Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO Rep ; 24(12): e57339, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37929643

ABSTRACT

Breast adipose tissue is an important contributor to the obesity-breast cancer link. Extracellular vesicles (EVs) are nanosized particles containing selective cargo, such as miRNAs, that act locally or circulate to distant sites to modulate target cell functions. Here, we find that long-term education of breast cancer cells with EVs obtained from breast adipose tissue of women who are overweight or obese (O-EVs) results in increased proliferation. RNA-seq analysis of O-EV-educated cells demonstrates increased expression of genes involved in oxidative phosphorylation, such as ATP synthase and NADH: ubiquinone oxidoreductase. O-EVs increase respiratory complex protein expression, mitochondrial density, and mitochondrial respiration in tumor cells. The mitochondrial complex I inhibitor metformin reverses O-EV-induced cell proliferation. Several miRNAs-miR-155-5p, miR-10a-3p, and miR-30a-3p-which promote mitochondrial respiration and proliferation, are enriched in O-EVs relative to EVs from lean women. O-EV-induced proliferation and mitochondrial activity are associated with stimulation of the Akt/mTOR/P70S6K pathway, and are reversed upon silencing of P70S6K. This study reveals a new facet of the obesity-breast cancer link with human breast adipose tissue-derived EVs causing metabolic reprogramming of breast cancer cells.


Subject(s)
Breast Neoplasms , Extracellular Vesicles , MicroRNAs , Humans , Female , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Adipose Tissue/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Obesity/metabolism , Breast Neoplasms/metabolism , Proteins/metabolism , Extracellular Vesicles/metabolism
2.
Biopharm Drug Dispos ; 45(3): 149-158, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38886878

ABSTRACT

Icaritin is a prenylflavonoid derivative of the genus Epimedium (Berberidaceae) and has a variety of pharmacological actions. Icaritin is approved by the National Medical Products Administration as an anticancer drug that exhibits efficacy and safety advantages in patients with hepatocellular carcinoma cells. This study aimed to evaluate the inhibitory effects of icaritin on UDP-glucuronosyltransferase (UGT) isoforms. 4-Methylumbelliferone (4-MU) was employed as a probe drug for all the tested UGT isoforms using in vitro human liver microsomes (HLM). The inhibition potentials of UGT1A1 and 1A9 in HLM were further tested by employing 17ß-estradiol (E2) and propofol (PRO) as probe substrates, respectively. The results showed that icaritin inhibits UGT1A1, 1A3, 1A4, 1A7, 1A8, 1A10, 2B7, and 2B15. Furthermore, icaritin exhibited a mixed inhibition of UGT1A1, 1A3, and 1A9, and the inhibition kinetic parameters (Ki) were calculated to be 3.538, 2.117, and 0.306 (µM), respectively. The inhibition of human liver microsomal UGT1A1 and 1A9 both followed mixed mechanism, with Ki values of 2.694 and 1.431 (µM). This study provides supporting information for understanding the drug-drug interaction (DDI) potential of the flavonoid icaritin and other UGT-metabolized drugs in clinical settings. In addition, the findings provide safety evidence for DDI when liver cancer patients receive a combination therapy including icaritin.


Subject(s)
Drug Interactions , Flavonoids , Glucuronosyltransferase , Microsomes, Liver , Glucuronosyltransferase/antagonists & inhibitors , Glucuronosyltransferase/metabolism , Humans , Flavonoids/pharmacology , Microsomes, Liver/metabolism , Estradiol/pharmacology , Hymecromone/pharmacology , Propofol/pharmacology , Enzyme Inhibitors/pharmacology
3.
Int J Mol Sci ; 25(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38255822

ABSTRACT

Sepsis ranks among the most common health problems worldwide, characterized by organ dysfunction resulting from infection. Excessive inflammatory responses, cytokine storms, and immune-induced microthrombosis are pivotal factors influencing the progression of sepsis. Our objective was to identify novel immune-related hub genes for sepsis through bioinformatic analysis, subsequently validating their specificity and potential as diagnostic and prognostic biomarkers in an animal experiment involving a sepsis mice model. Gene expression profiles of healthy controls and patients with sepsis were obtained from the Gene Expression Omnibus (GEO) and analysis of differentially expressed genes (DEGs) was conducted. Subsequently, weighted gene co-expression network analysis (WGCNA) was used to analyze genes within crucial modules. The functional annotated DEGs which related to the immune signal pathways were used for constructing protein-protein interaction (PPI) analysis. Following this, two hub genes, FERMT3 and CD3G, were identified through correlation analyses associated with sequential organ failure assessment (SOFA) scores. These two hub genes were associated with cell adhesion, migration, thrombosis, and T-cell activation. Furthermore, immune infiltration analysis was conducted to investigate the inflammation microenvironment influenced by the hub genes. The efficacy and specificity of the two hub genes were validated through a mice sepsis model study. Concurrently, we observed a significant negative correlation between the expression of CD3G and IL-1ß and GRO/KC. These findings suggest that these two genes probably play important roles in the pathogenesis and progression of sepsis, presenting the potential to serve as more stable biomarkers for sepsis diagnosis and prognosis, deserving further study.


Subject(s)
Animal Experimentation , Sepsis , Animals , Humans , Mice , Biomarkers , Cell Adhesion , Computational Biology , Disease Models, Animal , Sepsis/genetics
4.
J Environ Manage ; 362: 121286, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824886

ABSTRACT

Water deficiency threatens the health and function of wetlands in semi-arid areas. Optimum re-watering is an effective method for close-to-natural restoration to mitigate wetland degradation. Although the ecological importance of optimal re-watering as a nature-based solution for promoting wetland plant growth has been widely recognized, the response mechanisms of seed germination and seedling growth to re-watering are still poorly understood despite their decisive impact on plant life history. To fill this gap, this study compared the characteristics of seed germination and seedling growth in Carex schmidtii under initial water content with three levels (30%, 50%, and 70%) and five re-watering treatments (maintained at constant water content and re-watering to 100% on 7th, 14th, 21st, and 28th day). Moreover, the degree of reserve mobilization during four germination stages (seed suckering, sprouting, 20% germination, and seedling growth) was investigated. The results showed that water deficiency and re-watering treatments significantly affected C. schmidtii seed germination, seedling growth, and reserve mobilization. Compared with the other treatments, 50% moisture content and re-watering to 100% on the 14th day (50%-RT3) treatment significantly improved germination traits (germination rate, daily germination rate, germination index, and vigor index) and seedling growth characteristics (shoot length, root length, shoot biomass, root biomass, and total biomass). Furthermore, the degree of mobilization of starch, soluble protein, fat, and soluble sugar accumulation in C. schmidtii seeds under 50%-RT3 was higher than that in the other treatments. The structural equation model showed that the characteristics of seed germination and seedling growth of C. schmidtii were directly related to water deficiency and re-watering treatments, whereas reserve mobilization indirectly affected seed germination and seedling growth. These findings demonstrated that water deficiency and re-watering treatments have a crucial regulatory effect on seed germination and seedling growth of wetland plant species through a dual mechanism. This study provides information for the formulation of an optimum re-watering strategy for wetland vegetation restoration in semi-arid areas of the world.


Subject(s)
Germination , Seedlings , Seeds , Water , Wetlands , Seedlings/growth & development , Seeds/growth & development
5.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731476

