Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Genome Res ; 33(10): 1690-1707, 2023 10.
Article in English | MEDLINE | ID: mdl-37884341

ABSTRACT

The rumen undergoes developmental changes during maturation. To characterize this understudied dynamic process, we profiled single-cell transcriptomes of about 308,000 cells from the rumen tissues of sheep and goats at 17 time points. We built comprehensive transcriptome and metagenome atlases from early embryonic to rumination stages, and recapitulated histomorphometric and transcriptional features of the rumen, revealing key transitional signatures associated with the development of ruminal cells, microbiota, and core transcriptional regulatory networks. In addition, we identified and validated potential cross-talk between host cells and microbiomes and revealed their roles in modulating the spatiotemporal expression of key genes in ruminal cells. Cross-species analyses revealed convergent developmental patterns of cellular heterogeneity, gene expression, and cell-cell and microbiome-cell interactions. Finally, we uncovered how the interactions can act upon the symbiotic rumen system to modify the processes of fermentation, fiber digestion, and immune defense. These results significantly enhance understanding of the genetic basis of the unique roles of rumen.


Subject(s)
Metagenome , Microbiota , Sheep/genetics , Animals , Transcriptome , Rumen , Ruminants/genetics
2.
Proc Natl Acad Sci U S A ; 120(8): e2210643120, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36795751

ABSTRACT

Microglia play a critical role in the pathogenic process of neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD). Upon pathological stimulation, microglia are converted from a surveillant to an overactivated phenotype. However, the molecular characters of proliferating microglia and their contributions to the pathogenesis of neurodegeneration remain unclear. Here, we identify chondroitin sulfate proteoglycan 4 (Cspg4, also known as neural/glial antigen 2)-expressing microglia as a specific subset of microglia with proliferative capability during neurodegeneration. We found that the percentage of Cspg4+ microglia was increased in mouse models of PD. The transcriptomic analysis of Cspg4+ microglia revealed that the subcluster Cspg4high microglia displayed a unique transcriptomic signature, which was characterized by the enrichment of orthologous cell cycle genes and a lower expression of genes responsible for neuroinflammation and phagocytosis. Their gene signatures were also distinct from that of known disease-associated microglia. The proliferation of quiescent Cspg4high microglia was evoked by pathological α-synuclein. Following the transplantation in the adult brain with the depletion of endogenous microglia, Cspg4high microglia grafts showed higher survival rates than their Cspg4- counterparts. Consistently, Cspg4high microglia were detected in the brain of AD patients and displayed the expansion in animal models of AD. These findings suggest that Cspg4high microglia are one of the origins of microgliosis during neurodegeneration and may open up a avenue for the treatment of neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Parkinson Disease , Mice , Animals , Microglia/metabolism , Parkinson Disease/metabolism , Alzheimer Disease/metabolism , Neurodegenerative Diseases/metabolism , Phagocytosis
3.
New Phytol ; 243(3): 997-1016, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38849319

ABSTRACT

Jasmonic acid (JA) and gibberellin (GA) coordinately regulate plant developmental programs and environmental cue responses. However, the fine regulatory network of the cross-interaction between JA and GA remains largely elusive. In this study, we demonstrate that MdNAC72 together with MdABI5 positively regulates anthocyanin biosynthesis through an exquisite MdNAC72-MdABI5-MdbHLH3 transcriptional cascade in apple. MdNAC72 interacts with MdABI5 to promote the transcriptional activation of MdABI5 on its target gene MdbHLH3 and directly activates the transcription of MdABI5. The MdNAC72-MdABI5 module regulates the integration of JA and GA signals in anthocyanin biosynthesis by combining with JA repressor MdJAZ2 and GA repressor MdRGL2a. MdJAZ2 disrupts the MdNAC72-MdABI5 interaction and attenuates the transcriptional activation of MdABI5 by MdNAC72. MdRGL2a sequesters MdJAZ2 from the MdJAZ2-MdNAC72 protein complex, leading to the release of MdNAC72. The E3 ubiquitin ligase MdSINA2 is responsive to JA and GA signals and promotes ubiquitination-dependent degradation of MdNAC72. The MdNAC72-MdABI5 interface fine-regulates the integration of JA and GA signals at the transcriptional and posttranslational levels by combining MdJAZ2, MdRGL2a, and MdSINA2. In summary, our findings elucidate the fine regulatory network connecting JA and GA signals with MdNAC72-MdABI5 as the core in apple.


