Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 214
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(12): e2118573119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35290119

ABSTRACT

Although catenanes comprising two ring-shaped components can be made in large quantities by templation, the preparation of three-dimensional (3D) catenanes with cage-shaped components is still in its infancy. Here, we report the design and syntheses of two 3D catenanes by a sequence of SN2 reactions in one pot. The resulting triply mechanically interlocked molecules were fully characterized in both the solution and solid states. Mechanistic studies have revealed that a suit[3]ane, which contains a threefold symmetric cage component as the suit and a tribromide component as the body, is formed at elevated temperatures. This suit[3]ane was identified as the key reactive intermediate for the selective formation of the two 3D catenanes which do not represent thermodynamic minima. We foresee a future in which this particular synthetic strategy guides the rational design and production of mechanically interlocked molecules under kinetic control.


Subject(s)
Catenanes , Rotaxanes , Catenanes/chemistry , Kinetics , Rotaxanes/chemistry
2.
J Am Chem Soc ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978232

ABSTRACT

The development of architecturally unique molecular nanocarbons by bottom-up organic synthesis is essential for accessing functional organic materials awaiting technological developments in fields such as energy, electronics, and biomedicine. Herein, we describe the design and synthesis of a triptycene-based three-dimensional (3D) nanocarbon, GFN-1, with geometrical flexibility on account of its three peripheral π-panels being capable of interconverting between two curved conformations. An effective through-space electronic communication among the three π-panels of GFN-1 has been observed in its monocationic radical form, which exhibits an extensively delocalized spin density over the entire 3D π-system as revealed by electron paramagnetic resonance and UV-vis-NIR spectroscopies. The flexible 3D molecular architecture of GFN-1, along with its densely packed superstructures in the presence of fullerenes, is revealed by microcrystal electron diffraction and single-crystal X-ray diffraction, which establish the coexistence of both propeller and tweezer conformations in the solid state. GFN-1 exhibits strong binding affinities for fullerenes, leading to host-guest complexes that display rapid photoinduced electron transfer within a picosecond. The outcomes of this research could pave the way for the utilization of shape and electronically complementary nanocarbons in the construction of functional coassemblies.

3.
BMC Med ; 22(1): 101, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448943

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) and metabolic-associated fatty liver disease (MAFLD) shares common pathophysiological mechanisms with type 2 diabetes, making them significant risk factors for type 2 diabetes. The present study aimed to assess the epidemiological feature of type 2 diabetes in patients with NAFLD or MAFLD at global levels. METHODS: Published studies were searched for terms that included type 2 diabetes, and NAFLD or MAFLD using PubMed, EMBASE, MEDLINE, and Web of Science databases from their inception to December 2022. The pooled global and regional prevalence and incidence density of type 2 diabetes in patients with NAFLD or MAFLD were evaluated using random-effects meta-analysis. Potential sources of heterogeneity were investigated using stratified meta-analysis and meta-regression. RESULTS: A total of 395 studies (6,878,568 participants with NAFLD; 1,172,637 participants with MAFLD) from 40 countries or areas were included in the meta-analysis. The pooled prevalence of type 2 diabetes among NAFLD or MAFLD patients was 28.3% (95% confidence interval 25.2-31.6%) and 26.2% (23.9-28.6%) globally. The incidence density of type 2 diabetes in NAFLD or MAFLD patients was 24.6 per 1000-person year (20.7 to 29.2) and 26.9 per 1000-person year (7.3 to 44.4), respectively. CONCLUSIONS: The present study describes the global prevalence and incidence of type 2 diabetes in patients with NAFLD or MAFLD. The study findings serve as a valuable resource to assess the global clinical and economic impact of type 2 diabetes in patients with NAFLD or MAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/epidemiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Risk Factors , Databases, Factual , Patients
4.
Exp Dermatol ; 33(1): e14964, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37905720

ABSTRACT

Interleukin-17 s (IL-17s) are well-known proinflammatory cytokines, and their antagonists perform excellently in the treatment of inflammatory skin diseases such as psoriasis. However, their physiological functions have not been given sufficient attention by clinicians. IL-17s can protect the host from extracellular pathogens, maintain epithelial integrity, regulate cognitive processes and modulate adipocyte activity through distinct mechanisms. Here, we present a systematic review concerning the physiological functions of IL-17s. Our goal is not to negate the therapeutic effect of IL-17 antagonists, but to ensure their safe use and reasonably explain the possible adverse events that may occur in their application.


Subject(s)
Interleukin-17 , Psoriasis , Humans , Cytokines , Psoriasis/drug therapy
5.
Sensors (Basel) ; 24(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38544111

ABSTRACT

A cyber-physical system (CPS) integrates communication and automation technologies into the operational processes of physical systems. Nowadays, as a complex CPS, an intelligent connected vehicle (ICV) may be exposed to accidental functional failures and malicious attacks. Therefore, ensuring the ICV's safety and security is crucial. Traditional safety/security analysis methods, such as failure mode and effect analysis and attack tree analysis, cannot provide a comprehensive analysis for the interactions between the system components of the ICV. In this work, we merge system-theoretic process analysis (STPA) with the concept phase of ISO 26262 and ISO/SAE 21434. We focus on the interactions between components while analyzing the safety and security of ICVs to reduce redundant efforts and inconsistencies in determining safety and security requirements. To conquer STPA's abstraction in describing causal scenarios, we improved the physical component diagram of STPA-SafeSec by adding interface elements. In addition, we proposed the loss scenario tree to describe specific scenarios that lead to unsafe/unsecure control actions. After hazard/threat analysis, a unified risk assessment process is proposed to ensure consistency in assessment criteria and to streamline the process. A case study is implemented on the autonomous emergency braking system to demonstrate the validation of the proposed method.

6.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338646

ABSTRACT

Chinese cabbage is the most widely consumed vegetable crop due to its high nutritional value and rock-bottom price. Notably, the presence of the physiological disease petiole spot significantly impacts the appearance quality and marketability of Chinese cabbage. It is well known that excessive nitrogen fertilizer is a crucial factor in the occurrence of petiole spots; however, the mechanism by which excessive nitrogen triggers the formation of petiole spots is not yet clear. In this study, we found that petiole spots initially gather in the intercellular or extracellular regions, then gradually extend into intracellular regions, and finally affect adjacent cells, accompanied by cell death. Transcriptomic and proteomic as well as physiology analyses revealed that the genes/proteins involved in nitrogen metabolism exhibited different expression patterns in resistant and susceptible Chinese cabbage lines. The resistant Chinese cabbage line has high assimilation ability of NH4+, whereas the susceptible one accumulates excessive NH4+, thus inducing a burst of reactive oxygen species (ROS). These results introduce a novel perspective to the investigation of petiole spot induced by the nitrogen metabolism pathway, offering a theoretical foundation for the development of resistant strains in the control of petiole spot.


Subject(s)
Brassica , Proteomics , Gene Expression Profiling , Transcriptome , Brassica/metabolism , Nitrogen/metabolism
7.
J Am Chem Soc ; 145(18): 10061-10070, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37098077

ABSTRACT

Triplet-triplet annihilation-based molecular photon upconversion (TTA-UC) is a photophysical phenomenon that can yield high-energy emitting photons from low-energy incident light. TTA-UC is believed to fuse two triplet excitons into a singlet exciton through several consecutive energy-conversion processes. When organic aromatic dyes─i.e., sensitizers and annihilators─are used in TTA-UC, intermolecular distances, as well as relative orientations between the two chromophores, are important in an attempt to attain high upconversion efficiencies. Herein, we demonstrate a host-guest strategy─e.g., a cage-like molecular container incorporating two porphyrinic sensitizers and encapsulating two perylene emitters inside its cavity─to harness photon upconversion. Central to this design is tailoring the cavity size (9.6-10.4 Å) of the molecular container so that it can host two annihilators with a suitable [π···π] distance (3.2-3.5 Å). The formation of a complex with a host:guest ratio of 1:2 between a porphyrinic molecular container and perylene was confirmed by NMR spectroscopy, mass spectrometry, and isothermal titration calorimetry (ITC) as well as by DFT calculations. We have obtained TTA-UC yielding blue emission at 470 nm when the complex is excited with low-energy photons. This proof-of-concept demonstrates that TTA-UC can take place in one supermolecule by bringing together the sensitizers and annihilators. Our investigations open up some new opportunities for addressing several issues associated with supramolecular photon upconversion, such as sample concentrations, molecular aggregation, and penetration depths, which have relevance to biological imaging applications.

8.
Chemistry ; 29(32): e202300524, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-36913252

ABSTRACT

A biomimetic receptor for glucose has been developed with high affinity and selectivity. The receptor was efficiently synthesized in three steps through dynamic imine chemistry followed by imine-to-amide oxidation. The receptor features two parallel durene panels, forming a hydrophobic pocket for [CH⋅⋅⋅π] interactions, and two pyridinium residues directing four amide bonds towards the pocket. These pyridinium residues not only improve solubility but also provide polarized C-H bonds for hydrogen bonding. Experimental data and DFT calculations show that these polarized C-H bonds significantly enhance substrate binding. These findings demonstrate the power of dynamic covalent chemistry for creating molecular receptors and using polarized C-H bonds for boosted carbohydrate recognition in water, providing a foundation for developing glucose-responsive materials and sensors.


Subject(s)
Glucose , Lectins , Hydrogen Bonding , Carbohydrates , Amides
9.
Age Ageing ; 52(2)2023 02 01.
Article in English | MEDLINE | ID: mdl-36746389

ABSTRACT

BACKGROUND: Frailty endangers the health of older adults. Furthermore, the prevalence of frailty continues to increase as the global population ageing. OBJECTIVE: To update evidence on the effectiveness of non-pharmacological interventions for frailty by conducting a network meta-analysis (NMA) of randomised controlled trials (RCTs). METHODS: Eight databases were searched from January 1, 2000, until September 24, 2021. RCTs of interventions for frailty among participants aged ≥60 years were considered eligible. The primary outcome was frailty. Pairwise meta-analysis and NMA were performed, with the pooled standardised mean difference (SMD) and 95% confidence interval (CI) being reported. RESULTS: A total of 69 RCTs were included after screening 16,058 retrieved citations. There were seven types of interventions (11 interventions) for frailty among the included RCTs. Physical activity (PA) (pooled SMD = 0.43, 95% CI: 0.34-0.51), multicomponent intervention (pooled SMD = 0.34, 95% CI: 0.23-0.45) and nutrition intervention (pooled SMD = 0.21, 95% CI: 0.06-0.35) were associated with reducing frailty compared to control, of which PA was the most effective type of intervention. In terms of specific types of PA, resistance training (pooled SMD = 0.58, 95% CI: 0.33-0.83), mind-body exercise (pooled SMD = 0.57, 95% CI: 0.24-0.90), mixed physical training (pooled SMD = 0.47, 95% CI: 0.37-0.57) and aerobic training (pooled SMD = 0.36, 95% CI: 0.09-0.62) were associated with a reduction in frailty compared to usual care. Resistance training was the most effective PA intervention. CONCLUSION: Resistance training has the best potential to reduce frailty in older adults. This finding might be useful to clinicians in selecting interventions for older adults with frailty.


Subject(s)
Frailty , Humans , Aged , Frailty/diagnosis , Frailty/therapy , Network Meta-Analysis , Quality of Life , Exercise , Aging
10.
Appl Opt ; 62(17): 4415-4422, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37707132

ABSTRACT

The perspective camera model has difficulty handling refracted light in the underwater environment. To achieve accurate and convenient calibration in large underwater scenes, we propose a method based on the underwater refractive camera model in this paper. First, the initial values of the refraction parameters are solved using refraction coplanarity constraints. Then the initial values are optimized nonlinearly using co-point constraints, which simplifies the optimization process of existing methods. In the field of view of 200m m×200m m, the experiment results show that the reconstruction accuracy of the proposed method can reach below 0.02 mm, and it is equally effective in the case of sparse calibration.

11.
Int J Mol Sci ; 24(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37762246

ABSTRACT

Microorganisms living in polar regions rely on specialized mechanisms to adapt to extreme environments. The study of their stress adaptation mechanisms is a hot topic in international microbiology research. In this study, a bacterial strain (Arc9.136) isolated from Arctic marine sediments was selected to implement polyphasic taxonomic identification based on factors such as genetic characteristics, physiological and biochemical properties, and chemical composition. The results showed that strain Arc9.136 is classified to the genus Nocardioides, for which the name Nocardioides arcticus sp. nov. is proposed. The ozone hole over the Arctic leads to increased ultraviolet (UV-B) radiation, and low temperatures lead to increased dissolved content in seawater. These extreme environmental conditions result in oxidative stress, inducing a strong response in microorganisms. Based on the functional classification of significantly differentially expressed genes under 1 mM H2O2 stress, we suspect that Arc9.136 may respond to oxidative stress through the following strategies: (1) efficient utilization of various carbon sources to improve carbohydrate transport and metabolism; (2) altering ion transport and metabolism by decreasing the uptake of divalent iron (to avoid the Fenton reaction) and increasing the utilization of trivalent iron (to maintain intracellular iron homeostasis); (3) increasing the level of cell replication, DNA repair, and defense functions, repairing DNA damage caused by H2O2; (4) and changing the composition of lipids in the cell membrane and reducing the sensitivity of lipid peroxidation. This study provides insights into the stress resistance mechanisms of microorganisms in extreme environments and highlights the potential for developing low-temperature active microbial resources.


Subject(s)
Hydrogen Peroxide , Nocardioides , Hydrogen Peroxide/pharmacology , Transcriptome , Biological Transport , Iron
12.
Angew Chem Int Ed Engl ; 62(41): e202309657, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37609788

ABSTRACT

The main protease (Mpro ) of SARS-CoV-2 is a well-characterized target for antiviral drug discovery. To date, most antiviral drug discovery efforts have focused on the S4-S1' pocket of Mpro ; however, it is still unclear whether the S1'-S3' pocket per se can serve as a new site for drug discovery. In this study, the S1'-S3' pocket of Mpro was found to differentially recognize viral peptidyl substrates. For instance, S3' in Mpro strongly favors Phe or Trp, and S1' favors Ala. The peptidyl inhibitor D-4-77, which possesses an α-bromoacetamide warhead, was discovered to be a promising inhibitor of Mpro , with an IC50 of 0.95 µM and an antiviral EC50 of 0.49 µM. The Mpro /inhibitor co-crystal structure confirmed the binding mode of the inhibitor to the S1'-S3' pocket and revealed a covalent mechanism. In addition, D-4-77 functions as an immune protectant and suppresses SARS-CoV-2 Mpro -induced antagonism of the host NF-κB innate immune response. These findings indicate that the S1'-S3' pocket of SARS-CoV-2 Mpro is druggable, and that inhibiting SARS-CoV-2 Mpro can simultaneously protect human innate immunity and inhibit virion assembly.

13.
BMC Genomics ; 23(1): 713, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36261793

ABSTRACT

BACKGROUND: Bacteria are an essential component of the earth`s biota and affect circulation of matters through their metabolic activity. They also play an important role in the carbon and nitrogen cycle in the deep-sea environment. In this paper, two strains from deep-sea sediments were investigated in order to understand nitrogen cycling involved in the deep-sea environment. RESULTS: In this paper, the basic genomic information of two strains was obtained by whole genome sequencing. The Cobetia amphilecti N-80 and Halomonas profundus 13 genome sizes are 4,160,095 bp with a GC content of 62.5% and 5,251,450 bp with a GC content of 54.84%. Through a comparison of functional analyses, we predicted the possible C and N metabolic pathways of the two strains and determined that Halomonas profundus 13 could use more carbon sources than Cobetia amphilecti N-80. The main genes associated with N metabolism in Halomonas profundus 13 are narG, narY, narI, nirS, norB, norC, nosZ, and nirD. On the contrast, nirD, using NH4+ for energy, plays a main role in Cobetia amphilecti N-80. Both of them have the same genes for fixing inorganic carbon: icd, ppc, fdhA, accC, accB, accD, and accA. CONCLUSION: In this study, the whole genomes of two strains were sequenced to clarify the basic characteristics of their genomes, laying the foundation for further studying nitrogen-metabolizing bacteria. Halomonas profundus 13 can utilize more carbon sources than Cobetia amphilecti N-80, as indicated by API as well as COG and KEGG prediction results. Finally, through the analysis of the nitrification and denitrification abilities as well as the inorganic carbon fixation ability of the two strains, the related genes were identified, and the possible metabolic pathways were predicted. Together, these results provide molecular markers and theoretical support for the mechanisms of inorganic carbon fixation by deep-sea microorganisms.


Subject(s)
Bacteria , Nitrogen , Nitrogen/metabolism , Antarctic Regions , Bacteria/genetics , Bacteria/metabolism , Carbon/metabolism , Whole Genome Sequencing
14.
J Am Chem Soc ; 144(51): 23551-23559, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36512436

ABSTRACT

Motion-induced change in emission (MICE) is a phenomenon that can be employed to develop various types of probes, including temperature and viscosity sensors. Although MICE, arising from the conformational motion in particular compounds, has been studied extensively, this phenomenon has not been investigated in depth in mechanically interlocked molecules (MIMs) undergoing coconformational changes. Herein, we report the investigation of a thermoresponsive dynamic homo[2]catenane incorporating pyrene units and displaying relative circumrotational motions of its cyclophanes as evidenced by variable-temperature 1H NMR spectroscopy and supported by its visualization through molecular dynamics simulations and quantum mechanics calculations. The relative coconformational motions induce a significant change in the fluorescence emission of the homo[2]catenane upon changes in temperature compared with its component cyclophanes. This variation in the exciplex emission of the homo[2]catenane is reversible as demonstrated by four complete cooling and heating cycles. This research opens up possibilities of using the coconformational changes in MIMs-based chromophores for probing fluctuations in temperature which could lead to applications in biomedicine or materials science.


Subject(s)
Anthracenes , Catenanes , Molecular Conformation , Temperature , Anthracenes/chemistry , Catenanes/chemistry
15.
Bioorg Chem ; 129: 106160, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36179442

ABSTRACT

Hyperhimatins A-P (1-16), sixteen new bicyclic polyprenylated acylphloroglucinols (BPAPs), were isolated and identified from Hypericum himalaicum. The planner structures of hyperhimatins A-P were confirmed via extensive NMR and careful HRESIMS data analysis. The absolute configurations of the new compounds were mainly determined by electronic circular dichroism (ECD) calculation, NMR calculation, and the circular dichroism data of the in situ formed [Rh2(OCOCF3)4] complexes. All compounds were assessed for the glucose transporter 4 (GLUT-4) translocation and expression enhancing effects in L6 myotubes. Compounds 1-16 could promote the GLUT-4 expression by the range of 1.95-6.04 folds, and accelerate the GLUT-4 fusion with the plasma membrane ranged from 53.56% to 76.97% at a consistence of 30 µg/mL, among compound 10 displayed the strongest GLUT-4 translocation effect.


Subject(s)
Hypericum , Hypericum/chemistry , Phloroglucinol/pharmacology , Phloroglucinol/chemistry , Magnetic Resonance Spectroscopy , Circular Dichroism , Glucose Transport Proteins, Facilitative , Molecular Structure
16.
Int J Mol Sci ; 23(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36555211

ABSTRACT

An additive- and pollution-free method for the preparation of biogenic silver and silver chloride nanoparticles (Ag@AgCl NPs) was developed from the bacteria Shewanella sp. Arc9-LZ, which was isolated from the deep sea of the Arctic Ocean. The optimal synthesizing conditions were explored, including light, pH, Ag+ concentration and time. The nanoparticles were studied by means of ultraviolet-visible (UV-Vis) spectrophotometry, energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and inductively coupled plasma optical emission spectrometers (ICP-OES). The transmission electron microscope (TEM) showed that the nanoparticles were spherical and well dispersed, with particle sizes less than 20.00 nm. With Ag@AgCl nanoparticles, the kinetic rate constants for congo red (CR) and rhodamine B (RhB) dye degradation were 2.74 × 10-1 min-1 and 7.78 × 10-1 min-1, respectively. The maximum decolourization efficiencies of CR and RhB were 93.36% and 99.52%, respectively. Ag@AgCl nanoparticles also showed high antibacterial activities against the Gram-positive and Gram-negative bacteria. The Fourier transform infrared spectroscopy (FTIR) spectrum indicated that the O-H, N-H and -COO- groups in the supernatant of Arc9-LZ might participate in the reduction, stabilization and capping of nanoparticles. We mapped the schematic diagram on possible mechanisms for synthesizing Ag@AgCl NPs.


Subject(s)
Anti-Bacterial Agents , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Gram-Negative Bacteria , Gram-Positive Bacteria , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
17.
J Environ Sci (China) ; 121: 148-158, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35654506

ABSTRACT

Herein, we found that anthraquinone (AQ) acted as a catalyst for the rapid and effective removal of triphenylmethane dye containing tertiary amino group (TDAG). Results showed that AQ had an enhanced catalytic reactivity towards the removal of TDAG compared to hydro-quinone, which was further proved and explained using density functional theory (DFT) calculations. AQs could achieve a TDAG removal efficiency and rate of approximately 100% and 0.3583 min-1, respectively, within 20 min. Quenching experiments and electron paramagnetic resonance (EPR) tests indicated that the superoxide radical (O2•-) generated through the catalytic reduction of an oxygen molecule (O2) by AQ contributed to the effective removal of the TDAG. In addition, it was found that the electrophilic attack of the O2•- radical on the TDAG was the driving force for the dye degradation process. Decreasing the pH led to protonation of the substituted group of AG, which resulted in formation of an electron deficient center in the TDAG molecule (TDAG-EDC+) through delocalization of the π electron. Therefore, the possibility of the electrophilic attack for the dye by the negative O2•- radical was significantly enhanced. This study revealed that the H+ and the O2•- generated by the catalytic reduction of O2 have synergistic effects that led to a significant increase in the dye removal rate and efficiency, which were higher than those obtained through persulfate oxidation.


Subject(s)
Anthraquinones , Coloring Agents , Anthraquinones/chemistry , Catalysis , Coloring Agents/chemistry , Oxidation-Reduction , Trityl Compounds
18.
Infect Immun ; 89(5)2021 04 16.
Article in English | MEDLINE | ID: mdl-33558327

ABSTRACT

Trichinellosis is one of most neglected foodborne zoonoses worldwide. During Trichinella spiralis infection, the intestinal immune response is the first line of defense and plays a vital role in the host's resistance. Previous studies indicate that purinergic P2X7 receptor (P2X7R) and pyrin domain-containing protein 3 (NLRP3) inflammasome are involved in the intestinal immune response in T. spiralis infection. However, the precise role of P2X7R and its effect on NLRP3 remains largely underdetermined. In this study, we aimed to investigate the role of P2X7R in the activation of NLRP3 in macrophages during the intestinal immune response against T. spiralis We found that T. spiralis infection upregulated expression of P2X7R and activation of NLRP3 in macrophages in mice. In vivo, P2X7R deficiency resulted in increased intestinal adult and muscle larval burdens, along with decreased expression of NLRP3/interleukin-1ß (IL-1ß) in macrophages from the infected mice with T. spiralis In In vitro experiments, P2X7R blockade inhibited activation of NLRP3/IL-1ß via NF-κB and thus reduced the capacity of macrophages to kill newborn larvae of T. spiralis These results indicate that P2X7R mediates the elimination of T. spiralis by activating the NF-κB/NLRP3/IL-1ß pathway in macrophages. Our findings contribute to the understanding of the intestinal immune mechanism of T. spiralis infection.


Subject(s)
Interleukin-1beta/metabolism , Macrophages/immunology , Macrophages/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Purinergic P2X7/metabolism , Signal Transduction , Trichinella spiralis , Animals , Disease Models, Animal , Gene Expression , Intestinal Mucosa/metabolism , Intestinal Mucosa/parasitology , Intestinal Mucosa/pathology , Mice , Mice, Knockout , Parasite Load , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X7/genetics , Trichinellosis/immunology , Trichinellosis/metabolism , Trichinellosis/parasitology
19.
J Am Chem Soc ; 143(4): 1984-1992, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33378203

ABSTRACT

We report the molecular recognition of the Au(CN)2- anion, a crucial intermediate in today's gold mining industry, by α-cyclodextrin. Three X-ray single-crystal superstructures-KAu(CN)2⊂α-cyclodextrin, KAu(CN)2⊂(α-cyclodextrin)2, and KAg(CN)2⊂(α-cyclodextrin)2-demonstrate that the binding cavity of α-cyclodextrin is a good fit for metal-coordination complexes, such as Au(CN)2- and Ag(CN)2- with linear geometries, while the K+ ions fulfill the role of linking α-cyclodextrin tori together as a result of [K+···O] ion-dipole interactions. A 1:1 binding stoichiometry between Au(CN)2- and α-cyclodextrin in aqueous solution, revealed by 1H NMR titrations, has produced binding constants in the order of 104 M-1. Isothermal calorimetry titrations indicate that this molecular recognition is driven by a favorable enthalpy change overcoming a small entropic penalty. The adduct formation of KAu(CN)2⊂α-cyclodextrin in aqueous solution is sustained by multiple [C-H···π] and [C-H···anion] interactions in addition to hydrophobic effects. The molecular recognition has also been investigated by DFT calculations, which suggest that the 2:1 binding stoichiometry between α-cyclodextrin and Au(CN)2- is favored in the presence of ethanol. We have demonstrated that this molecular recognition process between α-cyclodextrin and KAu(CN)2 can be applied to the stripping of gold from the surface of activated carbon at room temperature. Moreover, this stripping process is selective for Au(CN)2- in the presence of Ag(CN)2-, which has a lower binding affinity toward α-cyclodextrin. This molecular recognition process could, in principle, be integrated into commercial gold-mining protocols and lead to significantly reduced costs, energy consumption, and environmental impact.

20.
J Am Chem Soc ; 143(38): 15688-15700, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34505510

ABSTRACT

The development of synthetic receptors that recognize carbohydrates in water with high selectivity and specificity is challenging on account of their structural complexity and strong hydrophilicity. Here, we report on the design and synthesis of two pyrene-based, temple-shaped receptors for the recognition of a range of common sugars in water. These receptors rely on the use of two parallel pyrene panels, which serve as roofs and floors, capable of forming multiple [C-H···π] interactions with the axially oriented C-H bonds on glycopyranosyl rings in the carbohydrate-based substrates. In addition, eight polarized pyridinium C-H bonds, projecting from the roofs and floors of the temple receptors toward the binding cavities, form [C-H···O] hydrogen bonds, with the equatorially oriented OH groups on the sugars located inside the hydrophobic cavities. Four para-xylylene pillars play a crucial role in controlling the distance between the roof and floor. These temple receptors are highly selective for the binding of glucose and its derivatives. Furthermore, they show enhanced fluorescence upon binding with glucose in water, a property which is useful for glucose-sensing in aqueous solution.

SELECTION OF CITATIONS
SEARCH DETAIL