ABSTRACT

Although the wide variety of bioactivities of curcumin has been reported by researchers, the clinical application of curcumin is still limited due to its poor aqueous solubility. In view of this, a series of dimethylaminomethyl-substituted curcumin derivatives were designed and synthesized (compounds 1-15). Acetate of these derivatives were prepared (compounds 1a-15a). The Mannich reaction and aldol condensation reaction are the main reactions involved in this study. Compounds 6, 10, 12, 3a, 5a, 6a, 7a, 8a, 10a, 11a, 12a, 13a, 14a, and 15a exhibited better in vitro anti-inflammatory activity compared to curcumin in the RAW264.7 cell line. Compounds 5, 1a, 5a, 8a, and 12a exhibited better in vitro antioxidant activity compared to curcumin in the PC 12 cell line. Compounds 11, 13, 5a, 7a, and 13a exhibited better in vitro radiation protection compared to curcumin in the PC 12 cell line. The aqueous solubilities of all the curcumin derivative acetates were greatly improved compared to curcumin.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Curcumin , Radiation-Protective Agents , Solubility , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/chemical synthesis , Curcumin/analogs & derivatives , Animals , Mice , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/chemical synthesis , Radiation-Protective Agents/chemistry , Drug Design , Structure-Activity Relationship , Molecular Structure , PC12 Cells , Rats , Water/chemistry
6.
Molecules ; 29(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542949

ABSTRACT

Orychophragmus violaceus (L.) O. E. Schulz (Brassicaceae) is widely distributed and plentiful in China and has been widely used for its application in ornamental, oil, ecology, foraging, and food. Recent studies have revealed that the main components of Orychophragmus violaceus include flavonoids, alkaloids, phenylpropanoids, phenolic acids, terpenoids, etc., which have pharmacological activities such as antioxidation, antiradiation, antitumor, hepatic protection, antiferroptosis, anti-inflammatory, and antibacterial. In this paper, the nutritional value, chemical compositions, pharmacological activity, and application value of Orychophragmus violaceus are summarized by referring to the relevant domestic and international literature to provide a reference for further research, development, and utilization of Orychophragmus violaceus in the future.


Subject(s)
Alkaloids , Brassicaceae , Brassicaceae/chemistry , Food , Liver , Nutritive Value
7.
Molecules ; 29(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276624

ABSTRACT

LR004 is a novel chimeric (human/mouse) monoclonal antibody developed for the treatment of advanced colorectal carcinoma with detectable epidermal growth factor receptor (EGFR) expression. We aimed to investigate the preclinical pharmacokinetics (PK) and in vivo biodistribution of LR004. The PK profiles of LR004 were initially established in rhesus monkeys. Subsequently, 125I radionuclide-labeled LR004 was developed and the biodistribution, autoradiography, and NanoSPECT/CT of 125I-LR004 in xenograft mice bearing A431 tumors were examined. The PK data revealed a prolonged half-life and nonlinear PK characteristics of LR004 within the dose range of 6-54 mg/kg. The radiochemical purity of 125I-LR004 was approximately 98.54%, and iodination of LR004 did not affect its specific binding activity to the EGFR antigen. In a classical biodistribution study, 125I-LR004 exhibited higher uptake in highly perfused organs than in poorly perfused organs. Prolonged retention properties of 125I-LR004 in tumors were observed at 4 and 10 days. Autoradiography and NanoSPECT/CT confirmed the sustained retention of 125I-LR004 at the tumor site in xenograft mice. These findings demonstrated the adequate tumor targeting capabilities of 125I-LR004 in EGFR-positive tumors, which may improve dosing strategies and future drug development.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Humans , Animals , Mice , Tissue Distribution , Antibodies, Monoclonal , ErbB Receptors/metabolism , Colorectal Neoplasms/drug therapy , Cell Line, Tumor
8.
Bioconjug Chem ; 34(9): 1704-1715, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37639623

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) has emerged as one of the most significant metabolic diseases worldwide and is associated with heightened systemic inflammation, which has been shown to foster the development of extrahepatic complications. So far, there is no definitive, effective, and safe treatment for NAFLD. Although antidiabetic agents show potential for treating NAFLD, their efficacy is significantly limited by inadequate liver accumulation at safe doses and unwanted side effects. Herein, we demonstrate that pharmacologically active carbon dots (MCDs) derived from metformin can selectively accumulate in the liver and ameliorate NAFLD by activating hepatic PPARα expression while maintaining an excellent biosafety. Interestingly, MCDs can also improve the function of extrahepatic organs and tissues, such as alleviating alveolar inflammatory bone loss, in the process of treating NAFLD. This study proposes a feasible and safe strategy for designing pharmacologically active MCDs to target the liver, which regulates lipid metabolism and systemic inflammation, thereby treating NAFLD and its related extrahepatic complications.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Carbon , Inflammation/drug therapy
9.
Cell Commun Signal ; 21(1): 34, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36782203

ABSTRACT

Health hazards from long-term exposure to microwaves, especially the potential for changes in cognitive function, are attracting increasing attention. The purpose of this study was to explore changes in spatial learning and memory and synaptic structure and to identify differentially expressed proteins in hippocampal and serum exosomes after long-term exposure to 2.856 and 9.375 GHz microwaves. The spatial reference learning and memory abilities and the structure of the DG area were impaired after long-term exposure to 2.856 and 9.375 GHz microwaves. We also found a decrease in SNARE-associated protein Snapin and an increase in charged multivesicular body protein 3 in the hippocampus, indicating that synaptic vesicle recycling was inhibited and consistent with the large increase in presynaptic vesicles. Moreover, we investigated changes in serum exosomes after 2.856 and 9.375 GHz microwave exposure. The results showed that long-term 2.856 GHz microwave exposure could induce a decrease in calcineurin subunit B type 1 and cytochrome b-245 heavy chain in serum exosomes. While the 9.375 GHz long-term microwave exposure induced a decrease in proteins (synaptophysin-like 1, ankyrin repeat and rabankyrin-5, protein phosphatase 3 catalytic subunit alpha and sodium-dependent phosphate transporter 1) in serum exosomes. In summary, long-term microwave exposure could lead to different degrees of spatial learning and memory impairment, EEG disturbance, structural damage to the hippocampus, and differential expression of hippocampal tissue and serum exosomes.


Subject(s)
Cognition , Microwaves , Cognition/radiation effects , Hippocampus/metabolism , Hippocampus/radiation effects , Microwaves/adverse effects , Animals
10.
Nano Lett ; 22(23): 9723-9731, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36459114

ABSTRACT

Strontium-containing agents have been demonstrated to elicit both bone anabolic and antiosteoporotic effects, showing great potential for the treatment of bone loss. However, an increased incidence of strontium-induced side effects restricts their clinical applications. Herein, oxidized carbon nitride nanosheets (CN) are delicately used to incorporate Sr2+ for the first time to achieve high osteogenic efficacy. The lamellar structure and enriched nitrogen species of CN provide them with a high surface area-to-volume ratio and abundant anchoring sites for Sr2+ incorporation. Importantly, Sr2+-incorporated CN (CNS) could synergistically promote osteoblast differentiation and bone regeneration at a single, very low Sr2+ dose. Mechanically, CNS could activate the FAK/RhoA signaling pathway to modulate the intracellular tension that stimulates osteoblasts differentiation. The present study will provide a new paradigm to enhance the efficacy of osteogenic metal ions by using lamellar nanocarriers.


Subject(s)
Bone Regeneration , Strontium , Strontium/pharmacology , Osteogenesis , Bone and Bones
11.
Molecules ; 28(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37630371

ABSTRACT

Astragaloside IV (AS-IV) is one of the main active components extracted from the Chinese medicinal herb Astragali and serves as a marker for assessing the herb's quality. AS-IV is a tetracyclic triterpenoid saponin in the form of lanolin ester alcohol and exhibits various biological activities. This review article summarizes the chemical structure of AS-IV, its pharmacological effects, mechanism of action, applications, future prospects, potential weaknesses, and other unexplored biological activities, aiming at an overall analysis. Papers were retrieved from online electronic databases, such as PubMed, Web of Science, and CNKI, and data from studies conducted over the last 10 years on the pharmacological effects of AS-IV as well as its impact were collated. This review focuses on the pharmacological action of AS-IV, such as its anti-inflammatory effect, including suppressing inflammatory factors, increasing T and B lymphocyte proliferation, and inhibiting neutrophil adhesion-associated molecules; antioxidative stress, including scavenging reactive oxygen species, cellular scorching, and regulating mitochondrial gene mutations; neuroprotective effects, antifibrotic effects, and antitumor effects.


Subject(s)
Astragalus Plant , Saponins , Triterpenes , Saponins/pharmacology , Triterpenes/pharmacology , Cell Proliferation
12.
Molecules ; 28(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37175238

ABSTRACT

Alkaloids are a material treasure bestowed on humans by nature owing to their numerous biological activities. Orychophragine D, an alkaloid isolated from the seeds of Orychophragmus violaceus was identified as bearing a novel skeleton and proved to have an excellent radioprotective effect. Different from the common alkaloid structure, the main block of orychophragine D is constructed of an oxotriazine and an oxopiperazine, which are connected in parallel by a C-N bond. In this paper, a preparation method for the novel heterocycle skeleton of orychophragine D is proposed for the first time. N-Boc-L-serine was utilized as the original material to complete the preparation with 11 steps in a 13% overall yield. A hydroxyl group was established on the side chain of the skeleton as the reaction site for researchers to conduct further structural modification or derivatization.


Subject(s)
Alkaloids , Antineoplastic Agents , Humans , Alkaloids/pharmacology , Alkaloids/chemistry , Binding Sites , Skeleton , Molecular Structure
13.
Molecules ; 28(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37959868

ABSTRACT

Radiation-induced skin injury (RISI) is a frequent and severe complication with a complex pathogenesis that often occurs during radiation therapy, nuclear incidents, and nuclear war, for which there is no effective treatment. Hyaluronan (HA) plays an overwhelming role in the skin, and it has been shown that UVB irradiation induces increased HA expression. Nevertheless, to the best of our knowledge, there has been no study regarding the biological correlation between RISI and HA degradation and its underlying mechanisms. Therefore, in our study, we investigated low-molecular-weight HA content using an enzyme-linked immunosorbent assay and changes in the expression of HA-related metabolic enzymes using real-time quantitative polymerase chain reaction and a Western blotting assay. The oxidative stress level of the RISI model was assessed using sodium dismutase, malondialdehyde, and reactive oxygen species assays. We demonstrated that low-molecular-weight HA content was significantly upregulated in skin tissues during the late phase of irradiation exposure in the RISI model and that HA-related metabolic enzymes, oxidative stress levels, the MEK5/ERK5 pathway, and inflammatory factors were consistent with changes in low-molecular-weight HA content. These findings prove that HA degradation is biologically relevant to RISI development and that the HA degradation mechanisms are related to HA-related metabolic enzymes, oxidative stress, and inflammatory factors. The MEK5/ERK5 pathway represents a potential mechanism of HA degradation. In conclusion, we aimed to investigate changes in HA content and preliminarily investigate the HA degradation mechanism in a RISI model under γ-ray irradiation, to consider HA as a new target for RISI and provide ideas for novel drug development.


Subject(s)
Hyaluronic Acid , Skin , Hyaluronic Acid/pharmacology , Skin/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Oxidation-Reduction
14.
Molecules ; 28(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36677811

ABSTRACT

Pulmonary fibrosis (PF) is one of the sequelae of Corona Virus Disease 2019 (COVID-19), and currently, lung transplantation is the only viable treatment option. Hence, other effective treatments are urgently required. We investigated the therapeutic effects of an approved botanical drug, cepharanthine (CEP), in a cell culture model of transforming growth factor-ß1 (TGF-ß1) and bleomycin (BLM)-induced pulmonary fibrosis rat models both in vitro and in vivo. In this study, CEP and pirfenidone (PFD) suppressed BLM-induced lung tissue inflammation, proliferation of blue collagen fibers, and damage to lung structures in vivo. Furthermore, we also found increased collagen deposition marked by α-smooth muscle actin (α-SMA) and Collagen Type I Alpha 1 (COL1A1), which was significantly alleviated by the addition of PFD and CEP. Moreover, we elucidated the underlying mechanism of CEP against PF in vitro. Various assays confirmed that CEP reduced the viability and migration and promoted apoptosis of myofibroblasts. The expression levels of myofibroblast markers, including COL1A1, vimentin, α-SMA, and Matrix Metallopeptidase 2 (MMP2), were also suppressed by CEP. Simultaneously, CEP significantly suppressed the elevated Phospho-NF-κB p65 (p-p65)/NF-κB p65 (p65) ratio, NOD-like receptor thermal protein domain associated protein 3 (NLRP3) levels, and elevated inhibitor of NF-κB Alpha (IκBα) degradation and reversed the progression of PF. Hence, our study demonstrated that CEP prevented myofibroblast activation and treated BLM-induced pulmonary fibrosis in a dose-dependent manner by regulating nuclear factor kappa-B (NF-κB)/ NLRP3 signaling, thereby suggesting that CEP has potential clinical application in pulmonary fibrosis in the future.


