Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
J Neurophysiol ; 131(4): 598-606, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38380844

ABSTRACT

The transplantation of neonatal microglia suppresses neuroinflammation caused by traumatic brain injury (TBI). This research aimed to explore the optimal time point of neonatal microglia transplantation for the best effect on the improvement of long-term cognitive function and inflammatory response in mouse models. qPCR and immunoblotting showed that the level of Iba1 gradually increased to the highest on day 7 and then gradually declined in TBI mice. Furthermore, it was observed that the level of CD86 and TNF-α increased to the highest after 7 days and subsequently was maintained until day 21, whereas the level of CD206 and IL-10 increased to the highest after 24 h and subsequently decreased until day 21 by qPCR and enzyme-linked immunosorbent assay. Afterward, it was shown that the neonatal microglia transplantation within 1 h significantly attenuated anxiety-like behavior and improved cognitive impairments in TBI mice. Mechanism exploration showed that the neonatal microglia could significantly decrease the level of cleaved caspase-3, M1/M2 polarization, and inflammatory cytokine (TNF-α) while increasing the level of anti-inflammatory factor IL-10 in TBI mice after transplantation within 1 h. Here, our findings demonstrated that neonatal microglia transplantation within 1 h significantly attenuated anxiety-like behavior and cognitive impairments caused by TBI.NEW & NOTEWORTHY The study demonstrated that neonatal microglia transplantation within 1 h significantly inhibited the pathogenesis of traumatic brain injury (TBI) in mouse models through inhibition of M1 polarization and promotion of M2 polarization.


Subject(s)
Brain Injuries, Traumatic , Microglia , Mice , Animals , Interleukin-10/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Anti-Inflammatory Agents/pharmacology , Mice, Inbred C57BL
2.
J Cardiothorac Vasc Anesth ; 38(7): 1569-1576, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38594156

ABSTRACT

Patient blood management (PBM) guidelines for patients undergoing cardiac surgery under cardiopulmonary bypass (CPB) have increased during the past decade, and pharmacotherapy plays an important role in PBM. In the face of the undefined consistency in the methodologic quality and pharmacotherapy recommendations across multiple guidelines, this study exclusively evaluated methodologies of the related guideline development process, and compiled medication recommendations of PBM for cardiac surgery patients. PBM guidelines for cardiac surgery under CPB were searched through some mainstream literature and guideline databases from database establishment to May 15, 2023. Nine guidelines meeting inclusion criteria were included in this study. The quality of the guidelines was evaluated using the Appraisal of Guidelines for Research and Evaluation II (AGREE II) tool. "Stakeholder involvement" received the lowest mean score of 49.38% in the AGREE II scoring among the guidelines. PBM for cardiac surgery patients spans the perioperative phase. Drug therapy strategies of PBM for cardiac surgery patients involve anemia therapy, perioperative administration of antithrombotic drugs, intraoperative anticoagulation, and the use of hemostatic drugs. Unlike for adults, there is less evidence about the management of antithrombotic drugs and hemostatic drugs for pediatric cardiac surgery patients. Recombinant activated factor VII (rFVIIa) and desmopressin (DDAVP) are not recommended after pediatric cardiac surgery, whereas prothrombin complex concentrate could be considered in clinical trials. As for the controversies regarding the administration of rFVIIa and DDAVP after adult cardiac surgery by different societies, clinicians should exercise their clinical judgment based on individual patient features.


Subject(s)
Cardiac Surgical Procedures , Cardiopulmonary Bypass , Practice Guidelines as Topic , Humans , Cardiopulmonary Bypass/methods , Cardiopulmonary Bypass/standards , Cardiac Surgical Procedures/methods , Practice Guidelines as Topic/standards
3.
J Sci Food Agric ; 104(9): 5296-5304, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38308576

ABSTRACT

BACKGROUND: Dietary fibers with varying physicochemical properties have different fermentation characteristics, which may differently impact host health. The present study aimed to determine the fermentation characteristics including gas production kinetics, short-chain fatty acids (SCFAs) production and microbial composition of different fibrous ingredients using in vitro fermentation by fecal microbiota. RESULTS: Sugar beet pule (SBP), wheat bran (WB), dried corn distillers grains with solubles (DDGS), rice bran (RB) and alfalfa meal (AM) were selected to fermentation in vitro for 36 h. The results showed that SBP had the greatest gas production. SBP had the highest in vitro dry matter fermentability (IVDMF) and production of acetate, propionate and total SCFAs, followed by WB, which were all greater than DDGS, AM and RB. The alpha-diversity was higher in the DDGS, AM and RB groups than in the WB and SBP groups. Differences in microbial community composition were observed among groups. The relative abundance of Treponema was highest in WB group. RB group showed lower Prevotella abundance than other groups but had higher Succinivibrio abundance. Interestingly, the Lactobacillus reached the highest abundances in the DDGS group. Correlation analysis indicated that the relative abundance of Treponema and Prevotella was positively associated with the gas production, IVDMF and SCFAs, whereas norank_f_Muribaculaceae, Rikenellaceae_RC9_gut_group, Lysinibacillus and Succinivibrio were the opposite. CONCLUSION: Collectively, WB and SBP were fermented rapidly by fecal microbiota compared to DDGS, AM and RB. Different fiber sources have different fiber compositions and fermentation properties that affect the microbial compositins and SCFAs production. © 2024 Society of Chemical Industry.


Subject(s)
Animal Feed , Bacteria , Dietary Fiber , Fatty Acids, Volatile , Feces , Fermentation , Gastrointestinal Microbiome , Dietary Fiber/metabolism , Dietary Fiber/analysis , Feces/microbiology , Animals , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fatty Acids, Volatile/metabolism , Swine , Animal Feed/analysis , Zea mays/chemistry , Zea mays/metabolism , Beta vulgaris/chemistry , Beta vulgaris/metabolism , Beta vulgaris/microbiology , Medicago sativa/chemistry , Medicago sativa/metabolism , Medicago sativa/microbiology , Oryza/metabolism , Oryza/chemistry , Oryza/microbiology
4.
J Nanobiotechnology ; 21(1): 265, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563614

ABSTRACT

BACKGROUND: Emerging ferroptosis-driven therapies based on nanotechnology function either by increasing intracellular iron level or suppressing glutathione peroxidase 4 (GPX4) activity. Nevertheless, the therapeutic strategy of simultaneous iron delivery and GPX4 inhibition remains challenging and has significant scope for improvement. Moreover, current nanomedicine studies mainly use disulfide-thiol exchange to deplete glutathione (GSH) for GPX4 inactivation, which is unsatisfactory because of the compensatory effect of continuous GSH synthesis. METHODS: In this study, we design a two-in-one ferroptosis-inducing nanoplatform using iron-based metal-organic framework (MOF) that combines iron supply and GPX4 deactivation by loading the small molecule buthionine sulfoxide amine (BSO) to block de novo GSH biosynthesis, which can achieve sustainable GSH elimination and dual ferroptosis amplification. A coated lipid bilayer (L) can increase the stability of the nanoparticles and a modified tumor-homing peptide comprising arginine-glycine-aspartic acid (RGD/R) can achieve tumor-specific therapies. Moreover, as a decrease in GSH can alleviate resistance of cancer cells to chemotherapy drugs, oxaliplatin (OXA) was also loaded to obtain BSO&OXA@MOF-LR for enhanced cancer chemo-ferrotherapy in vivo. RESULTS: BSO&OXA@MOF-LR shows a robust tumor suppression effect and significantly improved the survival rate in 4T1 tumor xenograft mice, indicating a combined effect of dual amplified ferroptosis and GSH elimination sensitized apoptosis. CONCLUSION: BSO&OXA@MOF-LR is proven to be an efficient ferroptosis/apoptosis hybrid anti-cancer agent. This study is of great significance for the clinical development of novel drugs based on ferroptosis and apoptosis for enhanced cancer chemo-ferrotherapy.


Subject(s)
Metal-Organic Frameworks , Neoplasms , Humans , Mice , Animals , Buthionine Sulfoximine/pharmacology , Oxaliplatin/pharmacology , Glutathione
5.
J Fish Dis ; 46(4): 333-345, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36579505

ABSTRACT

Nocardia seriolae is a major causative agent of fish nocardiosis that results in serious economic losses in the aquaculture industry. However, the virulence factors and pathogenic mechanisms of the bacterium are poorly understood. Here, a new N. seriolae strain AHLQ20-01 was isolated from the diseased Micropterus salmoides and identified by phenotypic examination combined with 16S rRNA sequencing. Subsequently, the potential virulence factors of the strain were analysed at genome level by whole-genome sequencing. The results showed that the whole-genome sequence derived from N. seriolae AHLQ20-01 circular chromosome contains 8,129,380 bp DNA with G + C content of 68.14%, and encompasses 7650 protein-coding genes, 114 pseudo-genes, 3 rRNAs, 66 tRNAs and 36 non-coding RNAs. More importantly, a total of 139 genes, which mainly involved in adhesion, invasion, resistance to oxidative and nitrosative stress, phagosome arresting, iron acquisition system, toxin production and bacterial secretion systems, were identified as core virulence-associated genes. Furthermore, the pathogenicity of N. seriolae AHLQ20-01 to M. salmoides was further investigated through experimental infection. It was found that the LD50 value of the strain to M. salmoides was 9.3 × 106  colony forming unit/fish. Histopathological examination demonstrated typical granuloma with varying sizes in the liver, head kidney, spleen and heart of the experimentally infected fish. Terminal deoxynucleotidyl transferase dUTP nick end labelling assay and 4',6-diamidino-2-phenylindole staining showed that there were distinctly more apoptotic cells in all the tested tissues in the infection group, but not in the control group. Together, these findings provide the foundation to further explore the pathogenic mechanism of N. seriolae, which might contribute to the prevention and treatment of fish nocardiosis.


Subject(s)
Bass , Fish Diseases , Nocardia Infections , Nocardia , Animals , Bass/genetics , Virulence/genetics , Virulence Factors/genetics , RNA, Ribosomal, 16S/genetics , Fish Diseases/microbiology , Nocardia/genetics , Nocardia Infections/microbiology
6.
Nano Lett ; 22(20): 8250-8257, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36218311

ABSTRACT

Photodynamic therapy (PDT) holds great promise in tumor therapy due to high safety, efficacy, and specificity. However, the risk of increased metastasis in hypoxic tumors after oxygen-dependent PDT remains underestimated. Here, we propose a post-PDT oxygen supply (POS) strategy to reduce the risk of metastasis. Herein, biocompatible and tumor-targeting Ce6@BSA and PFC@BSA nanoparticles were constructed for PDT and POS in a 4T1-orthotropic breast cancer model. PDT with Ce6@BSA nanoparticles increased tumor metastasis via the HIF-1α signaling pathway, whereas POS significantly reduced the PDT-triggered metastasis by blocking this pathway. Furthermore, POS, with clinical protocols and an FDA-approved photosensitizer (hypericin), and oxygen inhalation reduced PDT-induced metastasis. Our study findings indicate that PDT may increase the risk of tumor metastasis and that POS may solve this problem. POS can reduce the metastasis resulting not only from PDT but also from other oxygen-dependent treatments such as radiotherapy and sonodynamic therapy.


Subject(s)
Nanoparticles , Photochemotherapy , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Cell Line, Tumor , Nanoparticles/therapeutic use , Oxygen
7.
Allergy ; 77(1): 143-149, 2022 01.
Article in English | MEDLINE | ID: mdl-34240429

ABSTRACT

BACKGROUND: Several new variants of SARS-CoV-2 have emerged since fall 2020 which have multiple mutations in the receptor-binding domain (RBD) of the spike protein. It is unclear which mutations affect receptor affinity versus immune recognition. METHODS: We produced wild type RBD, RBD with single mutations (E484K, K417N, or N501Y) or with all three mutations combined and tested their binding to ACE2 by biolayer interferometry (BLI). The ability of convalescent sera to recognize RBDs and block their interaction with ACE2 was tested as well. RESULTS: We demonstrated that single mutation N501Y increased binding affinity to ACE2 but did not strongly affect its recognition by convalescent sera. In contrast, single mutation E484K had almost no impact on the binding kinetics, but essentially abolished recognition of RBD by convalescent sera. Interestingly, combining mutations E484K, K417N, and N501Y resulted in a RBD with both features: enhanced receptor binding and abolished immune recognition. CONCLUSIONS: Our data demonstrate that single mutations either affect receptor affinity or immune recognition while triple mutant RBDs combine both features.


Subject(s)
Receptors, Virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Immunization, Passive , Mutation , Protein Binding , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Serotherapy
8.
Allergy ; 77(1): 111-117, 2022 01.
Article in English | MEDLINE | ID: mdl-34453338

ABSTRACT

BACKGROUND: Emerged mutations can be attributed to increased transmissibility of the B.1.617 and B.1.36 Indian delta variants of SARS-CoV-2, most notably substitutions L452R/E484Q and N440K, respectively, which occur in the receptor-binding domain (RBD) of the Spike (S) fusion glycoprotein. OBJECTIVE: We aimed to assess the effects of mutations L452R/E484Q and N440K (as well as the previously studied mutation E484K present in variants B.1.351 and P.1) on the affinity of RBD for ACE2, SARS-CoV-2 main receptor. We also aimed to assess the ability of antibodies induced by natural infection or by immunization with BNT162b2 mRNA vaccine to recognize the mutated versions of the RBD, as well as blocking the interaction RBD-ACE2, an important surrogate readout for virus neutralization. METHODS: To this end, we produced recombinant wild-type RBD, as well as RBD containing each of the mutations L452R/E484Q, N440K, or E484K (the latest present in variants of concern B.1.351 and P.1), as well as the ectodomain of ACE2. Using Biolayer Interferometry (BLI), we measured the binding affinity of RBD for ACE2 and the ability of sera from COVID-19 convalescent donors or subjects immunized with BNT162b2 mRNA vaccine to block this interaction. Finally, we correlated these results with total anti-RBD IgG titers measured from the same sera by direct ELISA. RESULTS: The binding assays showed L452R/E484Q double-mutant RBD to interact with ACE2 with higher affinity (KD  = 4.6 nM) than wild-type (KD  = 21.3 nM) or single mutants N440K (KD  = 9.9 nM) and E484K (KD  = 19.7 nM) RBDs. Meanwhile, the anti-RBD IgG titration resulted in lower recognition of mutants E484K and L452R/E484Q by infection-induced antibodies, whereas only mutant E484K was recognized less by antibodies induced by vaccination. More interestingly, sera from convalescent as well as immunized subjects showed reduced ability to block the interaction between ACE2 and RBD mutants E484K and L452R/E484Q, as shown by the inhibition assays. CONCLUSION: Our data suggest that the newly emerged SARS-CoV-2 variant B.1.617, as well as the better-studied variants B.1.351 and P.1 (all containing a mutation at position E484) display increased transmissibility both due to their higher affinity for the cell receptor ACE2 and their ability to partially bypass immunity generated against the wild-type virus. For variant B.1.36 (with a point mutation at position N440), only increased affinity seems to play a role.


Subject(s)
COVID-19 , SARS-CoV-2 , BNT162 Vaccine , Humans , Immune Evasion , Mutation , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Synthetic , mRNA Vaccines
9.
Allergy ; 77(1): 243-257, 2022 01.
Article in English | MEDLINE | ID: mdl-34496033

ABSTRACT

BACKGROUND: SARS-CoV-2 caused one of the most devastating pandemics in the recent history of mankind. Due to various countermeasures, including lock-downs, wearing masks, and increased hygiene, the virus has been controlled in some parts of the world. More recently, the availability of vaccines, based on RNA or adenoviruses, has greatly added to our ability to keep the virus at bay; again, however, in some parts of the world only. While available vaccines are effective, it would be desirable to also have more classical vaccines at hand for the future. Key feature of vaccines for long-term control of SARS-CoV-2 would be inexpensive production at large scale, ability to make multiple booster injections, and long-term stability at 4℃. METHODS: Here, we describe such a vaccine candidate, consisting of the SARS-CoV-2 receptor-binding motif (RBM) grafted genetically onto the surface of the immunologically optimized cucumber mosaic virus, called CuMVTT -RBM. RESULTS: Using bacterial fermentation and continuous flow centrifugation for purification, the yield of the production process is estimated to be >2.5 million doses per 1000-litre fermenter run. We demonstrate that the candidate vaccine is highly immunogenic in mice and rabbits and induces more high avidity antibodies compared to convalescent human sera. The induced antibodies are more cross-reactive to mutant RBDs of variants of concern (VoC). Furthermore, antibody responses are neutralizing and long-lived. In addition, the vaccine candidate was stable for at least 14 months at 4℃. CONCLUSION: Thus, the here presented VLP-based vaccine may be a good candidate for use as conventional vaccine in the long term.


Subject(s)
COVID-19 , Vaccines, Virus-Like Particle , Animals , Antibodies, Neutralizing , Antibody Formation , COVID-19 Vaccines , Communicable Disease Control , Humans , Mice , Rabbits , SARS-CoV-2
10.
J Cardiovasc Pharmacol ; 79(2): 192-198, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34117183

ABSTRACT

ABSTRACT: Long noncoding RNA is one potential target for the treatment of various disorders. Here, we explored the role of Abhd11os in ischemia/reperfusion-induced myocardial injury, and preliminarily explored the regulatory mechanisms. Relative Abhd11os expression level was examined by qRT-PCR. Western blot was done to measure the expression of apoptotic-related proteins. Cell counting kit-8 assay and flow cytometry were performed to detect cell viability and apoptosis, respectively. ELISA assay was used to ensure the levels of lactate dehydrogenase, creatine kinase, and cardiac troponin I in serum. Besides, the infarct sizes were confirmed by 2,3,5-triphenyltetrazolium chloride and Evans blue staining. Apoptotic rate of cardiomyocytes in myocardial tissues was evaluated by TUNEL assay. Here, increased Abhd11os expression was found in rat myocardial ischemia/reperfusion injury (MIRI) model and hypoxia/reoxygenation-treated cardiomyocytes. Subsequently, our data in vitro showed that upregulation of Abhd11os inhibited proliferation of cardiomyocytes, but promoted cell apoptosis. In animal experiments, myocardial infarct size in MIRI rats was reduced by Abhd11os knockdown. Moreover, downregulation of Abhd11os inhibited apoptosis of cardiomyocytes. Overall, our results revealed that knockdown of Abhd11os could notably attenuate hypoxia/reoxygenation-induced myocardial injury through suppressing apoptosis of cardiomyocytes. These data suggest that Abhd11os may be a potential target for MIRI therapy.


Subject(s)
Myocardial Reperfusion Injury , RNA, Long Noncoding , Animals , Apoptosis/genetics , Hypoxia/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Rats
11.
Br J Nutr ; 127(10): 1443-1454, 2022 05 28.
Article in English | MEDLINE | ID: mdl-33658091

ABSTRACT

This experiment was designed to investigate the effect of supplementing conjugated linoleic acid (CLA) in breeder hens diet on development and hepatic lipid metabolism of chick offspring. Hy-Line Brown breeder hens were allocated into two groups, supplemented with 0 (control (CT)) or 0·5 % CLA for 8 weeks. Offspring chicks were grouped according to the mother generation and fed for 7 d. CLA treatment had no significant influence on development, egg quality and fertility of breeder hens but darkened the egg yolks in shade and increased yolk sac mass compared with the CT group. Addition of CLA resulted in increased body mass and liver mass and decreased deposition of subcutaneous adipose tissue in chick offspring. The serum TAG and total cholesterol levels of chick offspring were decreased in CLA group. CLA treatment increased the incorporation of both CLA isomers (c9t11 and t10c12) in the liver of chick offspring, accompanied by the decreased hepatic TAG levels, related to the significant reduction of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) enzyme activities and the increased carnitine palmitoyltransferase-1 (CPT1) enzyme activity. Meanwhile, CLA treatment reduced the mRNA expression of genes related to fatty acid biosynthesis (FAS, ACC and sterol regulatory element-binding protein-1c) and induced the expression of genes related to ß-oxidative (CPT1, AMP-activated protein kinase and PPARα) in chick offspring liver. In summary, the addition of CLA in breeder hens diet significantly increased the incorporation of CLA in the liver of chick offspring, which further regulate hepatic lipid metabolism.


Subject(s)
Linoleic Acids, Conjugated , Animals , Chickens/metabolism , Diet/veterinary , Fatty Acid Synthases/metabolism , Female , Linoleic Acids, Conjugated/metabolism , Linoleic Acids, Conjugated/pharmacology , Lipid Metabolism , Liver/metabolism
12.
Fish Shellfish Immunol ; 122: 334-344, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34922017

ABSTRACT

Vibrio mimicus (V. mimicus) is a pathogen causing serious vibriosis in aquatic animals. Hepcidin and ß-Defensin1 are two important antibacterial peptides (AMPs) with broad-spectrum antibacterial activity in fish. In mammals, some evidences demonstrated that interleukin-1ß (IL-1ß) primarily promote AMPs expression via activating classical NF-κB pathway, but it still remains unclear in fish. Here, the temporal and spatial expression patterns of grass carp IL-1ß (gcIL-1ß) gene and two AMPs genes (gchepcidin and gcß-defensin1) in tissues post-V. mimicus infection and anti-V. mimicus activity of these two AMPs in vitro were detected, showing that V. mimicus infection significantly elevated the mRNA levels of these three genes in the immune-related tissues although their expression patterns were not entirely consistent, and both gcHepcidin and gcß-Defensin1 possessed anti-V. mimicus activity in vitro. Subsequently, the recombinant gcIL-1ß (rgcIL-1ß) was expressed prokaryotically in an inclusion body, which could promote proliferation of grass carp head kidney leukocytes (gcHKLs) and enhance respiratory burst activity and phagocytic activity of head kidney macrophages. Stimulation with rgcIL-1ß was able to significantly regulate the mRNA expression of key regulatory genes (il-1RI, traf6, tak1, ikkß, iκBα and p65) involved in the activation of classical NF-κB pathway, and then induce gcTAK1 phosphorylation, promote gcp65 nuclear translocation and enhance endogenous gcIL-1ß expression at both mRNA and protein levels, implying NF-κB pathway was activated. More importantly, exogenous rgcIL-1ß stimulation also significantly up-regulated both gcHepcidin and gcß-Defensin1 mRNA levels against V. mimicus, and the regulatory effect was blocked or inhibited by NF-κB inhibitor PDTC. Taken together, our results demonstrated for the first time that grass carp IL-1ß stimulation could significantly enhance the expression of these two anti-V.mimicus AMPs via activating classical NF-κB pathway.


Subject(s)
Carps , Fish Diseases , Vibrio mimicus , Animals , Antimicrobial Peptides , Carps/genetics , Carps/metabolism , Fish Diseases/microbiology , Fish Proteins/genetics , Fish Proteins/metabolism , Interleukin-1beta/genetics , Mammals/metabolism , NF-kappa B/metabolism , Signal Transduction/genetics
13.
J Fish Dis ; 45(12): 1845-1855, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36048577

ABSTRACT

Fish nocardiosis mainly caused by Nocardia seriolae (N. seriolae) is a serious threat to aquaculture. Bacterial adhesion to host cells mediated by adhesin is an initial step of pathogenesis. But it is not clear whether glyceraldehyde-3-phosphate dehydrogenase (GapA) is an adhesin of N. seriolae. Here, recombinant GapA protein (rGapA) was prokaryotic expressed, and its role in the bacterial adhesion to Ctenopharyngodon idella kidney cells was investigated by indirect immunofluorescence, protein-binding assay and adhesion inhibition assay. The results showed that an obvious green fluorescence was observed on the surface of the cells co-incubated with rGapA protein; the cytomembrane proteins of the cells pretreated with rGapA could react with anti-rGapA antibody; and the antibody significantly inhibited the adhesion ability of the bacteria. Subsequently, B-cell linear epitopes of GapA protein were identified by using a immunoinformatics approach combined with peptide ELISA and Western blot for the first time. It was found that four predicted epitopes (Ep58-69 , Ep139-150 , Ep186-197 , Ep318-329 ) could all react with anti-rGapA antibody and obviously inhibit the immunoreactivity between rGapA and anti-rGapA antibody, and they were confirmed as indeed B-cell linear epitopes of the protein. Furthermore, flow cytometry analysis found the percentage of positive cells co-incubated with FITC-labelled epitope peptides (Ep139-150 , Ep186-197 , Ep318-329 ) was significantly higher than those in the FITC-labelled Ep58-69 , unrelated control peptide and cell control. Collectively, GapA is an adhesin of N. seriolae, and epitope peptides (Ep139-150 , Ep186-197 , Ep318-329 ) possess cell-binding activity, which are potential candidates for developing a multiple epitopes-based adhesin vaccine against fish nocardiosis.


Subject(s)
Carps , Fish Diseases , Nocardia Infections , Nocardia , Animals , Epitopes, B-Lymphocyte , Fluorescein-5-isothiocyanate , Fish Diseases/microbiology , Phylogeny , Nocardia/physiology , Nocardia Infections/microbiology , Recombinant Proteins
14.
Allergy ; 76(8): 2565-2574, 2021 08.
Article in English | MEDLINE | ID: mdl-33866583

ABSTRACT

BACKGROUND: Allergy is a global disease with overall frequencies of >20%. Symptoms vary from irritating local itching to life-threatening systemic anaphylaxis. Even though allergies are allergen-specific, there is a wide range of cross-reactivities (eg apple and latex) that remain largely unexplained. Given the abilities of low-affinity IgG antibodies to inhibit mast cells activation, here we elucidate the minimal affinity of IgE antibodies to induce type I hypersensitivity. METHODS: Three mature (high-affinity) IgE antibodies recognizing three distinct epitopes on Fel d 1, the major cat allergen, were back-mutated to germline conformation, resulting in binding to Fel d 1 with low affinity. The ability of these IgE antibodies to activate mast cells in vitro and in vivo was tested. RESULTS: We demonstrate that affinities as low as 10-7  M are sufficient to activate mast cells in vitro and drive allergic reactions in vivo. Low-affinity IgE antibodies are able to do so, since they bind allergens bivalently on the surface of mast cells, leading to high-avidity interactions. CONCLUSIONS: These results suggest that the underlying mechanism of allergen cross-reactivity may be low-affinity but high-avidity binding between IgE antibodies and cross-reactive allergen.


Subject(s)
Allergens , Hypersensitivity , Animals , Cats , Cross Reactions , Humans , Immunoglobulin E , Immunoglobulin G
15.
BMC Cardiovasc Disord ; 21(1): 300, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34130651

ABSTRACT

BACKGROUND: Despite significant progress in surgical treatment of hypoplastic left heart syndrome (HLHS), its mortality and morbidity are still high. Little is known about the molecular abnormalities of the syndrome. In this study, we aimed to probe into hub genes and key pathways in the progression of the syndrome. METHODS: Differentially expressed genes (DEGs) were identified in left ventricle (LV) or right ventricle (RV) tissues between HLHS and controls using the GSE77798 dataset. Then, weighted gene co-expression network analysis (WGCNA) was performed and key modules were constructed for HLHS. Based on the genes in the key modules, protein-protein interaction networks were conducted, and hub genes and key pathways were screened. Finally, the GSE23959 dataset was used to validate hub genes between HLHS and controls. RESULTS: We identified 88 and 41 DEGs in LV and RV tissues between HLHS and controls, respectively. DEGs in LV tissues of HLHS were distinctly involved in heart development, apoptotic signaling pathway and ECM receptor interaction. DEGs in RV tissues of HLHS were mainly enriched in BMP signaling pathway, regulation of cell development and regulation of blood pressure. A total of 16 co-expression network were constructed. Among them, black module (r = 0.79 and p value = 2e-04) and pink module (r = 0.84 and p value = 4e-05) had the most significant correlation with HLHS, indicating that the two modules could be the most relevant for HLHS progression. We identified five hub genes in the black module (including Fbn1, Itga8, Itga11, Itgb5 and Thbs2), and five hub genes (including Cblb, Ccl2, Edn1, Itgb3 and Map2k1) in the pink module for HLHS. Their abnormal expression was verified in the GSE23959 dataset. CONCLUSIONS: Our findings revealed hub genes and key pathways for HLHS through WGCNA, which could play key roles in the molecular mechanism of HLHS.


Subject(s)
Gene Expression Profiling , Gene Regulatory Networks , Hypoplastic Left Heart Syndrome/genetics , RNA, Messenger/genetics , Transcriptome , Animals , Case-Control Studies , Databases, Genetic , Disease Models, Animal , Genetic Predisposition to Disease , Humans , Hypoplastic Left Heart Syndrome/diagnostic imaging , Hypoplastic Left Heart Syndrome/metabolism , Mice , Phenotype , Protein Interaction Maps , RNA, Messenger/metabolism , Reproducibility of Results , Signal Transduction
16.
Asian-Australas J Anim Sci ; 30(3): 417-423, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27383812

ABSTRACT

OBJECTIVE: This experiment investigated the effects of dietary supplementation with conjugated linoleic acid (CLA) on the serum components, laying hen productivity, lipid composition of egg yolk, egg flavor and egg quality. METHODS: Healthy 28-week-old Hy-Line white laying hens (n = 480) were divided randomly into 4 groups, 6 replicates/group, 20 birds/replicate. The 30-day experimental diets included 0% (control), 0.4%, 0.8%, and 1.6% CLA. Some serum indices of the birds, and egg production, quality, fatty acid composition, egg quality were measured. RESULTS: The dietary supplementation with 0.4%, 0.8%, and 1.6% CLA did not significantly affect the laying rate and feed intake, as well as calcium ion and phosphorus ion concentration in serum (p>0.05). However, the CLA had significantly increased the strength of eggshell, decreased the odor, flavor, and taste of egg yolk, deepened the color of egg yolk, increased saturated fatty acids and polyunsaturated fatty acids, and reduced the monounsaturated fatty acids (p<0.05). On the other hand, the dietary supplementation with 1.6% CLA had significant effects on feed/gain, and improved serum hormones. Dietary supplementation with 0.4% and 0.8% CLA can significantly enhance the activity of alkaline phosphates. CONCLUSION: CLA has no effect on production performance, but does enhance the lipid content of the egg yolk and the strength of the eggshell.

18.
Biologicals ; 43(5): 377-82, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26153399

ABSTRACT

The heterologous epitope-peptide from different viruses may represent an attractive candidate vaccine. In order to evaluate the role of cell-permeable peptide (PEP-1) and Ii-Key moiety from the invariant chain (Ii) of MHC on the heterologous peptide chimeras, we linked the two vehicles to hybrid epitopes on the VP2 protein (aa197-209) of the infectious bursal disease virus and HN protein (aa345-353) of the Newcastle disease virus. The chimeric vaccines were prepared and injected into mice. The immune effects were measured by indirect ELISA. The results showed that the vehicle(s) could significantly boost immune effects against the heterologous epitope peptide. The Ii-Key-only carrier induced more effective immunological responses, compared with the PEP-1 and Ii-Key hybrid vehicle. The carrier-peptide hybrids all showed strong colocalization with major histocompatibility complex (MHC) class II molecules compared with the epitope-peptide (weakly-binding) after co-transfection into 293T cells. Together, our results lay the groundwork for designing new hybrid vaccines based on Ii-Key and/or PEP-1 peptides.


Subject(s)
Antigens, Differentiation, B-Lymphocyte/immunology , Cysteamine/analogs & derivatives , Epitopes/chemistry , Histocompatibility Antigens Class II/immunology , Peptides/immunology , Vaccines, Synthetic/immunology , Viral Vaccines/immunology , Cysteamine/immunology , HEK293 Cells , Humans , Newcastle disease virus/immunology , Vaccines, Synthetic/chemistry , Viral Vaccines/chemistry
19.
Poult Sci ; 103(5): 103600, 2024 May.
Article in English | MEDLINE | ID: mdl-38471230

ABSTRACT

The aim of this study was to evaluate the effect of microencapsulated essential oils (MEO) on the laying performance, egg quality, immunity, intestinal morphology, and oxidative status of laying hens. A total of 640 Hy-line Brown laying hens, 41 wk of age, were randomly divided into 4 groups, each with 8 replicates containing 20 birds per replicate. The dietary conditions tested included a basal diet (Control) or the basal diet supplemented with various levels of MEO at 100 mg/kg (MEO100), 300 mg/kg (MEO300), and 500 mg/kg (MEO500). The three treatment groups were intermittently fed MEO, following an alternating schedule of 1 wk on and 1 wk off for a total of 56 d. Results showed that feeding MEO at levels of 300 and 500 mg/kg improved both egg production and feed conversion ratios compared to the control group. Hens consumed MEO-supplemented diets exhibited a significant decrease in the breaking egg ratio (P < 0.05) compared to those fed the control diet. Shell thickness and Haugh unit values significantly increased in the groups receiving 300 and 500 mg/kg of MEO (P < 0.05). Both the MEO300 and MEO500 treatments led to improvements in immunoglobulin (IgA, IgM, and IgG) and cytokine (IL-2 and IFN-γ) levels in serum. Hens in the MEO300 and MEO500 groups exhibited higher values for parameters related to intestinal morphometry compared to the control group. Furthermore, supplementation with 300 and 500 mg/kg of MEO enhanced the antioxidant capacity of plasma, as evidenced by increased activities of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD), and catalase (CAT) (P < 0.05). In summary, the intermittent feeding of MEO improved egg production, enhanced antioxidative processes, immune functions, and intestinal morphology, leading to an amelioration in the egg quality of laying hens. Our data demonstrate that supplementation of 300 mg/kg of MEO in feed can significantly improve animal health and egg quality. Implementation of these feeding practices could have a positive economic impact on poultry and egg industry.


Subject(s)
Animal Feed , Chickens , Diet , Dietary Supplements , Intestines , Oils, Volatile , Animals , Chickens/physiology , Chickens/immunology , Oils, Volatile/administration & dosage , Oils, Volatile/pharmacology , Female , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Intestines/drug effects , Intestines/physiology , Intestines/anatomy & histology , Random Allocation , Ovum/physiology , Ovum/drug effects , Dose-Response Relationship, Drug , Reproduction/drug effects
20.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-36751705

ABSTRACT

The purpose of this study was to explore whether conjugated linoleic acid (CLA) could alleviate fatty liver hemorrhagic syndrome (FLHS) induced by estradiol benzoate intramuscular injection in laying hens. One hundred male Hy-Line white chickens were randomly divided into two groups, namely, the control (CON) and estradiol benzoate (E) groups, and both groups were fed the same basal diet. After injections of estradiol benzoate at 2 mg/kg every two days for a total of 7 times, chickens in the E group showed FLHS symptoms, including liver enlargement, hemorrhage, and steatosis. Then half of the chickens in the E group received an additional diet containing 5000 mg/kg CLA for 8 weeks. The results of morphological observations, hematoxylin and eosin staining, and Oil Red O staining showed that CLA alleviated liver enlargement, hemorrhage, and lipid accumulation in FLHS chickens. In addition, we measured liver function and lipid metabolism indicators, including ALT, AST, TG, TCH, HDL-C, and LDL-C, which further suggested that CLA mitigated the disturbance of serum and liver metabolism in FLHS chickens. Mechanistically, CLA inhibited hepatic de novo lipogenesis, cholesterol synthesis, and TG accumulation and increased TG hydrolysis in FLHS chickens by regulating the gene expression of CD36, ACC, FAS, SCD 1, DGAT2, LIPE, ATGL, CPT1A, SREBP-1c, SREBP-2, PPARγ, and PPARα. Furthermore, CLA ameliorated hepatic oxidative stress and inhibited NF-κB signaling pathway-mediated inflammation in FLHS chickens. In conclusion, CLA regulated lipid metabolism, thus further alleviating oxidative stress and inflammation to alleviate FLHS induced by estrogen in chickens.


Fatty liver hemorrhagic syndrome (FLHS) has become one of the most common noninfectious diseases that contribute to laying hen mortality. Conjugated linoleic acid (CLA) is a functional polyunsaturated fatty acid with antioxidant and anti-inflammatory properties The purpose of this study was to investigate the effect of CLA on FLHS induced by estradiol benzoate in laying hens. We successfully replicated the FLHS pathological model by intramuscular injection of estradiol benzoate. The results of morphological and histopathological observations showed that CLA alleviated liver lipid accumulation in FLHS chickens. In addition, we measured liver function and lipid metabolism indicators, which further suggested that CLA mitigated the disturbance of serum and liver metabolism in FLHS chickens. Moreover, CLA inhibited hepatic de novo lipogenesis, cholesterol synthesis, and TG accumulation and increased TG hydrolysis in FLHS chickens by regulating related gene expression. Furthermore, CLA ameliorated hepatic oxidative stress and inhibited inflammation in FLHS chickens. In conclusion, CLA regulated lipid metabolism, thus further alleviating oxidative stress and inflammation to alleviate FLHS induced by estrogen in chickens. Our results provide new evidence and insights for applying CLA as an effective treatment for FLHS.


Subject(s)
Fatty Liver , Linoleic Acids, Conjugated , Male , Animals , Female , Chickens/physiology , Linoleic Acids, Conjugated/metabolism , Fatty Liver/veterinary , Liver/metabolism , Hemorrhage/genetics , Hemorrhage/metabolism , Hemorrhage/veterinary , Inflammation/metabolism , Inflammation/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL