Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 314
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38340093

ABSTRACT

Shotgun sequencing is a high-throughput method used to detect copy number variants (CNVs). Although there are numerous CNV detection tools based on shotgun sequencing, their quality varies significantly, leading to performance discrepancies. Therefore, we conducted a comprehensive analysis of next-generation sequencing-based CNV detection tools over the past decade. Our findings revealed that the majority of mainstream tools employ similar detection rationale: calculates the so-called read depth signal from aligned sequencing reads and then segments the signal by utilizing either circular binary segmentation (CBS) or hidden Markov model (HMM). Hence, we compared the performance of those two core segmentation algorithms in CNV detection, considering varying sequencing depths, segment lengths and complex types of CNVs. To ensure a fair comparison, we designed a parametrical model using mainstream statistical distributions, which allows for pre-excluding bias correction such as guanine-cytosine (GC) content during the preprocessing step. The results indicate the following key points: (1) Under ideal conditions, CBS demonstrates high precision, while HMM exhibits a high recall rate. (2) For practical conditions, HMM is advantageous at lower sequencing depths, while CBS is more competitive in detecting small variant segments compared to HMM. (3) In case involving complex CNVs resembling real sequencing, HMM demonstrates more robustness compared with CBS. (4) When facing large-scale sequencing data, HMM costs less time compared with the CBS, while their memory usage is approximately equal. This can provide an important guidance and reference for researchers to develop new tools for CNV detection.


Subject(s)
Algorithms , DNA Copy Number Variations , High-Throughput Nucleotide Sequencing/methods
2.
Proc Natl Acad Sci U S A ; 119(35): e2208795119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36001691

ABSTRACT

The superior photosynthetic efficiency of C4 leaves over C3 leaves is owing to their unique Kranz anatomy, in which the vein is surrounded by one layer of bundle sheath (BS) cells and one layer of mesophyll (M) cells. Kranz anatomy development starts from three contiguous ground meristem (GM) cells, but its regulators and underlying molecular mechanism are largely unknown. To identify the regulators, we obtained the transcriptomes of 11 maize embryonic leaf cell types from five stages of pre-Kranz cells starting from median GM cells and six stages of pre-M cells starting from undifferentiated cells. Principal component and clustering analyses of transcriptomic data revealed rapid pre-Kranz cell differentiation in the first two stages but slow differentiation in the last three stages, suggesting early Kranz cell fate determination. In contrast, pre-M cells exhibit a more prolonged transcriptional differentiation process. Differential gene expression and coexpression analyses identified gene coexpression modules, one of which included 3 auxin transporter and 18 transcription factor (TF) genes, including known regulators of Kranz anatomy and/or vascular development. In situ hybridization of 11 TF genes validated their expression in early Kranz development. We determined the binding motifs of 15 TFs, predicted TF target gene relationships among the 18 TF and 3 auxin transporter genes, and validated 67 predictions by electrophoresis mobility shift assay. From these data, we constructed a gene regulatory network for Kranz development. Our study sheds light on the regulation of early maize leaf development and provides candidate leaf development regulators for future study.


Subject(s)
Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Plant Leaves , Transcriptome , Zea mays , Indoleacetic Acids/metabolism , Laser Capture Microdissection , Photosynthesis/genetics , Plant Leaves/embryology , Plant Leaves/genetics , Zea mays/enzymology , Zea mays/genetics
3.
J Med Virol ; 96(6): e29687, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783821

ABSTRACT

Pregnancy heightens susceptibility to influenza A virus (IAV) infection, thereby increasing the risk of severe pneumonia and maternal mortality. It also raises the chances of adverse outcomes in offspring, such as fetal growth restriction, preterm birth, miscarriage, and stillbirth in offsprings. However, the underlying mechanisms behind these effects remain largely unknown. Syncytiotrophoblast cells, crucial in forming the placental barrier, nutrient exchange and hormone secretion, have not been extensively studied for their responses to IAV. In our experiment, we used Forskolin-treated BeWo cells to mimic syncytiotrophoblast cells in vitro, and infected them with H1N1, H5N1 and H7N9 virus stains. Our results showed that syncytiotrophoblast cells, with their higher intensity of sialic acid receptors, strongly support IAV infection and replication. Notably, high-dose viral infection and prolonged exposure resulted in a significant decrease in fusion index, as well as gene and protein expression levels associated with trophoblast differentiation, ß-human chorionic gonadotropin secretion, estrogen and progesterone biosynthesis, and nutrient transport. In pregnant BALB/c mice infected with the H1N1 virus, we observed significant decreases in trophoblast differentiation and hormone secretion gene expression levels. IAV infection also resulted in preterm labor, fetal growth restriction, and increased maternal and fetal morbidity and mortality. Our findings indicate that IAV infection in syncytiotrophoblastic cells can result in adverse pregnancy outcomes by altering trophoblast differentiation, suppressing of ß-hCG secretion, and disrupting placental barrier function.


Subject(s)
Influenza A Virus, H1N1 Subtype , Mice, Inbred BALB C , Orthomyxoviridae Infections , Pregnancy Outcome , Trophoblasts , Female , Trophoblasts/virology , Pregnancy , Animals , Humans , Influenza A Virus, H1N1 Subtype/physiology , Mice , Orthomyxoviridae Infections/virology , Influenza, Human/virology , Cell Line , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H7N9 Subtype/physiology , Influenza A Virus, H7N9 Subtype/pathogenicity , Pregnancy Complications, Infectious/virology , Placenta/virology , Virus Replication
4.
FASEB J ; 37(9): e22996, 2023 09.
Article in English | MEDLINE | ID: mdl-37566526

ABSTRACT

Myocardial ischemia/reperfusion injury (MIRI) is a prevalent condition associated with numerous critical clinical conditions. miR-322 has been implicated in MIRI through poorly understood mechanisms. Our preliminary analysis indicated potential interaction of CREB-binding protein (CBP), a transcriptional coactivator and acetyltransferase, with HIF-1α/ß-catenin, which might regulate miR-322 expression. We, therefore, hypothesized that CBP/HIF-1α/ß-catenin/miR-322 axis might play a role in MIRI. Rat cardiomyocytes subjected to oxygen-glucose deprivation /reperfusion (OGD/R) and Langendorff perfused heart model were used to model MIRI in vitro and in vivo, respectively. We used various techniques such as CCK-8 assay, transferase dUTP nick end labeling staining, western blotting, RT-qPCR, chromatin immunoprecipitation (ChIP), dual-luciferase assay, co-immunoprecipitation (Co-IP), hematoxylin and eosin staining, and TTC staining to assess cell viability, apoptosis, and the levels of CBP, HIF-1α, ß-catenin, miR-322, and acetylation. Our results indicate that OGD/R in cardiomyocytes decreased CBP/HIF-1α/ß-catenin/miR-322 expression, increased cell apoptosis and cytokines, and reduced cell viability. However, overexpression of CBP or miR-322 suppressed OGD/R-induced cell injury, while knockdown of HIF-1α/ß-catenin further exacerbated the damage. HIF-1α/ß-catenin bound to miR-322 promoter to promote its expression, while CBP acetylated HIF-1α/ß-catenin for stabilization. Overexpression of CBP attenuated MIRI in rats by acetylating HIF-1α/ß-catenin to stabilize their expression, resulting in stronger binding of HIF-1α/ß-catenin with the miR-322 promoter and subsequent increased miR-322 levels. Therefore, activating CBP/HIF-1α/ß-catenin/miR-322 signaling may be a potential approach to treat MIRI.


Subject(s)
MicroRNAs , Myocardial Reperfusion Injury , Animals , Rats , Apoptosis , beta Catenin/genetics , beta Catenin/metabolism , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism
5.
Mol Cell Biochem ; 479(4): 929-940, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37256445

ABSTRACT

Previous reports have confirmed that miR-206 participates in inflammatory cardiomyopathy, but its definite mechanism remains elusive. This study aims to elucidate the potential mechanism of miR-206 in septic cardiomyopathy (SCM). The primary mouse cardiomyocytes were isolated and exposed to lipopolysaccharides (LPS) to construct a septic injury model in vitro. Then, the gene transcripts and protein levels were detected by RT-qPCR and/or Western blot assay. Cell proliferation, apoptosis, and inflammatory responses were evaluated by CCK-8/EdU, flow cytometry, and ELISA assays, respectively. Dual luciferase assay, Co-IP, and ubiquitination experiments were carried out to validate the molecular interactions among miR-206, USP33, and JAK2/STAT3 signaling. miR-206 was significantly downregulated, but USP33 was upregulated in LPS-induced cardiomyocytes. Gain-of-function of miR-206 elevated the proliferation but suppressed the inflammatory responses and apoptosis in LPS-induced cardiomyocytes. USP33, as a member of the USP protein family, was confirmed to be a direct target of miR-206 and could catalyze deubiquitination of JAK2 to activate JAK2/STAT3 signaling. Rescue experiments presented that neither upregulation of USP33 nor JAK2/STAT3 signaling activation considerably reversed the protective effects of miR-206 upregulation in LPS-induced cardiomyocytes. The above data showed that miR-206 protected cardiomyocytes from LPS-induced inflammatory injuries by targeting the USP33/JAK2/STAT3 signaling pathway, which might be a novel target for SCM treatment.


Subject(s)
Cardiomyopathies , MicroRNAs , Animals , Mice , Apoptosis/physiology , Janus Kinase 2/metabolism , Lipopolysaccharides , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Signal Transduction , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
6.
Brain ; 146(11): 4702-4716, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37807084

ABSTRACT

Artificial intelligence (AI)-based tools are widely employed, but their use for diagnosis and prognosis of neurological disorders is still evolving. Here we analyse a cross-sectional multicentre structural MRI dataset of 696 people with epilepsy and 118 control subjects. We use an innovative machine-learning algorithm, Subtype and Stage Inference, to develop a novel data-driven disease taxonomy, whereby epilepsy subtypes correspond to distinct patterns of spatiotemporal progression of brain atrophy.In a discovery cohort of 814 individuals, we identify two subtypes common to focal and idiopathic generalized epilepsies, characterized by progression of grey matter atrophy driven by the cortex or the basal ganglia. A third subtype, only detected in focal epilepsies, was characterized by hippocampal atrophy. We corroborate external validity via an independent cohort of 254 people and confirm that the basal ganglia subtype is associated with the most severe epilepsy.Our findings suggest fundamental processes underlying the progression of epilepsy-related brain atrophy. We deliver a novel MRI- and AI-guided epilepsy taxonomy, which could be used for individualized prognostics and targeted therapeutics.


Subject(s)
Brain , Epilepsy , Humans , Brain/diagnostic imaging , Brain/pathology , Artificial Intelligence , Cross-Sectional Studies , Magnetic Resonance Imaging , Epilepsy/diagnostic imaging , Epilepsy/pathology , Atrophy/pathology
7.
Article in English | MEDLINE | ID: mdl-38401076

ABSTRACT

Objective: This study aims to assess the efficacy of laparoscopic modified uterine incision pressure repair in treating type II-III cesarean scar pregnancy (CSP). Methods: A total of 20 patients diagnosed with type II-III CSP and admitted to the Affiliated Hospital of Guizhou Medical University between April 2021 and May 2023 were enrolled. The patients were divided into two groups: the study group (Group A), consisting of newly treated surgical patients, and the control group (Group B), including patients with type II-III CSP treated by doctors of similar grade and surgical experience (non-novel). Various parameters, including age, menopause duration, pregnancy and delivery history, cesarean section frequency, preoperative human chorionic gonadotropin (HCG) levels, pregnancy sac size, HCG turnover time, operation duration, intraoperative blood loss, blood transfusion requirements, and hospitalization costs, were compared. Results: When comparing mean age, menopause duration, preoperative HCG levels, pregnancy and cesarean section frequencies, pregnancy sac size, and HCG turnover time, no statistically significant differences were observed (P > .05). The number of transfusions and hospitalization costs in Group A were lower than in Group B, although the differences were not statistically significant (P > .05). However, operative time, intraoperative bleeding, and hospitalization costs were significantly lower in Group A compared to Group B (P < .05). Conclusions: The laparoscopic modified uterine incision pressure repair method demonstrated clinical value with its advantages of short operation time, reduced bleeding, lower costs, and rapid recovery for type II-III CSP.

8.
BMC Genomics ; 24(1): 461, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37592203

ABSTRACT

as one of the oldest cultivated crops in the world, quinoa has been widely valued for its rich nutritional value and green health. In this study, 22 CDK genes (CqCDK01-CqCDK22) were identified from quinoa genome using bioinformatics method. The number of amino acids was 173-811, the molecular weight was 19,554.89 Da-91,375.70 Da, and the isoelectric point was 4.57-9.77. The phylogenetic tree divided 21 CqCDK genes into six subfamilies, the gene structure showed that 12 (54.5%) CqCDK genes (CqCDK03, CqCDK04, CqCDK05, CqCDK06, CqCDK07, CqCDK11, CqCDK14, CqCDK16, CqCDK18, CqCDK19, CqCDK20 and CqCDK21) had UTR regions at 5' and 3' ends. Each CDK protein had different motifs (3-9 motifs), but the genes with the same motifs were located in the same branch. Promoter analysis revealed 41 cis-regulatory elements related to plant hormones, abiotic stresses, tissue-specific expression and photoresponse. The results of real-time fluorescence quantitative analysis showed that the expression level of some CDK genes was higher under drought and salt stress, which indicated that CDK genes could help plants to resist adverse environmental effects. Subcellular localization showed that CqCDK15 gene was localized to the nucleus and cytoplasm, and transgenic plants overexpressing CqCDK15 gene showed higher drought and salt tolerance compared to the controls. Therefore, CDK genes are closely related to quinoa stress resistance. In this study, the main functions of quinoa CDK gene family and its expression level in different tissues and organs were analyzed in detail, which provided some theoretical support for quinoa stress-resistant breeding. Meanwhile, this study has important implications for further understanding the function of the CDK gene family in quinoa and our understanding of the CDK family in vascular plant.


Subject(s)
Chenopodium quinoa , Chenopodium quinoa/genetics , Droughts , Phylogeny , Plant Breeding , Salt Stress
9.
J Magn Reson Imaging ; 57(5): 1406-1413, 2023 05.
Article in English | MEDLINE | ID: mdl-35864603

ABSTRACT

BACKGROUND: Diffusion-weighted imaging (DWI) has demonstrated great potential in predicting the expression of tumor cell proliferation and apoptosis indexes. PURPOSE: To evaluate the impact of four region of interest (ROI) methods on interobserver variability and apparent diffusion coefficient (ADC) values and to examine the correlation of ADC values with Ki-67, Bcl-2, and P53 labeling indexes (LIs) in a murine model of fibrosarcoma. STUDY TYPE: Prospective, animal model. ANIMAL MODEL: A total of 22 female BALB/c mice bearing intramuscular fibrosarcoma xenografts. FIELD STRENGTH/SEQUENCE: A 3.0 T/T1-weighted fast spin-echo (FSE), T2-weighted fast relaxation fast spin-echo, and DWI PROPELLER FSE sequences. ASSESSMENT: Four radiologists measured ADC values using four ROI methods (oval, freehand, small-sample, and whole-volume). Immunohistochemical assessment of Ki-67, Bcl-2, and P53 LIs was performed. STATISTICAL TESTS: Interclass correlation coefficient (ICC), one-way analysis of variance followed by LSD-t post hoc analysis, and Pearson correlation test were performed. The statistical threshold was defined as a P-value of <0.05. RESULTS: All ROI methods for ADC measurements showed excellent interobserver agreement (ICC range, 0.832-0.986). The ADC values demonstrated significant differences among the four ROI methods. The ADC values for oval, freehand, small-sample, and whole-volume ROI methods showed a moderately negative correlation with Ki-67 (r = -0.623; r = -0.629; r = -0.642, and r = -0.431) and Bcl-2 (r = -0.590; r = -0.597; r = -0.659, and r = -0.425) LIs, but no correlation with P53 LI (r = 0.364, P = 0.104; r = 0.350, P = 0.120; r = 0.379, P = 0.091; r = 0.390, P = 0.080). DATA CONCLUSION: The ADC value can be used to evaluate cell proliferation and apoptosis indexes in a murine model of fibrosarcoma, employing the small-sample ROI as a reliable method. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 3.


Subject(s)
Fibrosarcoma , Tumor Suppressor Protein p53 , Humans , Female , Animals , Mice , Ki-67 Antigen , Prospective Studies , Disease Models, Animal , Reproducibility of Results , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Cell Proliferation
10.
Mol Cell Biochem ; 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37347361

ABSTRACT

Septic cardiomyopathy (SCM) is one of the most serious complications of sepsis. The present study investigated the role and mechanism of upstream stimulatory factor 2 (USF2) in SCM. Serum samples were extracted from SCM patients and healthy individuals. A murine model of sepsis was induced by caecal ligation and puncture (CLP) surgery. Myocardial injury was examined by echocardiography and HE staining. ELISA assay evaluated myocardial markers (CK-MB, cTnI) and inflammatory cytokines (TNF-α, IL-1ß, IL-18). Primary mouse cardiomyocytes were treated with lipopolysaccharide (LPS) to simulate sepsis in vitro. RT-qPCR and Western blot were used for analyzing gene and protein levels. CCK-8 assay assessed cell viability. NLRP3 was detected by immunofluorescence. ChIP, RIP and dual luciferase reporter assays were conducted to validate the molecular associations. USF2 was increased in serum from SCM patients, septic mice and primary cardiomyocytes. USF2 silencing improved the survival of septic mice and attenuated sepsis-induced myocardial pyroptosis and inflammation in vitro and in vivo. Mechanistically, USF2 could directly bind to the promoter of miR-206 to transcriptionally inhibit its expression. Moreover, RhoB was confirmed as a target of miR-206 and could promote ROCK activation and NLRP3 inflammasome formation. Moreover, overexpression of RhoB remarkably reversed the protection against LPS-induced inflammation and pyroptosis mediated by USF2 deletion or miR-206 overexpression in cardiomyocytes. The above findings elucidated that USF2 knockdown exerted a cardioprotective effect on sepsis by decreasing pyroptosis and inflammation via miR-206/RhoB/ROCK pathway, suggesting that USF2 may be a novel drug target in SCM.

11.
Cell Biol Int ; 47(5): 894-906, 2023 May.
Article in English | MEDLINE | ID: mdl-36950834

ABSTRACT

Myocardial ischemia/reperfusion injury (MIRI) is a major cause of heart failure after myocardial infarction. It has been reported that miR-322 is involved in MIRI progression, while the molecular mechanism of miR-322 in regulating MIRI progression needs to be further probed. MIRI cell model was established by oxygen-glucose deprivation/reoxygenation (OGD/R). Cell viability was assessed using MTS assay. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining were employed to analyze cell apoptosis. In addition, the interactions between miR-322, Smad7/Smurf2, hypoxia-inducible factor alpha (HIF-1α), and ß-catenin were verified by dual-luciferase reporter gene assay. Our results displayed that miR-322 was significantly downregulated in OGD/R-treated H9c2 cells, and its overexpression resulted in increased cell viability and reduced the apoptosis. Smurf2 and Smad7 were identified as the direct targets of miR-322. Smad7 knockdown or Smurf2 knockdown increased OGD/R-treated H9c2 cell viability and suppressed the apoptosis. Meanwhile, miR-322 mimics abolished the mitigating effect of Smad7 or Smurf2 overexpression on MIRI. In addition, the Smad3/ß-catenin pathway was identified as the downstream pathway of Smurf2/Smad7. Moreover, it was found that HIF-1α interacted with the miR-322 promoter, and ß-catenin interacted with the HIF-1α promoter to form a loop. HIF-1α-induced upregulated miR-322 activated the Smad3/ß-catenin pathway by targeting Smurf2 and Smad7 to improve MIRI; meanwhile, ß-catenin/HIF-1α formed a positive feedback loop to continuously improve MIRI.


Subject(s)
MicroRNAs , Myocardial Infarction , Myocardial Reperfusion Injury , Humans , Apoptosis , beta Catenin/metabolism , Feedback , MicroRNAs/metabolism , Myocardial Infarction/genetics , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Smad3 Protein/metabolism , Smad7 Protein/metabolism , Ubiquitin-Protein Ligases/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
12.
Fish Shellfish Immunol ; 139: 108866, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37277049

ABSTRACT

Pyroptosis is a newly discovered programmed cell death pathway that plays an essential role in the host's defense against pathogenic infections. This process is orchestrated by inflammasomes, which are intricate multiprotein complexes that orchestrate the activation of caspase and instigate the liberation of proinflammatory cytokines. Additionally, gasdermin family proteins execute their role by forming pores in the cell membrane, ultimately leading to cell lysis. In recent years, pyroptosis has emerged as a promising target for disease management in fish, particularly in the context of infectious diseases. In this review, we provide an overview of the current understanding regarding the role of pyroptosis in fish, focusing on its involvement in host-pathogen interactions and its potential as a therapeutic target. We also highlighted the latest advancements in the field development of pyroptosis inhibitors and their potential applications in fish disease management. Subsequently, we deliberate on the obstacles and future prospects for pyroptosis research in fish, emphasizing the necessity of conducting more comprehensive investigations to unravel the intricate regulatory mechanisms governing this process across diverse fish species and environmental contexts. Finally, this review will also highlight the current limitations and future perspectives of pyroptosis research in aquaculture.


Subject(s)
Apoptosis , Pyroptosis , Animals , Inflammasomes , Caspases/metabolism , Disease Management
13.
Int J Clin Pract ; 2023: 5562495, 2023.
Article in English | MEDLINE | ID: mdl-37609664

ABSTRACT

Background: Tuberculosis (TB), a multisystemic disease with protean presentation, remains a major global health problem. Although concurrent pulmonary tuberculosis (PTB) and extrapulmonary tuberculosis (EPTB) cases are commonly observed clinically, knowledge regarding concurrent PTB-EPTB is limited. Here, a large-scale multicenter observational study conducted in China aimed to study the epidemiology of concurrent PTB-EPTB cases by diagnostically defining TB types and then implementing association rules analysis. Methods: The retrospective study was conducted at 21 hospitals in 15 provinces in China and included all inpatients with confirmed TB diagnoses admitted from Jan 2011 to Dec 2017. Association rules analysis was conducted for cases with concurrent PTB and various types of EPTB using the Apriori algorithm. Results: Evaluation of 438,979TB inpatients indicated PTB was the most commonly diagnosed (82.05%) followed by tuberculous pleurisy (23.62%). Concurrent PTB-EPTB was found in 129,422 cases (29.48%) of which tuberculous pleurisy was the most common concurrent EPTB type observed. The multivariable logistic regression models demonstrated that odds ratios of concurrent PTB-EPTB cases varied by gender and age group. For PTB cases with concurrent EPTB, the strongest association was found between PTB and concurrent bronchial tuberculosis (lift = 1.09). For EPTB cases with concurrent PTB, the strongest association was found between pharyngeal/laryngeal tuberculosis and concurrent PTB (lift = 1.11). Confidence and lift values of concurrent PTB-EPTB cases varied with gender and age. Conclusions: Numerous concurrent PTB-EPTB case types were observed, with confidence and lift values varying with gender and age. Clinicians should screen for concurrent PTB-EPTB in order to improve treatment outcomes.


Subject(s)
Tuberculosis, Extrapulmonary , Tuberculosis, Pleural , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pleural/complications , Tuberculosis, Pleural/epidemiology , Retrospective Studies , Tuberculosis, Pulmonary/complications , Tuberculosis, Pulmonary/epidemiology , China/epidemiology
14.
Neurosurg Rev ; 47(1): 14, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38102367

ABSTRACT

The objective of this study is to preliminarily investigate the surgical safety, efficacy, techniques, and clinical value of fully neuroendoscopic surgery for the resection of cerebellopontine angle (CPA) tumors via a retrosigmoid approach. The clinical data of 47 cerebellopontine angle area (CPA) tumors that were treated by full neuroendoscopic surgery from June 2014 to June 2023 were retrospectively analyzed. The efficacy and advantages of the surgical techniques were evaluated based on indicators such as duration of the surgery, neuroendoscopic techniques, intraoperative integrity of nerves and blood vessels, extent of tumor resection, outcomes or postoperative symptoms, and incidence of complications. The 47 cases of cerebellopontine angle tumors include 34 cases of epidermoid cysts, 7 cases of vestibular schwannomas, and 6 cases of meningiomas. All patients underwent fully neuroendoscopic surgery. Twenty tumors were removed using the one-surgeon two-hands technique, and 27 tumors were removed using the two-surgeons four-hands technique. The anatomical integrity of the affected cranial nerves was preserved in all 47 cases. None of the patients suffered a postoperative hemorrhage, cerebrospinal fluid leak, and aseptic or septic meningitis, or died. The rate of total tumor resection was 72.3% (34/47), and the symptom improvement rate was 89.4% (42/47). All patients were followed up for 2 to 12 months, and none died nor showed any signs of tumor recurrence. By analyzing 47 fully neuroendoscopic resections of CPA tumors using the posterior sigmoid sinus approach in our center, we believe that such method allows complete, safe, and effective resection of CPA tumors and is thereby worthy of clinical promotion.


Subject(s)
Meningeal Neoplasms , Neuroma, Acoustic , Humans , Neuroma, Acoustic/surgery , Retrospective Studies , Neurosurgical Procedures/methods , Neoplasm Recurrence, Local/surgery , Meningeal Neoplasms/surgery , Meningeal Neoplasms/pathology , Cerebellopontine Angle/surgery , Cerebellopontine Angle/pathology
15.
Acta Biochim Biophys Sin (Shanghai) ; 55(5): 842-852, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37227155

ABSTRACT

Osteosarcoma (OS) is the most common primary bone cancer in children and adolescents. In clinical treatments, the insensitivity of OS to conventional radiotherapy regimens significantly contributes to poor patient prognosis and survival. EXO1 is responsible for DNA repair pathways and telomere maintenance. Meanwhile, ATM and ATR are considered switches because they can regulate the expression of EXO1. However, their expression and interaction in OS cells under irradiation (IR) remain unclear. This study aims to investigate the roles of FBXO32, ATM, ATR and EXO1 in OS radiotherapy insensitivity and poor patient prognosis and explore potential pathogenic mechanisms. Bioinformatics is employed to analyse differential gene expression and correlations with prognosis in OS. Cell counting kit 8 assay, clone formation assay, and flow cytometry are used to evaluate cell survival and apopotosis under IR. Co-IP assay is used to detect protein‒protein interactions. Bioinformatics analysis reveals that EXO1 is closely related to survival, apoptosis and poor prognosis in OS. Silencing of EXO1 suppresses cell proliferation and increases the sensitivity of OS cells. Molecular biological experiments show that ATM and ATR act as switches to regulate EXO1 expression under IR. Higher expression of EXO1, which is closely correlated with IR insensitivity and poorer prognosis, might be used as a prognostic indicator for OS. Phosphorylated ATM enhances the expression of EXO1, and phosphorylated ATR induces the degradation of EXO1. More importantly, FBXO32 degrades ATR via ubiquitination in a time-dependent manner. Our data may provide a reference for future research in the mechanisms, clinical diagnosis, and treatment of OS.


Subject(s)
Bone Neoplasms , Osteosarcoma , Child , Humans , Adolescent , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Osteosarcoma/genetics , Osteosarcoma/radiotherapy , Osteosarcoma/metabolism , Cell Survival , Cell Proliferation/genetics , Bone Neoplasms/genetics , Bone Neoplasms/radiotherapy , Bone Neoplasms/metabolism , Cell Line, Tumor , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , DNA Repair Enzymes/genetics , Muscle Proteins/metabolism , SKP Cullin F-Box Protein Ligases/metabolism
16.
Proc Natl Acad Sci U S A ; 117(35): 21747-21756, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32817425

ABSTRACT

Arabidopsis AINTEGUMENTA (ANT), an AP2 transcription factor, is known to control plant growth and floral organogenesis. In this study, our transcriptome analysis and in situ hybridization assays of maize embryonic leaves suggested that maize ANT1 (ZmANT1) regulates vascular development. To better understand ANT1 functions, we determined the binding motif of ZmANT1 and then showed that ZmANT1 binds the promoters of millet SCR1, GNC, and AN3, which are key regulators of Kranz anatomy, chloroplast development, and plant growth, respectively. We generated a mutant with a single-codon deletion and two frameshift mutants of the ANT1 ortholog in the C4 millet Setaria viridis by the CRISPR/Cas9 technique. The two frameshift mutants displayed reduced photosynthesis efficiency and growth rate, smaller leaves, and lower grain yields than wild-type (WT) plants. Moreover, their leaves sporadically exhibited distorted Kranz anatomy and vein spacing. Conducting transcriptomic analysis of developing leaves in the WT and the three mutants we identified differentially expressed genes (DEGs) in the two frameshift mutant lines and found many down-regulated DEGs enriched in photosynthesis, heme, tetrapyrrole binding, and antioxidant activity. In addition, we predicted many target genes of ZmANT1 and chose 13 of them to confirm binding of ZmANT1 to their promoters. Based on the above observations, we proposed a model for ANT1 regulation of cell proliferation and leaf growth, vascular and vein development, chloroplast development, and photosynthesis through its target genes. Our study revealed biological roles of ANT1 in several developmental processes beyond its known roles in plant growth and floral organogenesis.


Subject(s)
Adenine Nucleotide Translocator 1/metabolism , Zea mays/growth & development , Zea mays/genetics , Adenine Nucleotide Translocator 1/physiology , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism , Chloroplasts/metabolism , Flowers/genetics , Flowers/growth & development , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Millets/genetics , Millets/metabolism , Organogenesis, Plant/genetics , Photosynthesis/genetics , Photosynthesis/physiology , Plant Development/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcriptome
17.
Sensors (Basel) ; 23(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37299796

ABSTRACT

Sensor ontology provides a standardized semantic representation for information sharing between sensor devices. However, due to the varied descriptions of sensor devices at the semantic level by designers in different fields, data exchange between sensor devices is hindered. Sensor ontology matching achieves data integration and sharing between sensors by establishing semantic relationships between sensor devices. Therefore, a niching multi-objective particle swarm optimization algorithm (NMOPSO) is proposed to effectively solve the sensor ontology matching problem. As the sensor ontology meta-matching problem is essentially a multi-modal optimization problem (MMOP), a niching strategy is introduced into MOPSO to enable the algorithm to find more global optimal solutions that meet the needs of different decision makers. In addition, a diversity-enhancing strategy and an opposition-based learning (OBL) strategy are introduced into the evolution process of NMOPSO to improve the quality of sensor ontology matching and ensure the solutions converge to the real Pareto fronts (PFs). The experimental results demonstrate the effectiveness of NMOPSO in comparison to MOPSO-based matching techniques and participants of the Ontology Alignment Evaluation Initiative (OAEI).


Subject(s)
Algorithms , Semantics , Humans , Information Dissemination
18.
Nano Lett ; 22(7): 2702-2711, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35324204

ABSTRACT

The therapeutic efficacy of wound infections caused by bacteria is challenged by limited wound repairs and a high risk of inflammation. Microneedles have been generated for wound healing since they are able to efficiently pierce the epidermis and deliver drugs. However, regular microneedles cannot provide oriented traction to "shrink" the wound area, and most microneedles are made of inert polymers, which mainly serve as a support but rarely participate in the following physiological processes. Herein, inspired by lamprey teeth, we designed oriented antibacterial sericin microneedles with dually functionalized needles to provide penetration and directional traction. Sericin, derived from silkworm cocoons, was employed to fabricate microneedle tips, significantly improving skin repair via hair follicle regeneration and angiogenesis. Besides, zinc oxide nanoparticles were integrated as an antibacterial module, endowing the OASM with high bacterial suppression. It is believed that the synergy of these systems may effectively heal infected wounds, suggesting its clinically translational potential.


Subject(s)
Sericins , Wound Infection , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Lampreys , Needles , Sericins/pharmacology , Wound Healing , Wound Infection/drug therapy
19.
Int J Mol Sci ; 24(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38139375

ABSTRACT

Enhancers are located upstream or downstream of key deoxyribonucleic acid (DNA) sequences in genes and can adjust the transcription activity of neighboring genes. Identifying enhancers and determining their functions are important for understanding gene regulatory networks and expression regulatory mechanisms. However, traditional enhancer recognition relies on manual feature engineering, which is time-consuming and labor-intensive, making it difficult to perform large-scale recognition analysis. In addition, if the original dataset is too small, there is a risk of overfitting. In recent years, emerging methods, such as deep learning, have provided new insights for enhancing identification. However, these methods also present certain challenges. Deep learning models typically require a large amount of high-quality data, and data acquisition demands considerable time and resources. To address these challenges, in this paper, we propose a data-augmentation method based on generative adversarial networks to solve the problem of small datasets. Moreover, we used regularization methods such as weight decay to improve the generalizability of the model and alleviate overfitting. The Transformer encoder was used as the main component to capture the complex relationships and dependencies in enhancer sequences. The encoding layer was designed based on the principle of k-mers to preserve more information from the original DNA sequence. Compared with existing methods, the proposed approach made significant progress in enhancing the accuracy and strength of enhancer identification and prediction, demonstrating the effectiveness of the proposed method. This paper provides valuable insights for enhancer analysis and is of great significance for understanding gene regulatory mechanisms and studying disease correlations.


Subject(s)
Gene Regulatory Networks , Labor, Obstetric , Pregnancy , Female , Humans , Data Accuracy , Electric Power Supplies , Recognition, Psychology
20.
Int J Mol Sci ; 24(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38003311

ABSTRACT

Brassinosteroids (BRs), the sixth major phytohormone, can regulate plant salt tolerance. Many studies have been conducted to investigate the effects of BRs on plant salt tolerance, generating a large amount of research data. However, a meta-analysis on regulating plant salt tolerance by BRs has not been reported. Therefore, this study conducted a meta-analysis of 132 studies to elucidate the most critical physiological mechanisms by which BRs regulate salt tolerance in plants from a higher dimension and analyze the best ways to apply BRs. The results showed that exogenous BRs significantly increased germination, plant height, root length, and biomass (total dry weight was the largest) of plants under salt stress. There was no significant difference between seed soaking and foliar spraying. However, the medium method (germination stage) and stem application (seedling stage) may be more effective in improving plant salt tolerance. BRs only inhibit germination in Solanaceae. BRs (2 µM), seed soaking for 12 h, and simultaneous treatment with salt stress had the highest germination rate. At the seedling stage, the activity of Brassinolide (C28H48O6) was higher than that of Homobrassinolide (C29H50O6), and post-treatment, BRs (0.02 µM) was the best solution. BRs are unsuitable for use in the germination stage when Sodium chloride is below 100 mM, and the effect is also weakest in the seedling stage. Exogenous BRs promoted photosynthesis, and antioxidant enzyme activity increased the accumulation of osmoregulatory and antioxidant substances and reduced the content of harmful substances and Na+, thus reducing cell damage and improving plant salt tolerance. BRs induced the most soluble protein, chlorophyll a, stomatal conductance, net photosynthetic rate, Glutathione peroxidase, and root-Ca2+, with BRs causing Ca2+ signals in roots probably constituting the most important reason for improving salt tolerance. BRs first promoted the accumulation of Ca2+ in roots, which increased the content of the above vital substances and enzyme activities through the Ca2+ signaling pathway, improving plant salt tolerance.


Subject(s)
Antioxidants , Brassinosteroids , Brassinosteroids/pharmacology , Brassinosteroids/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Salt Tolerance , Chlorophyll A/metabolism , Seedlings/metabolism , Plant Roots
SELECTION OF CITATIONS
SEARCH DETAIL