Subject(s)
COVID-19 , Pulmonary Fibrosis , Animals , Rats , Bleomycin , Collagen/metabolism , COVID-19/metabolism , Fibroblasts/metabolism , Inflammation/metabolism , Lung , Myofibroblasts/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/metabolism
15.
Electromagn Biol Med ; 42(4): 150-162, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-38155529

ABSTRACT

Shortwave radiation has been reported to have harmful effects on several organs in humans and animals. However, the biological effects of 27 MHz shortwave on the reproductive system are not clear. In this study, we investigated the effects of shortwave whole-body exposure at a frequency of 27 MHz on structural and functional changes in the testis. Male Wistar rats were exposed to 27 MHz continuous shortwaves at average power densities of 0, 5, 10, or 30 mW/cm2 for 6 min. The levels of insulin-like factor 3 (INSL3) and anti-sperm antibodies (AsAb) in the peripheral serum, sperm motility, sperm malformation rate, and testicular tissue structure of rats were analyzed. Furthermore, the activity of superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) content, calpain, and Cdk5 expression were analyzed at 1, 7, 14, and 28 days after exposure. We observed that the rats after radiation had decreased serum INSL3 levels (p < 0.01), increased AsAb levels (p < 0.05), decreased percentage of class A+B sperm (p < 0.01 or p < 0.05), increased sperm malformation (p < 0.01 or p < 0.05), injured testicular tissue structure, decreased SOD and CAT activities (p < 0.01 or p < 0.05), increased MDA content (p < 0.01), and testicular tissue expressions of calpain1, calpain2, and Cdk5 were increased (p < 0.01 or p < 0.05). In conclusion, Shortwave radiation caused functional and structural damage to the reproductive organs of male rats. Furthermore, oxidative stress and key molecules in the calpain/Cdk5 pathway are likely involved in this process.


Shortwave radiation has been used in communications, medical and military applications, and its damaging effects on several organs of the human body have been reported in the literature. However, the biological effects of shortwave radiation on the male reproductive system are unknown. The present study, by constructing an animal model of short-wave radiation and analyzing the experimental results, revealed that shortwave radiation could cause functional and structural damage to the reproductive organs of male rats, and that oxidative stress and key molecules in the calpain/Cdk5 pathway might be involved in this process. It will provide organizational data for further studies on the mechanisms of male reproductive damage by shortwave radiation.


Subject(s)
Calpain , Sperm Motility , Humans , Rats , Male , Animals , Calpain/metabolism , Calpain/pharmacology , Rats, Wistar , Semen/metabolism , Testis/metabolism , Oxidative Stress , Antioxidants/metabolism , Spermatozoa/metabolism , Superoxide Dismutase/metabolism , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 5/pharmacology
16.
Plant Foods Hum Nutr ; 78(4): 776-782, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37668768

ABSTRACT

Phytochemical investigation of 70% EtOH extract of the seeds of Capsella bursa-pastoris led to the isolation of a new cyclobutane organic acid (1), and fourteen known compounds, including two organosulfur compounds (2, 3), two quinonoids (4, 5), five flavonoids (6-10), three sterols (11-13) and two other types (14, 15). The structures of the compounds were elucidated by extensive spectroscopic analyses as well as comparison of their spectroscopic data with those reported in the literature. The antioxidant capacities of all compounds and extractive fractions were evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging test and ferric reducing antioxidant power (FRAP) assay. Then the antioxidative substances were evaluated for their neuroprotective effects against H2O2-induced HT22 cell injury. The results indicated the strong scavenging ability to free radical of the extractive fractions and compounds 1-3, 8-10 and 13, and the ferric reducing antioxidant power of the extractive fractions and compounds 1-3, 8 and 10, which were close to or higher than that of the positive control trolox. The EtOAc fraction, n-BuOH fraction, and compounds 1, 3 and 8 can protect HT-22 cells from oxidative damage.


Subject(s)
Antioxidants , Capsella , Antioxidants/analysis , Hydrogen Peroxide , Plant Extracts/chemistry , Phytochemicals/pharmacology , Seeds/chemistry
17.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(2): 148-155, 2023 Apr 25.
Article in English, Zh | MEDLINE | ID: mdl-37283098

ABSTRACT

OBJECTIVES: To evaluate the feasibility and safety of bipolar-plasmakinetic transurethral enucleation and resection of the prostate (B-TUERP) in day surgery. METHODS: From January 2021 to August 2022, 34 patients with benign prostatic hyperplasia (BPH) underwent B-TUERP in day surgery in the First Affiliated Hospital of Anhui Medical University. Patients completed the screening and anesthesia evaluation before admission and received the standard surgery which implements "anatomical enucleation of the prostate" and "absolute bleeding control" on the same day of admission, and by the same doctor. Bladder irrigation was stopped, catheter was removed and the discharge evaluation was performed on the first day after operation. The baseline data, perioperative conditions, time of recovery, treatment outcomes, hospitalization costs, and postoperative complications were analyzed. RESULTS: All operations were successfully conducted. The average age of the patients was (62.2±7.8) years, average prostate volume was (50.2±29.3) mL. The average operation time was (36.5±19.1) min, the average hemoglobin and blood sodium were decreased by (16.2±7.1) g/L and (2.2±2.0) mmol/L, respectively. The average postoperative length of hospital stay, and total length of hospital stay were (17.7±2.2) and (20.8±2.1) h, respectively, and the average hospitalization cost was (13 558±2320) CNY. All patients were discharged on the day after surgery except for one patient who was transferred to a general ward. Three patients received indwelling catheterization after catheter removal. The 3-month follow-up results showed a substantial improvement in the International Prostate Symptom Score, quality of life score and maximum urinary flow rate (all P<0.01). Three patients experienced temporary urinary incontinence, 1 patient experienced urinary tract infection, 4 patients were diagnosed with urethral stricture and 2 patients experienced bladder neck contracture. No complications above Clavien grade Ⅱ occurred. CONCLUSIONS: The preliminary results showed that B-TUERP ambulatory surgery is a safe, feasible, economical and effective treatment for appropriately selected patients with BPH.


Subject(s)
Prostate , Prostatic Hyperplasia , Male , Humans , Middle Aged , Aged , Prostate/surgery , Prostatic Hyperplasia/surgery , Ambulatory Surgical Procedures , Quality of Life , Feasibility Studies , Retrospective Studies , Treatment Outcome
18.
Ecotoxicol Environ Saf ; 243: 113983, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35985199

ABSTRACT

This study aimed to elucidate the effects and biological targets sensitive to simultaneous 1.5 and 4.3 GHz microwave exposure in rats. A total of 120 male Wistar rats were divided randomly into four groups: the sham (S group), 1.5 GHz microwave exposure (L group), 4.3 GHz microwave exposure (C group) and simultaneous 1.5 and 4.3 GHz microwave exposure (LC group) groups. Spatial learning and memory, cortical electrical activity, and hippocampal ultrastructure were assessed by the Morris Water Maze, electroencephalography, and transmission electron microscopy, respectively. Additionally, serum exosomes were isolated by ultracentrifugation and assessed by Western blotting, nanoparticle tracking and transmission electron microscopy. The serum exosome protein content was assessed by label-free quantitative proteomics. Impaired spatial learning and memory decreased cortical excitability, and damage to the hippocampal ultrastructure were observed in groups exposed to microwaves, especially the L and LC groups. A total of 54, 145 and 296 exosomal proteins were differentially expressed between the S group and the L, C and LC groups, respectively. These differentially expressed proteins were involved in the synaptic vesicle cycle and SNARE interactions during vesicular transport. Additionally, VAMP8, Syn7 and VMAT are potential serum markers of simultaneous microwave exposure. Thus, exposure to 1.5 and 4.3 GHz microwaves induced impairments in spatial learning and memory, and simultaneous microwave exposure had the most severe effects.


Subject(s)
Exosomes , Microwaves , Animals , Blood Proteins/metabolism , Hippocampus , Male , Maze Learning , Microwaves/adverse effects , Rats , Rats, Wistar , Spatial Learning
19.
Molecules ; 27(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35408630

ABSTRACT

Significant efforts have been made in recent years to identify more environmentally benign and safe alternatives to side-chain protection and deprotection in solid-phase peptide synthesis (SPPS). Several protecting groups have been endorsed as suitable candidates, but finding a greener protecting group in SPPS has been challenging. Here, based on the 2-(o-nitrophenyl) propan-1-ol (Npp-OH) photolabile protecting group, a structural modification was carried out to synthesize a series of derivatives. Through experimental verification, we found that 3-(o-Nitrophenyl) butan-2-ol (Npb-OH) had a high photo-release rate, high tolerance to the key conditions of Fmoc-SPPS (20% piperidine DMF alkaline solution, and pure TFA acidic solution), and applicability as a carboxyl-protective group in aliphatic and aromatic carboxyl groups. Finally, Npb-OH was successfully applied to the synthesis of head-tail cyclic peptides and side-chain-tail cyclic peptides. Moreover, we found that Npb-OH could effectively resist diketopiperazines (DKP). The α-H of Npb-OH was found to be necessary for its photosensitivity in comparison to 3-(o-Nitrophenyl)but-3-en-2-ol (Npbe-OH) during photolysis-rate verification.


Subject(s)
Peptides, Cyclic , Solid-Phase Synthesis Techniques , Photolysis
20.
Molecules ; 27(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36235179

ABSTRACT

Two new compounds, ardisiapunine B (1) and ardisiapunine C (2), were isolated from Ardisia lindleyana D. Dietr. Their structures were examined using HR-ESI-MS, IR, (1D, 2D) NMR spectroscopic analyses, single-crystal X-ray diffraction, and ECD calculation. It was found that the two new compounds belong to unusual oleanane-type triterpenes, with compound 1 bearing an acetal unit and a C-13-C-18 double bond, and compound 2 bearing a C-28 aldehyde group and a C-18-C-19 double bond. The anti-inflammatory properties of compounds 1 and 2 were tested on NO production and cellular morphology using RAW264.7 cells, and their anti-tumor properties were tested on cytotoxic activities, cellular morphology, cell apoptosis, and cell cycle. The results showed that compound 1 exhibited a potent cytotoxicity against HepG2 cell lines with an IC50 of 12.40 µM. Furthermore, it is possible that compound 1 inhibits cell proliferation by blocking the cell G2/M phase and promoting cell apoptosis. Compound 2 exhibited a potential anti-inflammatory activity by decreasing the production of NO in LPS-stimulated RAW264.7 cells. Comparative analysis of the structures of compounds 1 and 2 revealed that the acetal structure and double bond positions were the main differences between them, and these are presumed to be the main reasons for the extreme differences in their cytotoxicity and anti-inflammatory activities. From these new findings, two promising lead compounds were identified for the future development of potential anti-inflammatory or anti-tumor agents.


Subject(s)
Antineoplastic Agents , Oleanolic Acid , Triterpenes , Acetals , Aldehydes , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Lipopolysaccharides/pharmacology , Molecular Structure , Oleanolic Acid/pharmacology , Triterpenes/chemistry , Triterpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL