Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Article in English | MEDLINE | ID: mdl-39127314

ABSTRACT

Mitochondrial function can be regulated by ion channels. Mitochondrial RNA splicing 2 (Mrs2) is a magnesium ion (Mg2+) channel located in the inner mitochondrial membrane, thereby mediating the Mg2+ influx into the mitochondrial matrix. However, its potential role in regulating the Mg homeostasis and mitochondrial function in aquatic species is still unclear. This study molecularly characterizes the gene encoding Mrs2 in fish M. amblycephala with its functions in maintaining the Mg homeostasis and mitochondrial function verified. The mrs2 gene is 2133 bp long incorporating a 1269 bp open reading frame, which encodes 422 amino acids. The Mrs2 protein includes two transmembrane domains and a conserved tripeptide Gly-Met-Asn, and has a high homology (65.92-97.64%) with those of most vertebrates. The transcript of mrs2 was relatively high in the white muscle, liver and kidney. The inhibition of mrs2 reduces the expressions of Mg2+ influx/efflux-related proteins, mitochondrial Mg content, and the activities of mitochondrial complex I and V in hepatocytes. However, the over-expression of mrs2 increases the expressions of Mg2+ influx/efflux-related proteins, mitochondrial Mg content, and the complex V activity, but decreases the activities of mitochondrial complex III and IV and citrate synthase in hepatocytes. Collectively, Mrs2 is highly conserved among different species, and is prerequisite for maintaining Mg homeostasis and mitochondrial function in fish.

2.
Aquac Nutr ; 2024: 3147505, 2024.
Article in English | MEDLINE | ID: mdl-38374819

ABSTRACT

This study developed a recombinant Bacillus subtilis to carry the LGSPDVIVIR peptide (cmP4) isolated from the hydrolyzed products of cottonseed meal with excellent antioxidant and immune-enhancing properties in vitro. It was carried as a tandem of five cmP4 peptides (cmP4') to be stably expressed on a large scale. Then, its effectiveness was evaluated in Chinese mitten crab (Eriocheir sinensis) based on growth performance, redox defense, and innate immunity. A total of 280 crabs (mean body weight: 41.40 ± 0.14) were randomly assigned to seven diets including a control one (without B. subtilis) and six experimental ones with different doses (107,108, and 109 CFU/kg) of unmodified and recombinant B. subtilis, respectively, for 12 weeks. Each diet was tested in four tanks of crabs (10/tank). In terms of bacterial dosages, the final weight (FW), weight gain (WG), hemolymph and hepatopancreatic activities of superoxide dismutase (SOD), catalase (CAT), lysosome (LZM), acid phosphatase (ACP) and alkaline phosphatase (AKP), and hepatopancreatic transcriptions of cat, mitochondrial manganese superoxide dismutase (mtmnsod), thioredoxin-1 (trx1), and prophenoloxidase (propo) all increased significantly with increasing B. subtilis dosages, while hemolymph and hepatopancreatic malondialdehyde (MDA) content and the transcriptions of toll like receptors (tlrs), NF-κB-like transcription factor (relish), and lipopolysaccharide-induced TNF-α factor (litaf) all decreased remarkably. In terms of bacterial species, the recombinant B. subtilis group obtained significantly high values of FW, WG, hemolymph, and hepatopancreatic activities of SOD, CAT, LZM, ACP, and AKP, and the transcriptions of mtmnsod, peroxiredoxin 6 (prx6), and propo compared with the unmodified B. subtilis, while opposite results were noted in hemolymph and hepatopancreatic MDA content and the transcriptions of tlrs, relish, and litaf. These results indicated that dietary supplementation with 109 CFU/kg of recombinant B. subtilis can improve the growth performance, redox defense, and nonspecific immunity of E. sinensis.

3.
Fish Physiol Biochem ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073620

ABSTRACT

This study aimed to investigate the effects of dietary metformin supplementation on the redox balance, inflammation, mitochondrial biogenesis, and function in blunt snout bream fed a high-carbohydrate (HC) diet. Fish (45.12 ± 0.36 g) were randomly offered four diets, including a control diet (33% carbohydrate), an HC diet (45% carbohydrate), and the HC diet supplemented with 0.06% (HCM1) and 0.12% (HCM2) metformin respectively for 12 weeks. Compared with the control, feeding the HC diet significantly increased the hepatosomatic index (HSI), the mesenteric fat index, liver and muscle glycogen contents, liver and adipose tissue lipid contents, plasma glucose and glycation end products (AGES) levels and aspartate transaminase activity, plasma and liver malondialdehyde (MDA) contents, hepatic adenosine triphosphate (ATP) and adenosine monophosphate (AMP) contents, mitochondrial cytochrome c content, mitochondrial complex IV activity and ATP 6 transcription, but decreased plasma catalase (CAT) activity, muscle superoxide dismutase (SOD) activity, hepatic antioxidant enzymes activities, and the transcriptions of transforming growth factor ß (tgfß) and interleukin 10 (il10). Compared with the HC group, metformin treatment (especially the HCM2 group) significantly elevated tissue glycogen contents, muscle SOD activity, plasma and liver antioxidant enzymes activities, the transcriptions of tgfß and il10, the sodium/potassium ATPase activity, the contents of mitochondrial protein and AMP, the level of p-AMP activated protein kinase (AMPK), and the p-AMPK/t-AMPK ratio, but lowered the HSI, tissue lipid contents, plasma levels of glucose, AGES and glycated serum protein, plasma, and liver MDA contents, the transcriptions of il1ß, NADH dehydrogenase subunit 1 and ATP 6, the contents of ATP and cytochrome c, the ATP/AMP ratio, and the activities of complexes I and IV. In conclusion, metformin could attenuate the HC diet-induced redox imbalance, inflammation, and mitochondrial dysfunction in blunt snout bream.

5.
Zookeys ; 1200: 275-302, 2024.
Article in English | MEDLINE | ID: mdl-38766412

ABSTRACT

Six new species of Cryptochironomus Kieffer, 1918, C.absum Liu, sp. nov., C.beardi Liu, sp. nov., C.dentatus Liu, sp. nov., C.ferringtoni Liu, sp. nov., C.parallelus Liu, sp. nov. and C.taylorensis Liu, sp. nov., are described and illustrated based on adult males. The specimens were collected from various water systems in the United States and preserved by Dr. Leonard Charles Ferrington Jr. An updated key to adult males of all known Cryptochironomus species in the Nearctic region is also provided.

6.
Environ Pollut ; 359: 124531, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996995

ABSTRACT

Bisphenol F (BPF) has been extensively utilized in daily life, which brings new hazards to male reproductive health. However, the specific functional mechanism is still unclear. Both cell and animal models were utilized for exploring the role of RNA methylation and ferroptosis and its underlying mechanisms in male reproductive injury induced by BPF. In animal model, BPF severely destroyed the integrity of the blood-testis barrier (BTB) and induced ferroptosis. Furthermore, BPF significantly affected the barrier function of TM4 cells and promoted ferroptosis. Importantly, ChIP assays revealed that BPF inhibited AR transcriptional regulation of FTO and FTO expression was downregulated in TM4 cells. Overexpression of FTO prevented the impairment of BTB by inhibiting ferroptosis in TM4 cells. Mechanistically, FTO could significantly down-regulate the m6A modification level of TfRc and SLC7A11 mRNA through MeRIP experiment. RIP experiments showed that YTHDF1 can bind to TfRc mRNA and promote its translation while YTHDF2 could bind to SLC7A11 mRNA and reduce its mRNA stability. Therefore, our results suggest that FTO plays a key role in BPF induced male reproductive toxicity through YTHDF1-TfRc axis and YTHDF2-SLC7A11 axis and may provide new ideas and methods for the prevention and treatment of male reproductive diseases associated with environmental pollutants.

7.
J Am Heart Assoc ; 13(14): e032904, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38979831

ABSTRACT

BACKGROUND: Cardiac aging represents an independent risk factor for aging-associated cardiovascular diseases. Although evidence suggests an association between NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome formation and numerous cardiovascular diseases, its role in cardiac aging remains largely unclear. METHODS AND RESULTS: The longevity of mice with wild-type and NLRP3 knockout (NLRP3-/-) genotypes was assessed, with or without d-galactose treatment. Cardiac function was evaluated using echocardiography, and cardiac histopathology was examined through hematoxylin and eosin and Masson's trichrome staining. Senescence-associated ß-galactosidase (SA-ß-gal) staining was employed to detect cardiac aging. Western blotting was used to assess aging-related proteins (p53, p21) and pyroptosis-related proteins. Additionally, dihydroethidium staining, lactate dehydrogenase release, and interleukin-1ß ELISA assays were performed, along with measurements of total superoxide dismutase and malondialdehyde levels. In vitro, H9c2 cells were exposed to d-galactose for 24 hours in the absence or presence of N-acetyl-l-cysteine (reactive oxygen species inhibitor), BAY-117082 (nuclear factor κ-light-chain enhancer of activated B cells inhibitor), MCC950 (NLRP3 inhibitor), and VX-765 (Caspase-1 inhibitor). Immunofluorescence staining was employed to detect p53, gasdermin D, and apoptosis-associated speck-like protein proteins. Intracellular reactive oxygen species levels were assessed using fluorescence microscopy and flow cytometry. Senescence-associated ß-galactosidase staining and Western blotting were also employed in vitro for the same purpose. The results showed that NLRP3 upregulation was implicated in aging and cardiovascular diseases. Inhibition of NLRP3 extended life span, mitigated the aging phenotype, improved cardiac function and blood pressure, ameliorated lipid metabolism abnormalities, inhibited pyroptosis in cardiomyocytes, and ultimately alleviated cardiac aging. In vitro, the inhibition of reactive oxygen species, nuclear factor κ-light-chain enhancer of activated B cells, NLRP3, or caspase-1 attenuated NLRP3 inflammasome-mediated pyroptosis. CONCLUSIONS: The reactive oxygen species/nuclear factor κ-light-chain enhancer of activated B cells/NLRP3 signaling pathway loop contributes to d-galactose-treated cardiomyocyte senescence and cardiac aging.


Subject(s)
Galactose , Inflammasomes , Mice, Knockout , Myocytes, Cardiac , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Galactose/toxicity , Galactose/metabolism , Pyroptosis/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Inflammasomes/metabolism , Mice , Aging/metabolism , Mice, Inbred C57BL , Signal Transduction , Cellular Senescence/drug effects , Male , Reactive Oxygen Species/metabolism , NF-kappa B/metabolism , Cell Line , Disease Models, Animal , Rats
8.
Int J Biol Macromol ; : 134346, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094883

ABSTRACT

To date, although the high-carbohydrate (HC) feed has been extensively adopted in the aquaculture industry, its effects on the intestinal function and development of aquatic animals still remain unclear. In addition, the corresponding nutritional intervention is still barely reported. This study aimed to evaluate the influence of xylooligosaccharides (XOS) on the intestinal health of Megalobrama amblycephala subjected to a HC feeding. Fish (average weight: 44.55 ±â€¯0.15 g) were randomly offered 3 diets, including a control one (29 % carbohydrate), a HC one (41 % carbohydrate), and a XOS supplemented one (HC + 1.0 % XOS, HCX) respectively for 12 weeks. The HC feeding caused morphological abnormalities of intestine, an increased intestinal permeability, and the intestinal immunosuppression, all of which were markedly reversed by XOS administration. In addition, compared with the HC group, HCX feeding remarkably promoted the intestinal activities of digestive and brush border enzymes, and the expressions of cell proliferation-related proteins (Wnt10b and Cyclin D1). The 16s rDNA sequencing also revealed that XOS administration increased the abundance of beneficial bacteria, and decreased that of pathogenic ones. In conclusion, dietary supplementation of XOS improved the intestinal histomorphology, barrier function, cell proliferation and bacterial communities of carbohydrate-overloaded fish Megalobrama amblycephala.

9.
Toxicology ; 507: 153886, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002880

ABSTRACT

Benzo[a]pyrene (BaP) is associated with the development of lung cancer, but the underlying mechanism has not been completely clarified. Here, we used 10 µM BaP to induce malignant transformation of human bronchial epithelial BEAS-2B cells, named BEAS-2B-T. Results indicated that BaP (6.25, 12.5 and 25 µM) treatment significantly promoted the migration and invasion of BEAS-2B-T cells. Meanwhile, BaP exposure inhibited ferroptosis in BEAS-2B-T, ferroptosis-related indexes Fe2+, malondialdehyde (MDA), lipid peroxidation (LPO) and reactive oxygen species (ROS) decreased significantly. The protein level of ferroptosis-related molecule transferrin receptor (TFRC) decreased significantly, while solute carrier family 7 membrane 11 (SLC7A11), ferritin heavy chain 1 (FTH1) and glutathione peroxidase 4 (GPX4) increased significantly. The intervention of ferroptosis dramatically effected the migration and invasion of BEAS-2B-T induced by BaP. Furthermore, the expression of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) was markedly increased after BaP exposure. YTHDF1 knockdown inhibited BEAS-2B-T migration and invasion by promoting ferroptosis. In the meantime, the contents of Fe2+, MDA, LPO and ROS increased significantly, TFRC was markedly increased, and SLC7A11, FTH1, and GPX4 were markedly decreased. Moreover, overexpression of YTHDF1 promoted BEAS-2B-T migration and invasion by inhibiting ferroptosis. Importantly, knockdown of YTHDF1 promoted ferroptosis and reduced BEAS-2B-T migration and invasion during BaP exposure, and overexpression of YTHDF1 increased migration and invasion of BEAS-2B-T by inhibiting ferroptosis during BaP exposure. RNA immunoprecipitation assays indicated that the binding of YTHDF1 to SLC7A11 and FTH1 markedly increased after YTHDF1 overexpression. Therefore, we concluded that BaP promotes the malignant progression of BEAS-2B-T cells through YTHDF1 upregulating SLC7A11 and FTH1 to inhibit ferroptosis. This study reveals new epigenetic and ferroptosis markers for preventing and treating lung cancer induced by environmental carcinogens.


Subject(s)
Benzo(a)pyrene , Cell Movement , Ferroptosis , Ferroptosis/drug effects , Humans , Benzo(a)pyrene/toxicity , Cell Movement/drug effects , Cell Line , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Reactive Oxygen Species/metabolism , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Lipid Peroxidation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Ferritins , Oxidoreductases , Antigens, CD
10.
Drug Test Anal ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488339

ABSTRACT

5F-MDMB-PICA, an indole-type synthetic cannabinoid (SC), was classified illicit globally in 2020. Although the extensive metabolism of 5F-MDMB-PICA in the human body warrants the development of robust analytical methods for metabolite detection and quantification, a current lack of reference standards for characteristic metabolites hinders such method creation. This work described the synthesis of 18 reference standards for 5F-MDMB-PICA and its possible Phase I metabolites, including three hydroxylated positional isomers R14 to R16. All the compounds were systematic characterized via nuclear magnetic resonance, Fourier transform infrared spectroscopy, and high-resolution mass spectrometry. Furthermore, two methods were developed for the simultaneous detection of all standards using liquid chromatography-tandem mass spectrometry and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. By comparison with authentic samples, R17 was identified as a suitable urine biomarker for 5F-MDMB-PICA uptake.

SELECTION OF CITATIONS
SEARCH DETAIL