurons and a humanized transgenic mouse, this increased hSyt2 affinity results in high potency, comparable to that of BoNT/A. Last, we solve the cocrystal structure of rBoNT/B1MY in complex with peptides of hSyt2 and its homolog hSyt1. We demonstrate that neuronal surface receptor binding limits the clinical efficacy of unmodified BoNT/B and that modified BoNT/B proteins have promising clinical potential.


Subject(s)
Botulinum Toxins, Type A/metabolism , Botulinum Toxins, Type A/pharmacology , Recombinant Proteins/metabolism , Synaptotagmin II/metabolism , Animals , Botulinum Toxins, Type A/chemistry , Botulinum Toxins, Type A/genetics , Crystallography, X-Ray , Female , Glycine/metabolism , Humans , Induced Pluripotent Stem Cells/drug effects , Male , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Skeletal/drug effects , Muscle, Smooth/drug effects , Mutation , Neurons/drug effects , Neurons/metabolism , Protein Engineering , Rabbits , Rats, Sprague-Dawley , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Static Electricity , Synaptotagmin II/chemistry , Synaptotagmin II/genetics
13.
Toxins (Basel) ; 10(10)2018 10 20.
Article in English | MEDLINE | ID: mdl-30347838

ABSTRACT

Botulinum neurotoxins (BoNTs) are categorised into immunologically distinct serotypes BoNT/A to /G). Each serotype can also be further divided into subtypes based on differences in amino acid sequence. BoNTs are ~150 kDa proteins comprised of three major functional domains: an N-terminal zinc metalloprotease light chain (LC), a translocation domain (HN), and a binding domain (HC). The HC is responsible for targeting the BoNT to the neuronal cell membrane, and each serotype has evolved to bind via different mechanisms to different target receptors. Most structural characterisations to date have focussed on the first identified subtype within each serotype (e.g., BoNT/A1). Subtype differences within BoNT serotypes can affect intoxication, displaying different botulism symptoms in vivo, and less emphasis has been placed on investigating these variants. This review outlines the receptors for each BoNT serotype and describes the basis for the highly specific targeting of neuronal cell membranes. Understanding receptor binding is of vital importance, not only for the generation of novel therapeutics but also for understanding how best to protect from intoxication.


Subject(s)
Botulinum Toxins/metabolism , Neurons/metabolism , Neurotoxins/metabolism , Receptors, Cell Surface/metabolism , Animals , Botulinum Toxins/chemistry , Humans , Neurotoxins/chemistry , Protein Binding , Protein Domains
14.
PeerJ ; 6: e4552, 2018.
Article in English | MEDLINE | ID: mdl-29576992

ABSTRACT

The binding specificity of botulinum neurotoxins (BoNTs) is primarily a consequence of their ability to bind to multiple receptors at the same time. BoNTs consist of three distinct domains, a metalloprotease light chain (LC), a translocation domain (HN) and a receptor-binding domain (HC). Here we report the crystal structure of HC/FA, complementing an existing structure through the modelling of a previously unresolved loop which is important for receptor-binding. Our HC/FA structure also contains a previously unidentified disulphide bond, which we have also observed in one of two crystal forms of HC/A1. This may have implications for receptor-binding and future recombinant toxin production.

15.
PLoS One ; 12(10): e0185628, 2017.
Article in English | MEDLINE | ID: mdl-28982136

ABSTRACT

Botulinum neurotoxins (BoNTs) are used extensively as therapeutic agents. Serotypes A and B are available as marketed products. Higher doses of BoNT/B are required to reach an efficacy similar to that of products containing BoNT/A. Advances in our understanding of BoNT/B mechanism of action have afforded the opportunity to make rational modifications to the toxin aimed at increasing its activity. Recently, a mutation in the light chain of BoNT/B (S201P) was described that increases the catalytic activity of the isolated BoNT/B light chain in biochemical assays. In this study, we have produced two full-length recombinant BoNT/B toxins in E.coli-one wild type (rBoNT/B1) and one incorporating the S201P mutation (rBoNT/B1(S201P)). We have compared the activity of these two molecules along with a native BoNT/B1 in biochemical cell-free assays and in several biological systems. In the cell-free assay, which measured light-chain activity alone, rBoNT/B1(S201P) cleaved VAMP-2 and VAMP-1 substrate with an activity 3-4-fold higher than rBoNT/B1. However, despite the enhanced catalytic activity of rBoNT/B1(S201P), there was no significant difference in potency between the two molecules in any of the in vitro cell-based assays, using either rodent spinal cord neurons or cortical neurons. Similarly in ex vivo tissue preparations rBoNT/B1(S201P) was not significantly more potent than rBoNT/B1 at inhibiting either diaphragm or detrusor (bladder) muscle activity in C57BL/6N and CD1 mice. Finally, no differences between rBoNT/B1 and rBoNT/B1(S201P) were observed in an in vivo digit abduction score (DAS) assay in C57BL/6N mice, either in efficacy or safety parameters. The lack of translation from the enhanced BoNT/B1(S201P) catalytic activity to potency in complex biological systems suggests that the catalytic step is not the rate-limiting factor for BoNT/B to reach maximum efficacy. In order to augment the efficacy of BoNT/B in humans, strategies other than enhancing light chain activity may need to be considered.


Subject(s)
Botulinum Toxins, Type A/pharmacology , Vesicle-Associated Membrane Protein 1/metabolism , Vesicle-Associated Membrane Protein 2/metabolism , Animals , Botulinum Toxins, Type A/genetics , Catalysis , Cells, Cultured , Cloning, Molecular , Escherichia coli/genetics , In Vitro Techniques , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques , Rats
16.
Nat Commun ; 8(1): 53, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28674381

ABSTRACT

Botulinum neurotoxin B is a Food and Drug Administration-approved therapeutic toxin. However, it has lower binding affinity toward the human version of its major receptor, synaptotagmin II (h-Syt II), compared to mouse Syt II, because of a residue difference. Increasing the binding affinity to h-Syt II may improve botulinum neurotoxin B's therapeutic efficacy and reduce adverse effects. Here we utilized the bacterial adenylate cyclase two-hybrid method and carried out a saturation mutagenesis screen in the Syt II-binding pocket of botulinum neurotoxin B. The screen identifies E1191 as a key residue: replacing it with M/C/V/Q enhances botulinum neurotoxin B binding to human synaptotagmin II. Adding S1199Y/W or W1178Q as a secondary mutation further increases binding affinity. Mutant botulinum neurotoxin B containing E1191M/S1199Y exhibits ~11-fold higher efficacy in blocking neurotransmission than wild-type botulinum neurotoxin B in neurons expressing human synaptotagmin II, demonstrating that enhancing receptor binding increases the overall efficacy at functional levels. The engineered botulinum neurotoxin B provides a platform to develop therapeutic toxins with improved efficacy.Humans are less sensitive to the therapeutic effects of botulinum neurotoxin B (BoNT/B) than the animal models it is tested on due to differences between the human and the mouse receptors. Here, the authors engineer BoNT/B to improve its affinity to human receptors and enhance its therapeutic efficacy.


Subject(s)
Botulinum Toxins, Type A/genetics , Synaptotagmin II/metabolism , Acetylcholine Release Inhibitors/pharmacology , Animals , Botulinum Toxins, Type A/metabolism , Botulinum Toxins, Type A/pharmacology , Humans , Mutagenesis, Site-Directed , Neurons/drug effects , Neurons/metabolism , Patch-Clamp Techniques , Protein Binding/genetics , Rats , Recombinant Proteins , Two-Hybrid System Techniques
17.
J Mol Biol ; 349(3): 515-25, 2005 Jun 10.
Article in English | MEDLINE | ID: mdl-15878174

ABSTRACT

Macromolecules are transported across the nuclear envelope most frequently by karyopherin/importin-beta superfamily members that are constructed from HEAT repeats. Transport of Kap95p (yeast importin-beta), the principal carrier for protein import, through nuclear pore complexes is facilitated by interactions with nucleoporins containing FG repeats. However, Nup1p interacts more strongly with Kap95p than other FG-nucleoporins. To establish the basis of this increased affinity, we determined the structure of Kap95p complexed with Nup1p residues 963-1076 that contain the high-affinity Kap95p binding site. Nup1p binds Kap95p at three sites between the outer A-helices of HEAT repeats 5, 6, 7 and 8. At each site, phenylalanine residues from Nup1p are buried in hydrophobic depressions between adjacent HEAT repeats. Although the Nup1p and generic FG-nucleoporin binding sites on Kap95p overlap, Nup1p binding differs markedly and has contributions from additional hydrophobic residues, together with interactions generated by the intimate contact of the linker between Nup1 residues 977-987 with Kap95p. The length and composition of this linker is crucial and suggests how differences in affinity for Kap95p both between and within FG-nucleoporins arise.


Subject(s)
Nuclear Pore Complex Proteins/metabolism , Saccharomyces cerevisiae/metabolism , beta Karyopherins/metabolism , Amino Acid Sequence , Amino Acids/metabolism , Binding Sites , Molecular Sequence Data , Nuclear Pore Complex Proteins/chemistry , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Alignment , beta Karyopherins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL