ABSTRACT
Cultivated rice varieties are all diploid, and polyploidization of rice has long been desired because of its advantages in genome buffering, vigorousness, and environmental robustness. However, a workable route remains elusive. Here, we describe a practical strategy, namely de novo domestication of wild allotetraploid rice. By screening allotetraploid wild rice inventory, we identified one genotype of Oryza alta (CCDD), polyploid rice 1 (PPR1), and established two important resources for its de novo domestication: (1) an efficient tissue culture, transformation, and genome editing system and (2) a high-quality genome assembly discriminated into two subgenomes of 12 chromosomes apiece. With these resources, we show that six agronomically important traits could be rapidly improved by editing O. alta homologs of the genes controlling these traits in diploid rice. Our results demonstrate the possibility that de novo domesticated allotetraploid rice can be developed into a new staple cereal to strengthen world food security.
Subject(s)
Crops, Agricultural/genetics , Domestication , Oryza/genetics , CRISPR-Cas Systems , Food Security , Gene Editing , Genetic Variation , Genome, Plant , Oryza/classification , PolyploidyABSTRACT
Endoplasmic reticulum (ER) stress, a common cellular stress response induced by various factors that interfere with cellular homeostasis, may trigger cell apoptosis. Autophagy is an important and conserved mechanism for eliminating aggregated proteins and maintaining protein stability of cells, which is closely associated with ER stress and ER stress-induced apoptosis. In this paper, we report for the first time that Hhatl, an ER-resident protein, is downregulated in response to ER stress. Hhatl overexpression alleviated ER stress and ER stress induced apoptosis in cells treated with tunicamycin or thapsigargin, whereas Hhatl knockdown exacerbated ER stress and apoptosis. Further study showed that Hhatl attenuates ER stress by promoting autophagic flux. Mechanistically, we found that Hhatl promotes autophagy by associating with autophagic protein LC3 (microtubule-associated protein 1A/1B-light chain 3) via the conserved LC3-interacting region motif. Noticeably, the LC3-interacting region motif was essential for Hhatl-regulated promotion of autophagy and reduction of ER stress. These findings demonstrate that Hhatl ameliorates ER stress via autophagy activation by interacting with LC3, thereby alleviating cellular pressure. The study indicates that pharmacological or genetic regulation of Hhatl-autophagy signaling might be potential for mediating ER stress and related diseases.
Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Microtubule-Associated Proteins , Endoplasmic Reticulum Stress/drug effects , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Humans , Apoptosis/drug effects , HEK293 Cells , HeLa Cells , Tunicamycin/pharmacologyABSTRACT
BARENTSZ (BTZ), a core component of the exon junction complex, regulates diverse developmental processes in animals. However, its evolutionary and developmental roles in plants remain elusive. Here, we revealed that three groups of paralogous BTZ genes existed in Poaceae, and Group 2 underwent loss-of-function mutations during evolution. They showed surprisingly low (~33%) sequence identities, implying functional divergence. Two genes retained in rice, OsBTZ1 and OsBTZ3, were edited; however, the resultant osbtz1 and osbtz3 mutants showed similar floral morphological and functional defects at a low frequency. When growing under low-temperature conditions, developmental abnormalities became pronounced, and new floral variations were induced. In particular, stamen and carpel functionality was impaired in these rice btz mutants. The double-gene mutant osbtz1/3 shared these floral defects with an increased frequency, which was further induced under low-temperature conditions. OsBTZs interacted with OsMADS7 and OsMADS8, and the floral expressions of the OsTGA10 and MADS-box genes were correlatively altered in these osbtz mutants and responded to low-temperature treatment. These novel findings demonstrate that two highly diverged OsBTZs are required to maintain floral developmental stability under low-temperature conditions, and play an integral role in male and female fertility, thus providing new insights into the indispensable roles of BTZ genes in plant development and adaptive evolution.
Subject(s)
Flowers , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Oryza/genetics , Oryza/growth & development , Oryza/physiology , Flowers/genetics , Flowers/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Temperature , Cold Temperature , Mutation , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Genes, Plant/geneticsABSTRACT
Polyploid hybrid rice (Oryza sativa) has great potential for increasing yields. However, hybrid rice depends on male fertility and its regulation, which is less well studied in polyploid rice than in diploid rice. We previously identified an MYB transcription factor, MORE FLORET1 (MOF1), whose mutation causes male sterility in neo-tetraploid rice. MOF1 expression in anthers peaks at anther Stage 7 (S7) and progressively decreases to low levels at S10. However, it remains unclear how the dynamics of MOF1 expression contribute to male fertility. Here, we carefully examined anther development in both diploid and tetraploid mof1 rice mutants, as well as lines ectopically expressing MOF1 in a temporal manner. MOF1 mutations caused delayed degeneration of the tapetum and middle layer of anthers and aberrant pollen wall organization. Ectopic MOF1 expression at later stages of anther development led to retarded cytoplasmic reorganization of tapetal cells. In both cases, pollen grains were aborted and seed production was abolished, indicating that precise control of MOF1 expression is essential for male reproduction. We demonstrated that 5 key tapetal genes, CYP703A3 (CYTOCHROME P450 HYDROXYLASE 703A3), OsABCG26 (O. sativa ATP BINDING CASSETTE G26), PTC1 (PERSISTENT TAPETAL CELL1), PKS2 (POLYKETIDE SYNTHASE 2), and OsABCG15 (O. sativa ATP BINDING CASSETTE G15), exhibit expression patterns opposite to those of MOF1 and are negatively regulated by MOF1. Moreover, DNA affinity purification sequencing (DAP-seq), luciferase activity assays, and electrophoretic mobility shift assays indicated that MOF1 binds directly to the PKS2 promoter for transcriptional repression. Our results provide a mechanistic basis for the regulation of male reproduction by MOF1 in both diploid and tetraploid rice. This study will facilitate the development of polyploid male sterile lines, which are useful for breeding of polyploid hybrid rice.
Subject(s)
Diploidy , Flowers , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Pollen , Tetraploidy , Oryza/genetics , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/genetics , Flowers/growth & development , Pollen/genetics , Pollen/growth & development , Mutation/genetics , Genes, Plant , Transcription Factors/genetics , Transcription Factors/metabolismABSTRACT
HHATL, previously implicated in cardiac hypertrophy in the zebrafish model, has emerged as a prioritized HCM risk gene. We identified six rare mutations in HHATL, present in 6.94 % of nonsarcomeric HCM patients (5/72). Moreover, a decrease of HHATL in the heart tissue from HCM patients and cardiac hypertrophy mouse model using transverse aortic constriction was observed. Despite this, the precise pathogenic mechanisms underlying HHATL-associated cardiac hypertrophy remain elusive. In this study, we observed that HHATL downregulation in H9C2 cells resulted in elevated expression of hypertrophic markers and reactive oxygen species (ROS), culminating in cardiac hypertrophy and mitochondrial dysfunction. Notably, the bioactive form of SHH, SHHN, exhibited a significant increase, while the mitochondrial fission protein dynamin-like GTPase (DRP1) decreased upon HHATL depletion. Intervention with the SHH inhibitor RU-SKI 43 or DRP1 overexpression effectively prevented Hhatl-depletion-induced cardiac hypertrophy, mitigating disruptions in mitochondrial morphology and membrane potential through the SHH/DRP1 axis. In summary, our findings suggest that HHATL depletion activates SHH signaling, reducing DRP1 levels and thereby promoting the expression of hypertrophic markers, ROS generation, and mitochondrial dysfunction, ultimately leading to cardiac hypertrophy. This study provides additional compelling evidence supporting the association of HHATL with cardiac hypertrophy.
Subject(s)
Cardiomegaly , Down-Regulation , Dynamins , Hedgehog Proteins , Reactive Oxygen Species , Dynamins/metabolism , Dynamins/genetics , Animals , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Cardiomegaly/metabolism , Cardiomegaly/genetics , Cardiomegaly/pathology , Reactive Oxygen Species/metabolism , Humans , Down-Regulation/genetics , Signal Transduction , Mice , Rats , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/geneticsABSTRACT
Hepatocellular carcinoma (HCC) is one of the most common primary hepatic malignancies. E2F transcription factors play an important role in the tumorigenesis and progression of HCC, mainly through the RB/E2F pathway. Prognostic models for HCC based on gene signatures have been developed rapidly in recent years; however, their discriminating ability at the single-cell level remains elusive, which could reflect the underlying mechanisms driving the sample bifurcation. In this study, we constructed and validated a predictive model based on E2F expression, successfully stratifying patients with HCC into two groups with different survival risks. Then we used a single-cell dataset to test the discriminating ability of the predictive model on infiltrating T cells, demonstrating remarkable cellular heterogeneity as well as altered cell fates. We identified distinct cell subpopulations with diverse molecular characteristics. We also found that the distribution of cell subpopulations varied considerably across onset stages among patients, providing a fundamental basis for patient-oriented precision evaluation. Moreover, single-sample gene set enrichment analysis revealed that subsets of CD8+ T cells with significantly different cell adhesion levels could be associated with different patterns of tumor cell dissemination. Therefore, our findings linked the conventional prognostic gene signature to the immune microenvironment and cellular heterogeneity at the single-cell level, thus providing deeper insights into the understanding of HCC tumorigenesis.
Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Liver Neoplasms , Lymphocytes, Tumor-Infiltrating , Humans , Carcinogenesis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Transformation, Neoplastic , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Prognosis , Transcriptome , Tumor Microenvironment , Lymphocytes, Tumor-Infiltrating/immunologyABSTRACT
Aflatoxin B1 (AFB1) not only causes significant losses in livestock production but also poses a serious threat to human health. It is the most carcinogenic among known chemicals. Pigs are more susceptible to AFB1 and experience a higher incidence. However, the molecular mechanism of the toxic effect of AFB1 remains unclear. In this study, we used assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA-seq to uncover chromatin accessibility and gene expression dynamics in PK-15 cells during early exposure to AFB1. We observed that the toxic effects of AFB1 involve signaling pathways such as p53, PI3K-AKT, Hippo, MAPK, TLRs, apoptosis, autophagy, and cancer pathways. Basic leucine zipper (bZIP) transcription factors (TFs), including AP-1, Fos, JunB, and Fra2, play a crucial role in regulating the biological processes involved in AFB1 challenge. Several new TFs, such as BORIS, HNF1b, Atf1, and KNRNPH2, represent potential targets for the toxic mechanism of AFB1. In addition, it is crucial to focus on the concentration of intracellular zinc ions. These findings will contribute to a better understanding of the mechanisms underlying AFB1-induced nephrotoxicity and offer new molecular targets.
Subject(s)
Aflatoxin B1 , Chromatin , Aflatoxin B1/toxicity , Animals , Chromatin/metabolism , Chromatin/drug effects , Cell Line , Swine , Transcription, Genetic/drug effects , Signal Transduction/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation/drug effectsABSTRACT
BACKGROUND: Bracts are important for ornamental plants, and their developmental regulation process is complex; however, relatively little research has been conducted on bracts. In this study, physiological, biochemical and morphological changes in Bougainvillea glabra leaves, leaf buds and bracts during seven developmental periods were systematically investigated. Moreover, transcriptomic data of B. glabra bracts were obtained using PacBio and Illumina sequencing technologies, and key genes regulating their development were screened. RESULTS: Scanning electron microscopy revealed that the bracts develop via a process involving regression of hairs and a color change from green to white. Transcriptome sequencing revealed 79,130,973 bp of transcript sequences and 45,788 transcripts. Differential gene expression analysis revealed 50 expression patterns across seven developmental periods, with significant variability in transcription factors such as BgAP1, BgFULL, BgCMB1, BgSPL16, BgSPL8, BgDEFA, BgEIL1, and BgBH305. KEGG and GO analyses of growth and development showed the involvement of chlorophyll metabolism and hormone-related metabolic pathways. The chlorophyll metabolism genes included BgPORA, BgSGR, BgPPH, BgPAO and BgRCCR. The growth hormone and abscisic acid signaling pathways involved 44 and 23 homologous genes, and coexpression network analyses revealed that the screened genes BgAPRR5 and BgEXLA1 are involved in the regulation of bract development. CONCLUSIONS: These findings improve the understanding of the molecular mechanism of plant bract development and provide important guidance for the molecular regulation and genetic improvement of the growth and development of ornamental plants, mainly ornamental bracts.
Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Regulatory Networks , Nyctaginaceae , Nyctaginaceae/genetics , Nyctaginaceae/metabolism , Transcriptome , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Genes, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/genetics , Flowers/growth & developmentABSTRACT
MAIN CONCLUSION: The up-regulation of OsmiR5519 results in the decrease of grain size, weight and seed setting rate. OsmiR5519 plays important roles in the process of grain filling and down-regulates sucrose synthase gene RSUS2. MicroRNAs (miRNAs) are one class of small non-coding RNAs that act as crucial regulators of plant growth and development. In rice, the conserved miRNAs were revealed to regulate the yield components, but the function of rice-specific miRNAs has been rarely studied. The rice-specific OsmiR5519 was found to be abundantly expressed during reproductive development, but its biological roles remain unknown. In this study, the function of rice-specific OsmiR5519 was characterized with the miR5519-overexpressing line (miR5519-OE) and miR5519-silenced line (STTM5519). At seedling stage, the content of sucrose, glucose and fructose was obviously lower in the leaves of miR5519-OE lines than those of wild-type (WT) line. The grain size and weight were decreased significantly in miR5519-OE lines, compared to those of WT rice. The cell width of hull in miR5519-OE was smaller than that in WT. The seed setting rate was notably reduced in miR5519-OE lines, but not in STTM5519 lines. Cytological observation demonstrated that the inadequate grain filling was the main reason for the decline of seed setting rate in miR5519-OE lines. The percentage of the defects of grain amounted to 40% in miR5519-OE lines, which almost equaled to the decreased value of seed setting rate. Furthermore, the sucrose synthase gene RSUS2 was identified as a target of OsmiR5519 via RNA ligase-mediated 3'-amplification of cDNA ends (3'-RLM-RACE), dual luciferase assays and transient expression assays. In summary, our results suggest that OsmiR5519 regulates grain size and weight and down-regulates RSUS2 in rice.
Subject(s)
Glucosyltransferases , MicroRNAs , Oryza , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Edible Grain , Seeds , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, PlantABSTRACT
In the face of rising global temperatures, the mechanisms behind an organism's ability to acclimate to heat stress remain enigmatic. The rice leaf folder, Cnaphalocrocis medinalis, traditionally viewed as temperature-sensitive, paradoxically exhibits robust larval acclimation to heat stress. This study used the heat-acclimated strain HA39, developed through multigenerational exposure to 39°C during the larval stage, and the unacclimated strain HA27 reared at 27°C to unravel the transgenerational effects of heat acclimation and its regulatory mechanisms. Heat acclimation for larvae incurred a fitness cost in pupae when exposed to high temperature, yet a significant transgenerational effect surfaced, revealing heightened fitness benefit in pupae from HA39, even without additional heat exposure during larval recovery at 27°C. This transgenerational effect exhibited a short-term memory, diminishing after two recovery generations. Moreover, the effect correlated with increased superoxide dismutase (SOD) enzyme activity and expression levels of oxidoreductase genes, representing physiological and molecular foundations of heat acclimation. Heat-acclimated larvae displayed elevated DNA methylation levels, while pupae from HA39, in recovery generations, exhibited decreased methylation indicated by the upregulation of a demethylase gene and downregulation of two methyltransferase genes at high temperatures. In summary, heat acclimation induces DNA methylation, orchestrating heat-stress memory and influencing the expression levels of oxidoreductase genes and SOD activity. Heat-stress memory enhances the acclimation of the migratory insect pest to global warming.
Subject(s)
Acclimatization , Global Warming , Heat-Shock Response , Larva , Pupa , Animals , Larva/physiology , Acclimatization/genetics , Heat-Shock Response/genetics , DNA Methylation , Moths/physiology , Moths/genetics , Hot Temperature , Animal MigrationABSTRACT
Grain size is important for yield in rice (Oryza sativa L.). Although many genes involved in grain size have been isolated, few can be used in breeding due to their interactions and phenotypic effects. Here, we describe natural variation in the granule-type quantitative trait locus GRAIN SIZE AND WEIGHT 3 (GSW3) located on chromosome 3 in wild rice (Oryza rufipogon Griff.) that encodes a GTPase-regulated protein and negatively regulates grain length, grain width, and 1,000-grain weight. The insertion of a 232-bp fragment of the genomic sequence in the wild rice, a natural allelic variant gene (GSW3), increased the expression levels and reduced the grain length and width and 1,000-grain weight. Knockout of GSW3 in the wild rice inbred line Huaye 3 increased the grain length and width and 1,000-grain weight. Introducing GSW3Huaye3 into cultivated rice line KJ01 and overexpressing GSW3Huaye3 in Huaye 3 resulted in reduced grain length and width and 1,000-grain weight, and grain size and 1,000-grain weight changes were closely related to GSW3 expression levels. GSW3 regulated the grain length and width simultaneously by promoting grain glume cell division and longitudinal and transverse cell growth. GSW3 was also involved in regulating the gibberellic acid signaling pathway and negatively regulated plant growth. Furthermore, a critical SNP in the GSW3 coding region was obviously correlated with grain size variation in a core collection of cultivated rice. This SNP resulted in an amino acid substitution from Gln to Arg at position 161 in GSW3, which reduced the grain size. Our study shows that GSW3 negatively regulates the grain shape, which could explain different grain shapes in modern cultivars and wild rice. GSW3 may also be used for breeding rice varieties with improved grain shapes and higher yield.
Subject(s)
Oryza , Oryza/genetics , Genes, Plant , Genetic Variation , Phenotype , Plant Breeding , Edible Grain/geneticsABSTRACT
The development of the embryo sac is an important factor that affects seed setting in rice. Numerous genes associated with embryo sac (ES) development have been identified in plants; however, the function of the DEAD-box RNA helicase family genes is poorly known in rice. Here, we characterized a rice DEAD-box protein, RH52A, which is localized in the nucleus and cytoplasm and highly expressed in the floral organs. The knockout mutant rh52a displayed partial ES sterility, including degeneration of the ES (21%) and the presence of a double-female-gametophyte (DFG) structure (11.8%). The DFG developed from two functional megaspores near the chalazal end in one ovule, and 3.4% of DFGs were able to fertilize via the sac near the micropylar pole in rh52a. RH52A was found to interact with MFS1 and ZIP4, both of which play a role in homologous recombination in rice meiosis. RNA-sequencing identified 234 down-regulated differentially expressed genes associated with reproductive development, including two, MSP1 and HSA1b, required for female germline cell specification. Taken together, our study demonstrates that RH52A is essential for the development of the rice embryo sac and provides cytological details regarding the formation of DFGs.
Subject(s)
DEAD-box RNA Helicases , Oryza , Plant Proteins , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Gene Expression Regulation, Plant , Ovule/growth & development , Ovule/genetics , Ovule/metabolismABSTRACT
Porcine viral diarrhea is a common ailment in clinical settings, causing significant economic losses to the swine industry. Notable culprits behind porcine viral diarrhea encompass transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA). Co-infections involving the viruses are a common occurrence in clinical settings, thereby amplifying the complexities associated with differential diagnosis. As a consequence, it is therefore necessary to develop a method that can detect and differentiate all four porcine diarrhea viruses (TGEV, PEDV, PDCoV, and PoRVA) with a high sensitivity and specificity. Presently, polymerase chain reaction (PCR) is the go-to method for pathogen detection. In comparison to conventional PCR, TaqMan real-time PCR offers heightened sensitivity, superior specificity, and enhanced accuracy. This study aimed to develop a quadruplex real-time RT-qPCR assay, utilizing TaqMan probes, for the distinctive detection of TGEV, PEDV, PDCoV, and PoRVA. The quadruplex real-time RT-qPCR assay, as devised in this study, exhibited the capacity to avoid the detection of unrelated pathogens and demonstrated commendable specificity, sensitivity, repeatability, and reproducibility, boasting a limit of detection (LOD) of 27 copies/µL. In a comparative analysis involving 5483 clinical samples, the results from the commercial RT-qPCR kit and the quadruplex RT-qPCR for TGEV, PEDV, PDCoV, and PoRVA detection were entirely consistent. Following sample collection from October to March in Guangxi Zhuang Autonomous Region, we assessed the prevalence of TGEV, PEDV, PDCoV, and PoRVA in piglet diarrhea samples, revealing positive detection rates of 0.2 % (11/5483), 8.82 % (485/5483), 1.22 % (67/5483), and 4.94 % (271/5483), respectively. The co-infection rates of PEDV/PoRVA, PEDV/PDCoV, TGEV/PED/PoRVA, and PDCoV/PoRVA were 0.39 %, 0.11 %, 0.01 %, and 0.03 %, respectively, with no detection of other co-infections, as determined by the quadruplex real-time RT-qPCR. This research not only established a valuable tool for the simultaneous differentiation of TGEV, PEDV, PDCoV, and PoRVA in practical applications but also provided crucial insights into the prevalence of these viral pathogens causing diarrhea in Guangxi.
Subject(s)
Porcine epidemic diarrhea virus , Real-Time Polymerase Chain Reaction , Rotavirus , Sensitivity and Specificity , Swine Diseases , Transmissible gastroenteritis virus , Animals , Swine , Real-Time Polymerase Chain Reaction/methods , Transmissible gastroenteritis virus/genetics , Transmissible gastroenteritis virus/isolation & purification , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/isolation & purification , Porcine epidemic diarrhea virus/classification , Swine Diseases/virology , Swine Diseases/diagnosis , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Gastroenteritis, Transmissible, of Swine/diagnosis , Gastroenteritis, Transmissible, of Swine/virology , Deltacoronavirus/genetics , Deltacoronavirus/isolation & purification , Diarrhea/virology , Diarrhea/veterinary , Diarrhea/diagnosis , Coronavirus/genetics , Coronavirus/isolation & purification , Coronavirus/classification , Feces/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virologyABSTRACT
AIMS: To investigate the predictive value and prognostic impact of stress hyperglycemia ratio (SHR) for new-onset atrial fibrillation (NOAF) complicating acute myocardial infarction (AMI). MATERIALS AND METHODS: This retrospective study included 2145 AMI patients without AF history between February 2014 and March 2018. SHR was calculated using fasting blood glucose (mmol/L)/[1.59*HbA1c (%)-2.59]. The association between SHR and post-MI NOAF was assessed with multivariable logistic regression analyses. The primary outcome was a composite of cardiac death, heart failure hospitalisation, recurrent MI, and ischaemic stroke (MACE). Cox regression-adjusted hazard ratios with 95% confidence intervals (CI) were estimated for MACE. RESULTS: A total of 245 (11.4%) patients developed NOAF. In the multivariable logistic regression analyses, SHR (each 10% increase) was significantly associated with increased risks of NOAF in the whole population (OR: 1.05, 95% CI: 1.01-1.10), particularly in non-diabetic individuals (OR:1.08, 95% CI: 1.01-1.17). During a median follow-up of 2.7 years, 370 (18.5%) MACEs were recorded. The optimal cut-off value of SHR for MACE prediction was 1.119. Patients with both high SHR (≥1.119) and NOAF possessed the highest risk of MACE compared to those with neither high SHR nor NOAF after multivariable adjustment (HR: 2.18, 95% CI: 1.39-3.42), especially for diabetics (HR: 2.63, 95% CI: 1.41-4.91). Similar findings were observed using competing-risk models. CONCLUSIONS: SHR is an independent predictor of post-MI NOAF in non-diabetic individuals. Diabetic patients with both high SHR and NOAF had the highest risk of MACE, suggesting that therapies targeting SHR may be considered in these patients. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03533543.
Subject(s)
Atrial Fibrillation , Brain Ischemia , Hyperglycemia , Myocardial Infarction , Stroke , Humans , Retrospective Studies , Atrial Fibrillation/complications , Atrial Fibrillation/epidemiology , Brain Ischemia/complications , Risk Factors , Myocardial Infarction/complications , Myocardial Infarction/epidemiology , Hospitals , Hyperglycemia/complicationsABSTRACT
The capture of carbon dioxide (CO2) from fuel gases is a significant method to solve the global warming problem. Metal-organic frameworks (MOFs) are considered to be promising porous materials and have shown great potential for CO2 adsorption and separation applications. However, the adsorption and diffusion mechanisms of CO2 in functionalized MOFs from the perspective of binding energies are still not clear. Actually, the adsorption and diffusion mechanisms can be revealed more intuitively by the binding energies of CO2 with the functionalized MOFs. In this work, a combination of molecular dynamics simulation and density functional theory calculation was performed to study CO2 adsorption and diffusion mechanisms in five different functionalized isoreticular MOFs (IRMOF-1 through -5), considering the influence of functionalized linkers on the adsorption capacity of functionalized MOFs. The results show that the CO2 uptake is determined by two elements: the binding energy and porosity of MOFs. The porosity of the MOFs plays a dominant role in IRMOF-5, resulting in the lowest level of CO2 uptake. The potential of mean force (PMF) of CO2 is strongest at the CO2/functionalized MOFs interface, which is consistent with the maximum CO2 density distribution at the interface. IRMOF-3 with the functionalized linker -NH2 shows the highest CO2 uptake due to the higher porosity and binding energy. Although IRMOF-5 with the functionalized linker -OC5H11 exhibits the lowest diffusivity of CO2 and the highest binding energy, it shows the lowest CO2 uptake. Accordingly, among the five simulated functionalized MOFs, IRMOF-3 is an excellent CO2 adsorbent and IRMOF-5 can be used to separate CO2 from other gases, which will be helpful for the designing of CO2 capture devices. This work will contribute to the design and screening of materials for CO2 adsorption and separation in practical applications.
ABSTRACT
A green and economical methodology to fabricate carbon-based materials with suitable pore size distributions is needed to achieve rapid electrolyte diffusion and improve the performance of supercapacitors. Here, a method combining in situ templates with self-activation and self-doping is proposed. By variation of the molar ratio of magnesium folate and potassium folate, the pore size distribution was effectively adjusted. The optimal carbon materials (Kx) have a high specific surface area (1021-1676 m2 g-1) and hierarchical pore structure, which significantly promotes its excellent capacitive properties. Notably, K2 shows an excellent mass specific capacitance of 233 F g-1 at 0.1 A g-1. It still retained 113 F g-1 at 55 A g-1. The assembled symmetric supercapacitor exhibited an outstanding cyclic stability. It maintains 100% capacitance after 100â¯000 cycles at 10 A g-1. The symmetric supercapacitor demonstrated a maximum power density of 99.8 kW kg-1. This study focuses on the preparation of layered pore structures to provide insights into the sustainable design of carbon materials.
ABSTRACT
Integration of hydrophobic and antibacterial functionalities into polyester-cotton blended (PTCO) textiles has attracted more attention but remains a challenge. Here, a Janus fabric with antibacterial effect, hydrophobicity, and enhanced moisture-permeability is fabricated using a "mist polymerization" approach. The PET fibers in the PTCO fabric are amino-functionalized through ammonolysis reactions of PET molecules with HDA, and mist treatments of poly lauryl methacrylate (PLMA) and poly(DMC-co-MA) (PDM) are applied on the two side surfaces of the PTCO-HDA fabric, respectively. The resulting Janus fabric exhibits an antibacterial rate of 99.9% against both E. coli and S. aureus, along with a hydrophobic property on its single side (PTCO-HDA@PLMA). Additionally, the establishment of a surface-free energy gradient across the fabric confers superior moisture-permeability to the Janus fabric, offering advantages in preserving textile comfort. Moreover, this approach does not significantly compromise the original fabric properties, such as mechanical strength, moisture permeability, and fabric softness. The proposed method offers a straightforward and scalable strategy for textile finishing, demonstrating great potential in expanding the application scope of PTCO fabrics, and it may hold a pivotal role in diverse applications, notably encompassing home textiles, wound dressings, and high-performance sportswear.
ABSTRACT
Piglet birth weight is associated with preweaning survival, and its related traits have been included in the breeding program. Thus, understanding its genetic basis is essential. This study identified four birth weight-associated genomic regions on chromosomes 2, 4, 5, and 7 through genome-wide association study analysis in 7286 pigs from three different pure breeds using the FarmCPU model. The genetic and phenotypic variance explained by the four candidate regions is 8.42% and 1.85%, respectively. Twenty-eight candidate genes were detected, of which APPL2, TGFBI, MACROH2A1, and SEC22B have been reported to affect body growth or development. In addition, 21 H3K4me3-enriched peaks overlapped with the birth weight-associated genomic regions were identified by integrating the genome-wide association study results with our previous ChIP-seq and RNA-seq data generated in the pig placenta, a fetal organ relevant to birth weight, and three of the regulatory regions influence TGFBI, MACROH2A1, and SEC22B expression. This study provides new insights into understanding the mechanisms for birth weight. Further investigating the variants in the regulatory regions would help identify the functional variants for birth weight in pigs.
Subject(s)
Birth Weight , Genome-Wide Association Study , Sus scrofa , Animals , Birth Weight/genetics , Genome-Wide Association Study/veterinary , Sus scrofa/genetics , Polymorphism, Single Nucleotide , Female , Regulatory Sequences, Nucleic Acid , Phenotype , BreedingABSTRACT
Common wild rice (Oryza rufipogon Griff.) is an important germplasm resource containing valuable genes. Our previous analysis reported a stable wild rice inbred line, Huaye3, which derives from the common wild rice of Guangdong Province. However, there was no information about its drought tolerance ability. Here, we assessed the germination characteristics and seedling growth between the Dawennuo and Huaye3 under five concentrations of PEG6000 treatment (0, 5%, 10%, 15%, and 20%). Huaye3 showed a stronger drought tolerance ability, and its seed germination rate still reached more than 52.50% compared with Dawennuo, which was only 25.83% under the 20% PEG6000 treatment. Cytological observations between the Dawennuo and Huaye3 indicated the root tip elongation zone and buds of Huaye3 were less affected by the PEG6000 treatment, resulting in a lower percentage of abnormalities of cortical cells, stele, and shrinkage of epidermal cells. Using the re-sequencing analysis, we detected 13,909 genes that existed in the genetic variation compared with Dawennuo. Of these genes, 39 were annotated as drought stress-related genes and their variance existed in the CDS region. Our study proved the strong drought stress tolerance ability of Huaye3, which provides the theoretical basis for the drought resistance germplasm selection in rice.
Subject(s)
Droughts , Gene Expression Regulation, Plant , Oryza , Oryza/genetics , Oryza/growth & development , Oryza/physiology , Stress, Physiological/genetics , Seedlings/genetics , Seedlings/growth & development , Germination/genetics , Gene Expression Profiling , Plant Proteins/genetics , Plant Proteins/metabolism , Drought ResistanceABSTRACT
OBJECTIVE: Deep venous thrombosis (DVT) is a common complication in patients with spinal fractures caused by high-energy injuries. Early identification of patients at high risk of postoperative DVT is essential for the prevention of thrombosis. This study aimed to develop and validate a prediction model based on a nomogram to predict DVT in patients with spinal fractures caused by high-energy injuries. METHODS: Clinical data were collected from 936 patients admitted to our hospital between January 2016 and December 2021 with spinal fractures caused by high-energy injuries. Multivariate logistic regression analysis was used to identify the risk factors for postoperative DVT and to develop a nomogram. The predictive performance of the nomogram was evaluated by the receiver operating characteristic (ROC) curve and calibration curve. RESULTS: The incidence of preoperative DVT was 15.38% (144/936). The postoperative incidence of DVT was 20.5% (192/936). The multivariate analysis revealed that age, operation time, blood transfusion, duration of bed rest, American Spinal Injury Association (ASIA) score and D-dimer were risk factors for postoperative DVT. The area under the ROC curve of the nomogram was 0.835 and the calibration curve showed good calibration. CONCLUSIONS: The nomogram showed a good ability to predict postoperative DVT in patients with spinal fractures caused by high-energy injuries, which may benefit pre- and postoperative DVT prophylaxis strategy development.