Subject(s)
Cyclopentanes , Gene Expression Regulation, Plant , Gibberellins , Malus , Oxylipins , Plant Proteins , Signal Transduction , Ubiquitination , Oxylipins/metabolism , Malus/genetics , Malus/metabolism , Cyclopentanes/metabolism , Ubiquitination/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Gibberellins/metabolism , Proteolysis/drug effects , Anthocyanins/metabolism , Protein Binding/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Models, Biological
4.
BMC Med Imaging ; 24(1): 108, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745134

ABSTRACT

BACKGROUND: The purpose of this research is to study the sonographic and clinicopathologic characteristics that associate with axillary lymph node metastasis (ALNM) for pure mucinous carcinoma of breast (PMBC). METHODS: A total of 176 patients diagnosed as PMBC after surgery were included. According to the status of axillary lymph nodes, all patients were classified into ALNM group (n = 15) and non-ALNM group (n = 161). The clinical factors (patient age, tumor size, location), molecular biomarkers (ER, PR, HER2 and Ki-67) and sonographic features (shape, orientation, margin, echo pattern, posterior acoustic pattern and vascularity) between two groups were analyzed to unclose the clinicopathologic and ultrasonographic characteristics in PMBC with ALNM. RESULTS: The incidence of axillary lymph node metastasis was 8.5% in this study. Tumors located in the outer side of the breast (upper outer quadrant and lower outer quadrant) were more likely to have lymphatic metastasis, and the difference between the two group was significantly (86.7% vs. 60.3%, P = 0.043). ALNM not associated with age (P = 0.437). Although tumor size not associated with ALNM(P = 0.418), the tumor size in ALNM group (32.3 ± 32.7 mm) was bigger than non-ALNM group (25.2 ± 12.8 mm). All the tumors expressed progesterone receptor (PR) positively, and 90% of all expressed estrogen receptor (ER) positively, human epidermal growth factor receptor 2 (HER2) were positive in two cases of non-ALNM group. Ki-67 high expression was observed in 36 tumors in our study (20.5%), and it was higher in ALNM group than non-ALNM group (33.3% vs. 19.3%), but the difference wasn't significantly (P = 0.338). CONCLUSIONS: Tumor location is a significant factor for ALNM in PMBC. Outer side location is more easily for ALNM. With the bigger size and/or Ki-67 higher expression status, the lymphatic metastasis seems more likely to present.


Subject(s)
Adenocarcinoma, Mucinous , Axilla , Breast Neoplasms , Lymph Nodes , Lymphatic Metastasis , Humans , Female , Lymphatic Metastasis/diagnostic imaging , Lymphatic Metastasis/pathology , Middle Aged , Breast Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Adult , Aged , Adenocarcinoma, Mucinous/diagnostic imaging , Adenocarcinoma, Mucinous/pathology , Adenocarcinoma, Mucinous/metabolism , Adenocarcinoma, Mucinous/secondary , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Ultrasonography/methods , Biomarkers, Tumor/metabolism
5.
J Neurosci Res ; 101(7): 1170-1187, 2023 07.
Article in English | MEDLINE | ID: mdl-36807930

ABSTRACT

Inward-rectifying K+ channel 4.1 (Kir4.1), which regulates the electrophysiological properties of neurons and glia by affecting K+ homeostasis, plays a critical role in neuropathic pain. Metabotropic glutamate receptor 5 (mGluR5) regulates the expression of Kir4.1 in retinal Müller cells. However, the role of Kir4.1 and its expressional regulatory mechanisms underlying orofacial ectopic allodynia remain unclear. This study aimed to investigate the biological roles of Kir4.1 and mGluR5 in the trigeminal ganglion (TG) in orofacial ectopic mechanical allodynia and the role of mGluR5 in Kir4.1 regulation. An animal model of nerve injury was established via inferior alveolar nerve transection (IANX) in male C57BL/6J mice. Behavioral tests indicated that mechanical allodynia in the ipsilateral whisker pad lasted at least 14 days after IANX surgery and was alleviated by the overexpression of Kir4.1 in the TG, as well as intraganglionic injection of an mGluR5 antagonist (MPEP hydrochloride) or a protein kinase C (PKC) inhibitor (chelerythrine chloride); Conditional knockdown of the Kir4.1 gene downregulated mechanical thresholds in the whisker pad. Double immunostaining revealed that Kir4.1 and mGluR5 were co-expressed in satellite glial cells in the TG. IANX downregulated Kir4.1 and upregulated mGluR5 and phosphorylated PKC (p-PKC) in the TG; Inhibition of mGluR5 reversed the changes in Kir4.1 and p-PKC that were induced by IANX; Inhibition of PKC activation reversed the downregulation of Kir4.1 expression caused by IANX (p < .05). In conclusion, activation of mGluR5 in the TG after IANX contributed to orofacial ectopic mechanical allodynia by suppressing Kir4.1 via the PKC signaling pathway.


Subject(s)
Hyperalgesia , Receptor, Metabotropic Glutamate 5 , Rats , Mice , Male , Animals , Hyperalgesia/etiology , Rats, Sprague-Dawley , Mice, Inbred C57BL , Mandibular Nerve/metabolism , Mandibular Nerve/surgery
6.
Plant J ; 105(6): 1566-1581, 2021 03.
Article in English | MEDLINE | ID: mdl-33314379

ABSTRACT

Abscisic acid (ABA) induces chlorophyll degradation and leaf senescence; however, the molecular mechanism remains poorly understood, especially in woody plants. In this study, we found that MdABI5 plays an essential role in the regulation of ABA-triggered leaf senescence in Malus domestica (apple). Through yeast screening, three transcription factors, MdBBX22, MdWRKY40 and MdbZIP44, were found to interact directly with MdABI5 in vitro and in vivo. Physiological and biochemical assays showed that MdBBX22 delayed leaf senescence in two pathways. First, MdBBX22 interacted with MdABI5 to inhibit the transcriptional activity of MdABI5 on the chlorophyll catabolic genes MdNYE1 and MdNYC1, thus negatively regulating chlorophyll degradation and leaf senescence. Second, MdBBX22 interacted with MdHY5 to interfere with the transcriptional activation of MdHY5 on MdABI5, thereby inhibiting the expression of MdABI5, which also contributed to the delay of leaf senescence. MdWRKY40 and MdbZIP44 were identified as positive regulators of leaf senescence. They accelerated MdABI5-promoted leaf senescence through the same regulatory pathways, i.e., interacting with MdABI5 to enhance the transcriptional activity of MdABI5 on MdNYE1 and MdNYC1. Taken together, our results suggest that MdABI5 works with its positive or negative interaction partners to regulate ABA-mediated leaf senescence in apple, in which it acts as a core regulator. The antagonistic regulation pathways ensure that plants respond to external stresses flexibly and efficiently. Our results provide a concept for further study on the regulation mechanisms of leaf senescence.


Subject(s)
Abscisic Acid/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Malus/metabolism , Plant Growth Regulators/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Aging/metabolism , Basic-Leucine Zipper Transcription Factors/physiology , Malus/growth & development , Plant Growth Regulators/physiology , Plant Leaves/growth & development , Plant Proteins/physiology , Transcription Factors/metabolism , Transcription Factors/physiology
7.
Plant Cell Environ ; 45(11): 3233-3248, 2022 11.
Article in English | MEDLINE | ID: mdl-36043225

ABSTRACT

TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in plant abiotic stresses. However, little is known about the role of TCP genes in the drought stress tolerance of apple. Here, we found that abscisic acid (ABA) and drought treatment reduced the expression of MdTCP46, and overexpression of MdTCP46 reduced ABA sensitivity and drought stress resistance. MdTCP46 was found to interact with MdABI5 both in vitro and in vivo, and this interaction was essential for drought resistance via the ABA-dependent pathway. Overexpression of MdABI5 enhanced ABA sensitivity and drought stress resistance by directly activating the expression of MdEM6 and MdRD29A. MdTCP46 significantly suppressed the transcriptional activity of MdABI5, thereby negatively regulating MdABI5-mediated ABA signalling and drought response. Overall, our results demonstrate that the MdTCP46-MdABI5-MdEM6/MdRD29A regulatory module plays a key role in the modulation of ABA signalling and the drought stress response. These findings provide new insight into the role of MdTCP46 in ABA signalling and abiotic stress responses.


Subject(s)
Arabidopsis , Malus , Abscisic Acid/metabolism , Arabidopsis/genetics , Droughts , Gene Expression Regulation, Plant , Malus/genetics , Malus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
8.
BMC Oral Health ; 22(1): 31, 2022 02 05.
Article in English | MEDLINE | ID: mdl-35120518

ABSTRACT

INTRODUCTION: The aim was to analyze the morphological changes of root apex in anterior teeth with periapical periodontitis. METHODS: 32 untreated anterior teeth with periapical periodontitis were enrolled, compared with the healthy contralateral teeth. Two-dimensional measurement of Cone-beam computed tomography was used to determine the location and measure diameter of the apical constriction according to Schell's methods. An open-source software (3D Slicer) was used to reconstruct the teeth. The apical constriction form was analysis according to Schell's topography. The distances of apical constriction to apical foramen and anatomical apex were measured respectively. RESULTS: The difference value between buccolingual and mesiodistal diameter was (0.06 ± 0.09) mm and (0.04 ± 0.04) mm in periapical periodontitis and controls (p < 0.05). The mean distance between apical constriction and anatomical apex was significantly shorter in periapical periodontitis than controls, so was the mean distance of apical constriction to apical foramen. The most common form of apical constriction was flaring (65.6%) in periapical periodontitis. CONCLUSIONS: The anterior teeth with periapical periodontitis had shorter distances of apical constriction to anatomical apex and apical foramen, bigger disparities between the diameters of buccolingual and mesiodistal, and higher proportion of flaring apical constriction.


Subject(s)
Periapical Periodontitis , Cone-Beam Computed Tomography , Humans , Periapical Periodontitis/complications , Periapical Periodontitis/diagnostic imaging , Root Canal Therapy/methods , Tooth Apex/diagnostic imaging
9.
J Exp Bot ; 72(4): 1460-1472, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33159793

ABSTRACT

Abscisic acid (ABA) induces anthocyanin biosynthesis in many plant species. However, the molecular mechanism of ABA-regulated anthocyanin biosynthesis remains unclear. As a crucial regulator of ABA signaling, ABSCISIC ACID-INSENSITIVE5 (ABI5) is involved in many aspects of plant growth and development, yet its regulation of anthocyanin biosynthesis has not been elucidated. In this study, we found that MdABI5, the apple homolog of Arabidopsis ABI5, positively regulated ABA-induced anthocyanin biosynthesis. A series of biochemical tests showed that MdABI5 specifically interacts with basic helix-loop-helix 3 (MdbHLH3), a positive regulator of anthocyanin biosynthesis. MdABI5 enhanced the binding of MdbHLH3 to its target genes dihydroflavonol 4-reductase (MdDFR) and UDP flavonoid glucosyl transferase (MdUF3GT). In addition, MdABI5 directly bound to the promoter of MdbHLH3 to activate its expression. Moreover, MdABI5 enhanced ABA-promoted interaction between MdMYB1 and MdbHLH3. Finally, antisense suppression of MdbHLH3 significantly reduced anthocyanin biosynthesis promoted by MdABI5, indicating that MdABI5-promoted anthocyanin biosynthesis was dependent on MdbHLH3. Taken together, our data suggest that MdABI5 plays a positive role in ABA-induced anthocyanin biosynthesis by modulating the MdbHLH3-MdMYB1 complex. Our work broadens the regulatory network of ABA-mediated anthocyanin biosynthesis, providing new insights to further study the transcriptional regulatory mechanisms behind this process.


Subject(s)
Anthocyanins/biosynthesis , Basic-Leucine Zipper Transcription Factors/metabolism , Malus , Plant Proteins/metabolism , Abscisic Acid , Basic-Leucine Zipper Transcription Factors/genetics , Gene Expression Regulation, Plant , Malus/genetics , Malus/metabolism , Plant Proteins/genetics , Promoter Regions, Genetic
10.
Plant Cell Rep ; 40(7): 1127-1139, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33973072

ABSTRACT

KEY MESSAGE: MdBZR1 directly binds to the promoter of MdABI5 and suppresses its expression to mediate ABA response. The plant hormones brassinosteroids (BRs) and abscisic acid (ABA) antagonistically regulate various aspects of plant growth and development. However, the association between BR and ABA signaling is less clear. Here, we identified MdBZR1 in apple (Malus domestica) and demonstrated that it was activated by BRs and could respond to ABA treatment. Overexpression of MdBZR1 in apple calli and Arabidopsis reduced ABA-hypersensitive phenotypes, suggesting that MdBZR1 negatively regulates ABA signaling. Subsequently, we found that MdBZR1 directly bound to the promoter region of MdABI5 and suppressed its expression. MdABI5 was significantly induced by ABA treatment. And overexpression of MdABI5 in apple calli increased sensitivity to ABA. Ectopic expression of MdABI5 in Arabidopsis inhibited seed germination and seedling growth. In addition, overexpression of MdBZR1 partially attenuated MdABI5-mediated ABA sensitivity. Taken together, our data indicate that MdBZR1 directly binds to the promoter of MdABI5 and suppresses its expression to antagonistically mediate ABA response. Our work contributes to the functional studies of BZR1 and further broadens the insight into the between BR and ABA signaling.


Subject(s)
Abscisic Acid/metabolism , Malus/genetics , Plant Proteins/genetics , Abscisic Acid/pharmacology , Arabidopsis/drug effects , Arabidopsis/genetics , Gene Expression Regulation, Plant , Malus/drug effects , Malus/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Salt Stress/genetics
11.
J Exp Bot ; 71(10): 3094-3109, 2020 05 30.
Article in English | MEDLINE | ID: mdl-31996900

ABSTRACT

Teosinte branched1/cycloidea/proliferating (TCP) transcription factors play a broad role in plant growth and development, but their involvement in the regulation of anthocyanin biosynthesis is currently unclear. In this study, anthocyanin biosynthesis induced by different light intensities in apple (Malus domestica) was found to be largely dependent on the functions of the MdMYB1 and MdTCP46 transcription factors. The expression of MdTCP46 was responsive to high light intensity, and under these conditions it promoted anthocyanin biosynthesis by direct interactions with MdMYB1 that enhanced the binding of the latter to its target genes. MdTCP46 also interacted with a bric-a-brac/tramtrack/broad (BTB) protein, MdBT2, that is responsive to high light intensity, which ubiquitinated MdTCP46 and mediated its degradation via the 26S proteasome pathway. Our results demonstrate that the dynamic regulatory module MdBT2-MdTCP46-MdMYB1 plays a key role in modulating anthocyanin biosynthesis at different light intensities in apple, and provides new insights into the post-transcriptional regulation of TCP proteins.


Subject(s)
Malus , Anthocyanins , Fruit/metabolism , Gene Expression Regulation, Plant , Malus/genetics , Malus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Plant Physiol ; 174(4): 2348-2362, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28600345

ABSTRACT

Sugars play important roles in plant growth and development, crop yield and quality, as well as responses to abiotic stresses. Abscisic acid (ABA) is a multifunctional hormone. However, the exact mechanism by which ABA regulates sugar accumulation is largely unknown in plants. Here, we tested the expression profile of several sugar transporter and amylase genes in response to ABA treatment. MdSUT2 and MdAREB2 were isolated and genetically transformed into apple (Malus domestica) to investigate their roles in ABA-induced sugar accumulation. The MdAREB2 transcription factor was found to bind to the promoters of the sugar transporter and amylase genes and activate their expression. Both MdAREB2 and MdSUT2 transgenic plants produced more soluble sugars than controls. Furthermore, MdAREB2 promoted the accumulation of sucrose and soluble sugars in an MdSUT2-dependent manner. Our results demonstrate that the ABA-responsive transcription factor MdAREB2 directly activates the expression of amylase and sugar transporter genes to promote soluble sugar accumulation, suggesting a mechanism by which ABA regulates sugar accumulation in plants.


Subject(s)
Amylases/genetics , Gene Expression Regulation, Plant , Malus/genetics , Membrane Transport Proteins/genetics , Plant Proteins/genetics , Sugars/metabolism , Transcription Factors/metabolism , Abscisic Acid/pharmacology , Amylases/metabolism , Fruit/drug effects , Fruit/genetics , Gene Expression Regulation, Plant/drug effects , Gene Silencing/drug effects , Malus/drug effects , Malus/enzymology , Membrane Transport Proteins/metabolism , Models, Biological , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Solubility , Sucrose/metabolism , Transcription Factors/genetics
13.
Plant Cell Environ ; 40(10): 2207-2219, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28667821

ABSTRACT

Phytohormone abscisic acid (ABA) regulates many important processes in plants. It is a major molecule facilitating signal transduction during the abiotic stress response. In this study, an ABA-inducible transcription factor gene, MdAREB2, was identified in apple. Transgenic analysis was performed to characterize its function in ABA sensitivity. Overexpression of the MdAREB2 gene increased ABA sensitivity in the transgenic apple compared with the wild-type (WT) control. In addition, it was found that the protein MdAREB2 was phosphorylated at a novel site Thr411 in response to ABA. A yeast two-hybridization screen of an apple cDNA library demonstrated that a protein kinase, MdCIPK22, interacted with MdAREB2. Their interaction was further verified with Pull Down and Co-IP assays. A series of transgenic analyses in apple calli and plantlets showed that MdCIPK22 was required for ABA-induced phosphorylation at Thr411 of the MdAREB2 protein and enhanced its stability and transcriptional activity. Finally, it was found that MdCIPK22 increased ABA sensitivity in an MdAREB2-dependent manner. Our findings indicate a novel phosphorylation site in CIPK-AREB regulatory module for the ABA signalling pathway, which would be helpful for researchers to identify the functions of uncharacterized homologs in the future.


Subject(s)
Abscisic Acid/metabolism , Malus/enzymology , Plant Proteins/metabolism , Protein Kinases/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Malus/genetics , Phosphorylation , Plants, Genetically Modified , Protein Binding , Threonine/metabolism , Transcription, Genetic
14.
Behav Genet ; 47(4): 416-424, 2017 07.
Article in English | MEDLINE | ID: mdl-28337631

ABSTRACT

Anxiety symptoms occur in a large portion of Alzheimer's disease (AD) patients. ApolipoproteinE-4 (ApoE ε4 allele), a risk factor for AD, has been recognized as an important contributor to psychiatric disorders. In the present study, we aimed to investigate the corticosterone level in relation to anxiety-like behavior changes in transgenic male mice with different glial fibrillary acidic protein (GFAP)-ApoE isoforms. GFAP-ApoE4 transgenic mice aged 3 months showed higher anxiety-like behavior in open field, light-dark box and elevated plus maze tasks compared with that of age-matched GFAP-ApoE3 mice. However, corticotropin releasing factor levels in the hypothalamus and plasma corticosterone secretion were similar in GFAP-ApoE3 and GFAP-ApoE4 transgenic male mice. Additionally, increased expression of the mineralocorticoid receptor (MR) and unchanged expression of the glucocorticoid receptor were observed in the hypothalamus of GFAP-ApoE4 mice. However, no significant differences were found in the expression levels of the MR in GFAP-ApoE3 and GFAP-ApoE4 mice at postnatal day 2. In conclusion, we found that MR upregulation rather than corticosterone level changes in the early stage of adulthood was associated with the higher anxiety-like level measured in GFAP-ApoE4 mice.


Subject(s)
Alzheimer Disease/psychology , Apolipoprotein E4/metabolism , Receptors, Mineralocorticoid/genetics , Alzheimer Disease/metabolism , Animals , Anxiety/metabolism , Anxiety Disorders/genetics , Anxiety Disorders/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/physiology , Apolipoproteins E/genetics , Brain/metabolism , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Humans , Hypothalamo-Hypophyseal System , Hypothalamus , Male , Mice , Mice, Transgenic , Pituitary-Adrenal System , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/metabolism , Up-Regulation
15.
J Pineal Res ; 60(4): 415-23, 2016 May.
Article in English | MEDLINE | ID: mdl-26914888

ABSTRACT

Toll-like receptors (TLRs) play pivotal role in the pathogenesis of allergic airway diseases such as asthma. TLR9 is one of the most extensively studied TLRs as an approach to treat asthma. In this study, we investigated the role of TLR9 in the allergic airway inflammation and the underlying mechanism. Wild-type (WT) mice and TLR9(-/-) mice were sensitized and challenged with OVA to establish allergic airway disease model. We found that the expression of TLR9 was elevated concomitantly with airway inflammation post-OVA challenge, and TLR9 deficiency effectively inhibited airway inflammation, including serum OVA-specific immunoglobulin E (IgE), pulmonary inflammatory cell recruitment, mucus secretion, and bronchoalveolar lavage fluid (BALF) inflammatory cytokine production. Meanwhile, the protein expression of hydroxyindole-o-methyltransferase (HIOMT) in lung tissues, the level of melatonin in serum, and BALF were reduced in OVA-challenged WT mice, while these reductions were significantly restored by TLR9 deficiency. Additionally, we showed that although TLR9 deficiency had no effect on OVA-induced phosphorylation of JNK, inhibition of JNK by specific inhibitor SP600125 significantly decreased OVA-induced expression of TLR9, suggesting that JNK is the upstream signal molecular of TLR9. Furthermore, SP600125 treatment promoted resolution of allergic airway inflammation in OVA-challenged WT mice, but not further ameliorated allergic airway inflammation in OVA-challenged TLR9(-/-) mice. Similarly, SP600125 significantly restored the protein expression of HIOMT and the level of melatonin in OVA-challenged WT mice, while such effect was not further enhanced by TLR9 deficiency. Collectively, our results indicated that JNK-TLR9 signal pathway mediates allergic airway inflammation through suppressing melatonin biosynthesis.


Subject(s)
Asthma/metabolism , MAP Kinase Signaling System/physiology , Melatonin/biosynthesis , Pneumonia/metabolism , Toll-Like Receptor 9/metabolism , Animals , Blotting, Western , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Hypersensitivity/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout
16.
Stress ; 18(4): 419-26, 2015.
Article in English | MEDLINE | ID: mdl-25938810

ABSTRACT

The apolipoprotein E (ApoE) ɛ4 allele (ApoE4) is an important genetic risk factor for the pathogenesis of Alzheimer's disease (AD). In addition to genetic factors, environmental factors such as stress may play a critical role in AD pathogenesis. This study was designed to investigate the anxiety-like behavioral and cognitive changes in different human glial fibrillary acidic protein (GFAP)-ApoE transgenic adult male mice under chronic stress conditions. On the open field test, anxiety-like behavior was increased in the non-stressed GFAP-ApoE4 transgenic mice relative to the corresponding GFAP-ApoE3 (ApoE ɛ3 allele) mice. Anxiety-like behavior was increased in the stressed GFAP-ApoE3 mice relative to non-stressed GFAP-ApoE3 mice, but was unexpectedly decreased in the stressed GFAP-ApoE4 mice relative to non-stressed GFAP-ApoE4 mice. On the novel object recognition task, both GFAP-ApoE4 and GFAP-ApoE3 mice exhibited long-term non-spatial memory impairment after chronic stress. Interestingly, short-term non-spatial memory impairment (based on the novel object recognition task) was observed only in the stressed GFAP-ApoE4 male mice relative to non-stressed GFAP-ApoE4 transgenic mice. In addition, short-term spatial memory impairment was observed in the stressed GFAP-ApoE3 transgenic male mice relative to non-stressed GFAP-ApoE3 transgenic male mice; however, short-term spatial memory performance of GFAP-ApoE4 transgenic male mice was not reduced compared to non-stressed control mice based on the Y-maze task. In conclusion, our findings suggested that chronic stress affects anxiety-like behavior and spatial and non-spatial memory in GFAP-ApoE transgenic mice in an ApoE isoform-dependent manner.


Subject(s)
Anxiety/genetics , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Behavior, Animal , Stress, Psychological/genetics , Alzheimer Disease , Animals , Anxiety/psychology , Chronic Disease , Cognition , Glial Fibrillary Acidic Protein/genetics , Humans , Male , Memory, Long-Term , Mice , Mice, Transgenic , Restraint, Physical , Stress, Psychological/psychology
17.
Gynecol Obstet Invest ; 80(4): 228-33, 2015.
Article in English | MEDLINE | ID: mdl-25766082

ABSTRACT

BACKGROUND/AIMS: Postpartum hemorrhage (PPH) is a life-threatening condition with a worldwide occurrence. The purpose of this study is to evaluate the efficacy and safety of a reflexed compression suture in controlling severe atonic PPH with placenta accreta. METHODS: Eleven women with severe PPH due to uterine inertia or placenta accreta were administered the reflexed compression suture. The procedure was to reflex the fundus onto the anterior wall of the uterus for compressing hemostasis and to form a 'belt-like' binding suture to reinforce the effectiveness of pressing the myometrium. RESULTS: Ten of the 11 women (90.9%) were successfully treated with the suture, and the uterus was preserved. None of these patients developed complications related to this method. Only in 1 patient with placenta increta could the bleeding not be stanched, and a peripartum hysterectomy was performed. Two women had pregnancies after the suture. CONCLUSION: The reflexed compression suture is a simple, swift, safe and effective technique of controlling uterine atonic bleeding, particularly in patients with an abnormally adherent placenta. The advantage of not having to conduct a hysterotomy also lies in reducing the duration of anesthesia and blood loss.


Subject(s)
Obstetric Surgical Procedures/methods , Postpartum Hemorrhage/surgery , Adult , Female , Humans , Placenta Accreta , Postpartum Hemorrhage/etiology , Pregnancy , Suture Techniques , Treatment Outcome , Young Adult
18.
Arch Gynecol Obstet ; 291(2): 305-10, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25288270

ABSTRACT

OBJECTIVE: To evaluate the efficacy and safety of a symbol "&" compression suture technique in controlling severe atonic postpartum hemorrhage with placenta previa accreta during cesarean delivery. METHODS: Nine women with heavy postpartum bleeding from uterine inertia and placenta previa percret, which did not react to conventional initial management protocols, were underwent the suture in the shape of symbol "&" in China Meitan General Hospital. The suture procedure was to staple the anterior and posterior walls (of the lower uterine segment as well as corpus uterus) together using number 1 chromic catgut, with a cross at about 2 cm above the upper boundary of lower uterine segment. RESULTS: Symbol "&" compression suture was capable of stanching the postpartum hemorrhage immediately in all nine women. None of these patients developed complications related to this method. Subsequent pregnancies after the suture were occurred in two women and delivered with repeat cesarean section. CONCLUSION: Symbol "&" compression suture is a simple, safe and highly effective technique to control the treatment-resistant uterine atonic bleeding, particularly in previous cesarean scar at lower segment and placenta previa accreta.


Subject(s)
Placenta Accreta/surgery , Placenta Previa/surgery , Postpartum Hemorrhage/surgery , Uterine Inertia/surgery , Adult , Cesarean Section , Cesarean Section, Repeat , China , Cicatrix/complications , Female , Follow-Up Studies , Humans , Postpartum Hemorrhage/etiology , Pregnancy , Pressure , Surgical Stapling , Suture Techniques , Sutures , Uterus/surgery , Young Adult
19.
Neuro Endocrinol Lett ; 36(5): 490-7, 2015.
Article in English | MEDLINE | ID: mdl-26707050

ABSTRACT

OBJECTIVE: Previous studies reported that environmental enrichment might induce various beneficial effects in the central nervous system. However, the effect of environmental factors on endogenous estrogen level was not investigated. The present study was designed to examine the effect of enriched environment on endogenous estrogen in hippocampus and behavioral outcomes. METHODS: Behavioural measurements, including open field, elevated plus maze and Morris water maze, were used to evaluate anxiety and learning and memory of the male C57BL/6J mice that were housed in enriched environment for five months. In addition, the estrogen and brain-derived neurotrophic factor (BDNF) expression in the hippocampus were measured. RESULTS: We found that environmental enrichment decreased anxiety-like behaviors and facilitated spatial learning and memory in male C57BL/6J mice. In addition, the mice raised in enriched environment showed decreased endogenous estrogen levels both in the hippocampus and plasma compared to controls. Furthermore, our results indicated that environmental enrichment up-regulated BDNF mRNA expression level in the hippocampus. CONCLUSION: In conclusion, environmental enrichment decreased anxiety-like behaviors and facilitated spatial learning and memory in male C57BL/6J mice. Lastly, environmental enrichment up-regulated BDNF mRNA expression level in the hippocampus and decreased plasma estrogen level. The possible mechanism remained to be determined.


Subject(s)
Anxiety , Behavior, Animal , Brain-Derived Neurotrophic Factor/genetics , Estradiol/metabolism , Hippocampus/metabolism , Maze Learning , Social Environment , Animals , Brain-Derived Neurotrophic Factor/metabolism , Male , Memory , Mice
20.
J Cell Mol Med ; 18(7): 1300-12, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24725889

ABSTRACT

The rational of neural stem cells (NSCs) in the therapy of neurological disease is either to replace dead neurons or to improve host neuronal survival, the latter of which has got less attention and the underlying mechanism is as yet little known. Using a transwell co-culture system, we reported that, in organotypic brain slice cultures, NSCs significantly improved host neuronal viability. Interestingly, this beneficial effect of NSCs was abrogated by a microglial inhibitor minocycline, while it was mimicked by a microglial agonist, Toll-like receptor 9 (TLR9) ligand CpG-ODN, which supports the pro-vital mediation by microglia on this NSCs-improved neuronal survival. Moreover, we showed that NSCs significantly induced host microglial movement and higher expression of a microglial marker IBA-1, the latter of which was positively correlated with TLR9 or extracellular-regulated protein kinases 1/2 (ERK1/2) activation. Real-time PCR revealed that NSCs inhibited the expression of pro-inflammatory molecules, but significantly increased the expression of molecules associated with a neuroprotective phenotype such as CX3CR1, triggering receptor expressed on myeloid cells-2 (TREM2) and insulin growth factor 1 (IGF-1). Similarly, in the microglia cells, NSCs induced the same microglial response as that in the slices. Further treatment with TLR9 ligand CpG-ODN, TLR9 inhibitor chloroquine (CQ) or ERK1/2 inhibitor U0126 demonstrated that TLR9-ERK1/2 pathway was involved in the NSCs-induced microglial activation. Collectively, this study indicated that NSCs improve host neuronal survival by switching microglia from a detrimental to a neuroprotective phenotype in adult mouse brain, and the microglial TLR9-ERK1/2 pathway seems to participate in this NSCs-mediated rescue action.


Subject(s)
Brain/cytology , Embryo, Mammalian/cytology , Microglia/cytology , Neural Stem Cells/cytology , Animals , Blotting, Western , Brain/metabolism , Cell Proliferation , Cell Survival , Cells, Cultured , Coculture Techniques , Cytokines/genetics , Cytokines/metabolism , Embryo, Mammalian/metabolism , Mice , Microglia/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Neural Stem Cells/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL