ABSTRACT
Despite the long history of consumption of fermented dairy, little is known about how the fermented microbes were utilized and evolved over human history. Here, by retrieving ancient DNA of Bronze Age kefir cheese (â¼3,500 years ago) from the Xiaohe cemetery, we explored past human-microbial interactions. Although it was previously suggested that kefir was spread from the Northern Caucasus to Europe and other regions, we found an additional spreading route of kefir from Xinjiang to inland East Asia. Over evolutionary history, the East Asian strains gained multiple gene clusters with defensive roles against environmental stressors, which can be a result of the adaptation of Lactobacillus strains to various environmental niches and human selection. Overall, our results highlight the role of past human activities in shaping the evolution of human-related microbes, and such insights can, in turn, provide a better understanding of past human behaviors.
Subject(s)
Cheese , Lactobacillus , Humans , Cheese/microbiology , Lactobacillus/genetics , Kefir/microbiology , History, Ancient , Phylogeny , China , Biological Evolution , Fermentation , Asia, EasternABSTRACT
Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.
Subject(s)
Euphausiacea , Genome , Animals , Circadian Clocks/genetics , Ecosystem , Euphausiacea/genetics , Euphausiacea/physiology , Genomics , Sequence Analysis, DNA , DNA Transposable Elements , Biological Evolution , Adaptation, PhysiologicalABSTRACT
Past human genetic diversity and migration between southern China and Southeast Asia have not been well characterized, in part due to poor preservation of ancient DNA in hot and humid regions. We sequenced 31 ancient genomes from southern China (Guangxi and Fujian), including two â¼12,000- to 10,000-year-old individuals representing the oldest humans sequenced from southern China. We discovered a deeply diverged East Asian ancestry in the Guangxi region that persisted until at least 6,000 years ago. We found that â¼9,000- to 6,000-year-old Guangxi populations were a mixture of local ancestry, southern ancestry previously sampled in Fujian, and deep Asian ancestry related to Southeast Asian Hòabìnhian hunter-gatherers, showing broad admixture in the region predating the appearance of farming. Historical Guangxi populations dating to â¼1,500 to 500 years ago are closely related to Tai-Kadai and Hmong-Mien speakers. Our results show heavy interactions among three distinct ancestries at the crossroads of East and Southeast Asia.
Subject(s)
Genetics, Population , Asia, Southeastern , Asia, Eastern , Geography , HumansABSTRACT
The Knl1-Mis12-Ndc80 (KMN) network is an essential component of the kinetochore-microtubule attachment interface, which is required for genomic stability in eukaryotes. However, little is known about plant Knl1 proteins because of their complex evolutionary history. Here, we cloned the Knl1 homolog from maize (Zea mays) and confirmed it as a constitutive central kinetochore component. Functional assays demonstrated their conserved role in chromosomal congression and segregation during nuclear division, thus causing defective cell division during kernel development when Knl1 transcript was depleted. A 145 aa region in the middle of maize Knl1, that did not involve the MELT repeats, was associated with the interaction of spindle assembly checkpoint (SAC) components Bub1/Mad3 family proteins 1 and 2 (Bmf1/2) but not with the Bmf3 protein. They may form a helical conformation with a hydrophobic interface with the TPR domain of Bmf1/2, which is similar to that of vertebrates. However, this region detected in monocots shows extensive divergence in eudicots, suggesting that distinct modes of the SAC to kinetochore connection are present within plant lineages. These findings elucidate the conserved role of the KMN network in cell division and a striking dynamic of evolutionary patterns in the SAC signaling and kinetochore network.
Subject(s)
Cell Cycle Checkpoints/genetics , Microtubule-Associated Proteins/genetics , Plant Proteins/genetics , Signal Transduction/genetics , Spindle Apparatus/metabolism , Zea mays/genetics , Amino Acid Sequence , Binding Sites/genetics , Chromosome Segregation/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Kinetochores/metabolism , Microtubule-Associated Proteins/classification , Microtubule-Associated Proteins/metabolism , Mutation , Phylogeny , Plant Proteins/classification , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Binding , RNA-Seq/methods , Seeds/genetics , Seeds/metabolism , Sequence Homology, Amino Acid , Zea mays/metabolismABSTRACT
B chromosomes are enigmatic elements in thousands of plant and animal genomes that persist in populations despite being nonessential. They circumvent the laws of Mendelian inheritance but the molecular mechanisms underlying this behavior remain unknown. Here we present the sequence, annotation, and analysis of the maize B chromosome providing insight into its drive mechanism. The sequence assembly reveals detailed locations of the elements involved with the cis and trans functions of its drive mechanism, consisting of nondisjunction at the second pollen mitosis and preferential fertilization of the egg by the B-containing sperm. We identified 758 protein-coding genes in 125.9 Mb of B chromosome sequence, of which at least 88 are expressed. Our results demonstrate that transposable elements in the B chromosome are shared with the standard A chromosome set but multiple lines of evidence fail to detect a syntenic genic region in the A chromosomes, suggesting a distant origin. The current gene content is a result of continuous transfer from the A chromosomal complement over an extended evolutionary time with subsequent degradation but with selection for maintenance of this nonvital chromosome.
Subject(s)
Chromosomes, Plant/genetics , Evolution, Molecular , Pollen/genetics , Pregnancy Proteins/genetics , Zea mays/genetics , Meiosis/genetics , Mitosis/geneticsABSTRACT
Proanthocyanidins (PAs) are common specialized metabolites and particularly abundant in trees and woody plants. In poplar (Populus spp.), PA biosynthesis is stress-induced and regulated by two previously studied transcription factors MYB115 and MYB134. To determine the relative contribution of these regulators to PA biosynthesis, we created single- and double-knockout (KO) mutants for both genes in transgenic poplars using CRISPR/Cas9. Knocking out either MYB134 or MYB115 showed reduced PA accumulation and downregulated flavonoid genes in leaves, but MYB134 disruption had the greatest impact and reduced PAs to 30% of controls. In roots, by contrast, only the MYB134/MYB115 double-KOs showed a significant change in PA concentration. The loss of PAs paralleled the lower expression of PA biosynthesis genes and concentrations of flavan-3-ol PA precursors catechin and epicatechin. Interestingly, salicinoids were also affected in double-KOs, with distinct patterns in roots and shoots. We conclude that the regulatory pathways for PA biosynthesis differ in poplar leaves and roots. The residual PA content in the double-KO plants indicates that other transcription factors must also be involved in control of the PA pathway.
Subject(s)
Populus , Proanthocyanidins , Proanthocyanidins/metabolism , Populus/genetics , Populus/metabolism , CRISPR-Cas Systems , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/geneticsABSTRACT
Meiosis consists of two highly conserved nuclear divisions, which allow eukaryotes to maintain their chromosome number through sexual reproduction. The successful completion of meiosis depends on homologous chromosome pairing. Centromere interactions during early meiotic prophase I facilitate homologous chromosome pairing, but the underlying mechanism is unclear. Here, we performed chromatin immunoprecipitation-mass spectrometry analysis of maize (Zea mays) anthers during early meiotic prophase I using anti-centromeric histone H3 (CENH3) antibodies and determined that the cohesin subunit Structural Maintenance of Chromosome3 (SMC3) interacts with CENH3 during this period. SMC3 is enriched at centromeres and along chromosome arms in threads from leptotene to pachytene and might promote interactions between homologous centromeres. We observed dysfunctional SMC3 assembly in meiotic-specific maize mutants with defective centromere pairing. In SMC3 RNAi meiocytes, centromere pairing defects were observed during early meiotic prophase I, SMC3 was weakly associated with centromeres, and SMC3 did not localize to the chromosome arms. In wild-type mitosis, SMC3 is associated with chromatin and is enriched at centromeres from prophase to anaphase. CRISPR-Cas9-induced Zmsmc3 mutants showed premature loss of sister chromatid cohesion and mis-segregation of chromosomes in mitotic spreads. Our findings suggest that in addition to sister chromatid cohesion, ZmSMC3 participates in meiotic centromere pairing.
Subject(s)
Cell Cycle Proteins/metabolism , Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Pairing , Meiosis , Plant Proteins/metabolism , Protein Subunits/metabolism , Zea mays/cytology , Zea mays/metabolism , Chromatids/metabolism , Chromosomes, Plant/genetics , Meiotic Prophase I , Mitosis , Mutation/genetics , Phenotype , Protein Binding , Recombination, Genetic/genetics , Spindle Apparatus/metabolism , CohesinsABSTRACT
Comparative genomics has revealed common occurrences in karyotype evolution such as chromosomal end-to-end fusions and insertions of one chromosome into another near the centromere, as well as many cases of de novo centromeres that generate positional polymorphisms. However, how rearrangements such as dicentrics and acentrics persist without being destroyed or lost remains unclear. Here, we sought experimental evidence for the frequency and timeframe for inactivation and de novo formation of centromeres in maize (Zea mays). The pollen from plants with supernumerary B chromosomes was gamma-irradiated and then applied to normal maize silks of a line without B chromosomes. In â¼8,000 first-generation seedlings, we found many B-A translocations, centromere expansions, and ring chromosomes. We also found many dicentric chromosomes, but a fraction of these show only a single primary constriction, which suggests inactivation of one centromere. Chromosomal fragments were found without canonical centromere sequences, revealing de novo centromere formation over unique sequences; these were validated by immunolocalization with Thr133-phosphorylated histone H2A, a marker of active centromeres, and chromatin immunoprecipitation-sequencing with the CENH3 antibody. These results illustrate the regular occurrence of centromere birth and death after chromosomal rearrangement during a narrow window of one to potentially only a few cell cycles for the rearranged chromosomes to be recognized in this experimental regime.
Subject(s)
Centromere/genetics , Chromosomes, Plant/genetics , Zea mays/genetics , Chromatin Immunoprecipitation Sequencing , Chromosome Aberrations , Chromosomes, Plant/radiation effects , In Situ Hybridization, Fluorescence , X-Rays , Zea mays/radiation effectsABSTRACT
In most plants, centromeric DNA contains highly repetitive sequences, including tandem repeats and retrotransposons; however, the roles of these sequences in the structure and function of the centromere are unclear. Here, we found that multiple RNA sequences from centromeric retrotransposons (CRMs) were enriched in maize (Zea mays) centromeres, and back-spliced RNAs were generated from CRM1. We identified 3 types of CRM1-derived circular RNAs with the same back-splicing site based on the back-spliced sequences. These circular RNAs bound to the centromere through R-loops. Two R-loop sites inside a single circular RNA promoted the formation of chromatin loops in CRM1 regions. When RNA interference (RNAi) was used to target the back-splicing site of the circular CRM1 RNAs, the levels of R-loops and chromatin loops formed by these circular RNAs decreased, while the levels of R-loops produced by linear RNAs with similar binding sites increased. Linear RNAs with only one R-loop site could not promote chromatin loop formation. Higher levels of R-loops and lower levels of chromatin loops in the CRM1 regions of RNAi plants led to a reduced localization of the centromeric H3 variant (CENH3). Our work reveals centromeric chromatin organization by circular CRM1 RNAs via R-loops and chromatin loops, which suggested that CRM1 elements might help build a suitable chromatin environment during centromere evolution. These results highlight that R-loops are integral components of centromeric chromatin and proper centromere structure is essential for CENH3 localization.
Subject(s)
Centromere/metabolism , Chromatin , Nucleic Acid Conformation , RNA, Plant/metabolism , Retroelements/genetics , Zea mays/genetics , Binding Sites/genetics , Centromere Protein A/genetics , Centromere Protein A/metabolism , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , DNA, Plant/chemistry , DNA, Plant/genetics , DNA, Plant/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified , RNA Splicing/physiology , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Plant/genetics , Zea mays/metabolismABSTRACT
Objective: To evaluate the clinical efficacy of a chemotherapy regimen combined with levofloxacin in patients with pulmonary tuberculosis complicated with Type-2 diabetes. Methods: Total 80 patients with pulmonary tuberculosis complicated with Type-2 diabetes admitted to Baoding People's Hospital from January, 2019 to January, 2022 were randomly divided into two groups: the experimental group and the control group, with 40 cases in each group. Patients in the control group were given the conventional 2HRZE/10HRE regimen, while those in the experimental group were given the chemotherapy regimen 2HRZEL/6HRE combined with levofloxacin. Sixty four slice spiral CT was used for chest plain scan before and after treatment, respectively, to evaluate the absorption of lesions based on the range of lung lesions; Venous blood was drawn to detect the changes of oxidative stress indicators, the incidence of adverse drug reactions and the negative conversion rate of sputum tuberculosis bacteria in the two groups. Results: After treatment, the efficacy of the experimental group was 90%, which was significantly higher than that of the control group (67.5%), with a statistically significant difference (p=0.01). After treatment, CD3+, CD4+, CD4+/CD8+ and other indicators in the experimental group were significantly higher than those in the control group, with a statistically significant difference (CD3+, p=0.01; CD4+, p=0.01; CD4+/CD8+, p=0.00), while CD8+ did not change significantly (p=0.92); The incidence of adverse reactions was 52.5% in the experimental group and 47.5% in the control group, with no statistically significant difference (p=0.66); The negative conversion rate of patients in the experimental group was significantly higher than that in the control group at one month, three months and six months after treatment, with a statistically significant difference (p<0.05). Conclusion: Chemotherapy combined with levofloxacin is a safe and effective regimen for patients' pulmonary tuberculosis complicated with Type-2 diabetes, boasting a variety of benefits such as improved clinical efficacy, ameliorated cellular immune status, a high negative conversion rate of sputum tuberculosis bacteria, and no significant increase in adverse reactions.
ABSTRACT
Centromeres mediate the pairing of homologous chromosomes during meiosis; this pairing is particularly challenging for polyploid plants such as hexaploid bread wheat (Triticum aestivum), as their meiotic machinery must differentiate homologs from similar homoeologs. However, the sequence compositions (especially functional centromeric satellites) and evolutionary history of wheat centromeres are largely unknown. Here, we mapped T. aestivum centromeres by chromatin immunoprecipitation sequencing using antibodies to the centromeric-specific histone H3 variant (CENH3); this identified two types of functional centromeric satellites that are abundant in two of the three subgenomes. These centromeric satellites had unit sizes greater than 500 bp and contained specific sites with highly phased binding to CENH3 nucleosomes. Phylogenetic analysis revealed that the satellites have diverged in the three T. aestivum subgenomes, and the more homogeneous satellite arrays are associated with CENH3. Satellite signals decreased and the degree of satellites variation increased from diploid to hexaploid wheat. Moreover, several T. aestivum centromeres lack satellite repeats. Rearrangements, including local expansion and satellite variations, inversions, and changes in gene expression, occurred during the evolution from diploid to tetraploid and hexaploid wheat. These results reveal the asymmetry in centromere organization among the wheat subgenomes, which may play a role in proper homolog pairing during meiosis.
Subject(s)
Centromere/physiology , Polyploidy , Triticum/genetics , Triticum/physiology , Centromere/classification , Chromosomes, Plant , Evolution, Molecular , Gene Expression Regulation, Plant , Histones/metabolism , Meiosis , Nucleosomes/classification , Phylogeny , Plant Proteins , Species Specificity , Triticum/cytologyABSTRACT
Bladder cancer (BC) is one of the most prevalent and life-threatening cancers among the male population worldwide. Sex determining region Y-box protein 5 (SOX5) plays important roles in a variety of human cancers. However, little research has been conducted on the function and underlying mechanism of SOX5 in BC. In the present study, we first reveal the increased expression of SOX5 in BC tissues and in vitro cells lines. Second, we discover that inhibition of SOX5 inhibits cell growth and migration but promotes cell apoptosis. Meanwhile, ectopic SOX5 expression stimulates cell growth and migration in BC cells. Then, we show that suppressing SOX5 inhibits the expression of DNA methyltransferase 1 (DNMT1), and that overexpressing DNMT1 alleviates the cell progress of BC cells inhibited by SOX5. Furthermore, we demonstrate that DNMT1 inhibits p21 expression by affecting DNA methylation of the p21 promoter. Collectively, we demonstrate that SOX5 exerts its functions in BC cells by modulating the SOX5/DNMT1/p21 pathway. Finally, we demonstrate that SOX5 knockdown inhibits xenograft tumor growth in vivo. In conclusion, our study elucidates the oncogenic role of SOX5 and its underlying molecular mechanism in BC, and reveals a novel pathway which has the potential to serve as a diagnostic biomarker and therapeutic target for BC.
Subject(s)
MicroRNAs , Urinary Bladder Neoplasms , Cell Line, Tumor , Cell Proliferation/genetics , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Gene Expression Regulation, Neoplastic , Humans , Male , MicroRNAs/genetics , SOXD Transcription Factors/genetics , SOXD Transcription Factors/metabolism , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathologyABSTRACT
Splenomegaly is a symptom characterized by the presence of an enlarged spleen. The impact of environmental factors on splenomegaly is largely unknown. In this study, C57BL/6 mice were treated with 125 ppm or 1250 ppm lead (Pb) via drinking water for 8 wk, and the process of splenomegaly was evaluated. Treatment with 1250 ppm Pb, but not 125 ppm Pb, caused splenomegaly, which was associated with increased capacity for erythrocyte clearance. Intriguingly, Pb-caused splenomegaly was independent of lymphoid tissue inducer (LTi) cells, which produce lymphotoxins α and ß (LTα/ß) to activate endothelial cells and LT organizer (LTo) cells and drive the development of spleen physiologically. A direct action of Pb on endothelial cells and LTo cells did not impact their proliferation. On the other hand, during steady state, a tonic level of interferon (IFN)γ acted on endothelial cells and LTo cells to suppress splenomegaly, as IFNγ receptor (IFNγR)-deficient mice had enlarged spleens relative to wild-type mice; during Pb exposure, splenic IFNγ production was suppressed, thus leading to a loss of the inhibitory effect of IFNγ on splenomegaly. Mechanically, Pb acted on splenic CD4+ T cells to suppress IFNγ production, which impaired the Janus kinase (Jak)1/ signal transducer and activator of transcription (STAT)1 signaling in endothelial cells and LTo cells; the weakened Jak1/STAT1 signaling resulted in the enhanced nuclear factor-κB (NF-κB) signaling in endothelial cells and LTo cells, which drove their proliferation and caused splenomegaly. The present study reveals a previously unrecognized mechanism for the immunotoxicity of Pb, which may extend our current understanding for Pb toxicology.
Subject(s)
Drinking Water , Interferon-gamma , Animals , Endothelial Cells/metabolism , Interferon-gamma/pharmacology , Lead/pharmacology , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Phosphorylation , Spleen , Splenomegaly/chemically inducedABSTRACT
The centromere, as an essential element to mediate chromosome segregation, is epigenetically determined by CENH3-containing nucleosomes as a functional marker; therefore the accurate deposition of CENH3 is crucial for chromosome transmission. We characterized the deposition of CENH3 in maize by over-expression and mutational analysis. Our results revealed that over-expressing CENH3 in callus is lethal while over-expressing GFP-CENH3 and CENH3-YFP in callus and plants is not and can be partly deposited normally. Different mutations of GFP-CENH3 demonstrated that CENH3-Thr4 in the N-terminus was needed for the deposition as a positive phosphorylation site and the last five amino acids in the C-terminus are necessary for deposition. The C-terminal tail of CENH3 is confirmed to be responsible for the interaction of CENH3 and histone H4, which indicates that CENH3 maintains deposition in centromeres via interacting with H4 to form stable nucleosomes. For GFP-CENH3 and CENH3-YFP, the fused tags at the termini probably affect the structure of CENH3 and reduce its interaction with other proteins, which in turn could decrease proper deposition. Taken together, multiple amino acids or motifs were shown to play essential roles in CENH3 deposition, which is suggested to be affected by numerous factors in maize.
Subject(s)
Centromere/metabolism , Histones/metabolism , Plant Proteins/metabolism , Zea mays/metabolism , Gene Expression Regulation, Plant , Phosphorylation , Plants, Genetically ModifiedABSTRACT
OBJECTIVES: The requirement of prolonged mechanical ventilation (PMV) is associated with increased medical care demand and expenses, high early and long-term mortality, and worse life quality. However, no study has assessed the prognostic factors associated with 1-year mortality among PMV patients, not less than 21 days after surgery. This study analyzed the predictors of 1-year mortality in patients requiring PMV in intensive care units (ICUs) after surgery. METHODS: In this multicenter, respective cohort study, 124 patients who required PMV after surgery in the ICUs of five tertiary hospitals in Beijing between January 2007 and June 2016 were enrolled. The primary outcome was the duration of survival within 1 year. Predictors of 1-year mortality were identified with a multivariable Cox proportional hazard model. The predictive effect of the ProVent score was also validated. RESULTS: Of the 124 patients enrolled, the cumulative 1-year mortality was 74.2% (92/124). From the multivariable Cox proportional hazard analysis, cancer diagnosis (hazard ratio [HR] 2.14, 95% confidence interval [CI] 1.37-3.35; P < 0.01), no tracheostomy (HR 2.01, 95% CI 1.22-3.30; P < 0.01), enteral nutrition intolerance (HR 1.88, 95% CI 1.19-2.97; P = 0.01), blood platelet count ≤150 × 109/L (HR 1.77, 95% CI 1.14-2.75; P = 0.01), requirement of vasopressors (HR 1.78, 95% CI 1.13-2.80; P = 0.02), and renal replacement therapy (HR 1.71, 95% CI 1.01-2.91; P = 0.047) on the 21st day of mechanical ventilation (MV) were associated with shortened 1-year survival. CONCLUSIONS: For patients who required PMV after surgery, cancer diagnosis, no tracheostomy, enteral nutrition intolerance, blood platelet count ≤150 × 109/L, vasopressor requirement, and renal replacement therapy on the 21st day of MV were associated with shortened 1-year survival. The prognosis in PMV patients in ICUs can facilitate the decision-making process of physicians and patients' family members on treatment schedule.
Subject(s)
Intensive Care Units , Postoperative Complications/mortality , Respiration, Artificial/adverse effects , Respiration, Artificial/statistics & numerical data , Aged , Beijing/epidemiology , Cohort Studies , Female , Humans , Male , Middle Aged , Retrospective Studies , TimeABSTRACT
Aluminum (Al) toxicity is a major limiting factor for plant productivity. Boron (B) could mitigate Al toxicity in many plant species. However, information about the mechanisms of B alleviating Al toxicity in citrus is lacking. Trifoliate orange rootstock (Poncirus trifoliate L. Raf.) seedlings were irrigated with a nutrient solution containing two B and two Al levels. Results showed that exposure to Al severely impeded plant growth-related parameters. However, B supply improved plant biomass, root activity and relative root elongation under Al stress. Furthermore, B reduced the Al-induced H2O2 accumulation in roots as evidenced by lower fluorescence intensity of H2O2 staining. Boron decreased the Al-stimulated ascorbate (AsA) synthesis by down-regulated AsA synthesis-related metabolites in the L-galactose pathway. Boron alleviated some of the toxic effects of Al by decreasing redox states of AsA and enzyme activities involved in ascorbate-glutathione (AsA-GSH) cycle, ascorbate peroxidase, dehydroascorbate reductase, glutathione reductase and glutathione peroxidase while increased glutathione (GSH) content and γ-glutamylcysteine synthetase (γ-GCS) activity. Overall, our results suggest that B protects roots against Al-induced oxidative stress possibly by reducing metabolites accumulation in the L-galactose pathway of AsA synthesis and regulating AsA-GSH cycle.
Subject(s)
Aluminum/toxicity , Boron/pharmacology , Oxidative Stress/drug effects , Plant Roots/drug effects , Poncirus/drug effects , Protective Agents/pharmacology , Soil Pollutants/toxicity , Agricultural Irrigation , Ascorbate Peroxidases/metabolism , Ascorbic Acid/metabolism , China , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Hydrogen Peroxide/metabolismABSTRACT
To obtain diterpene glycosides from an aqueous extract of the aerial parts of Isodon henryi and further investigate their cytotoxicities, in this study, a total of seven compounds were isolated, including six ent-kaurane diterpene glycosides (1-6) and one diterpene aglycon (7). Among the seven ent-kaurane diterpenes obtained, four were novel compounds, including ent-7,20-epoxy- kaur-16-en-1α,6ß,7ß,15ß-tetrahydroxyl-11-O-ß-d-glucopyranoside (1), ent-7,20-epoxy-kaur-16-en- 6ß,7ß,14ß,15ß-tetrahydroxyl-1-O-ß-d-glucopyranoside (2), ent-7,20-epoxy-kaur-16-en-6ß,7ß,15ß- trihydroxyl-1-O-ß-d-glucopyranoside (3), and ent-7,20-epoxy-kaur-16-en-7ß,11ß,14α,15ß-tetrahydr- oxyl-6-O-ß-d-glucopyranoside (4), and three were isolated from this plant for the first time (5-7). Their structures were elucidated by utilizing spectroscopic methods and electronic circular dichroism analyses. Furthermore, the cytotoxicities of all seven compounds were investigated in four human cancer cell lines, including A2780, BGC-823, HCT-116, and HepG2. The IC50 values of these diterpenes ranged from 0.18 to 2.44 mM in the tested cell lines. In addition, the structure-cytotoxicity relationship of diterpene glycosides was also evaluated to study the effect of glycosylation on the cytotoxicity of diterpene compounds.
Subject(s)
Diterpenes, Kaurane/chemistry , Diterpenes, Kaurane/pharmacology , Glycosides/chemistry , Glycosides/pharmacology , Isodon/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Models, Molecular , Molecular Structure , Spectrum Analysis , Structure-Activity RelationshipABSTRACT
The chemical constituents of the water extraction of the aerial parts of Isodon henryi were investigated by various chromatographic methods including D-101 macroporous adsorptive resins,silica gel,sephadex LH-20,and semi-preparative HPLC. As a result,ten compounds were separated and purified. By analyses of the UV,IR,MS,NMR spectra,their structures were determined as rabdosinate( 1),lasiokaurin( 2),epinodosinol( 3),rabdosichuanin C( 4),epinodosin( 5),hebeirubescensin k( 6),rubescensin C( 7),enmenol( 8),oridonin( 9),and enmenol-1-ß-glucoside( 10). Compounds 1-8 and 10 were isolated from I. henryi for the first time. Compounds 2 and 9 showed inhibitory effects against four tumor cells,with IC50 values of 2. 25-9. 32 µmol·L-1.
Subject(s)
Isodon/chemistry , Phytochemicals/analysis , Plant Extracts/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Components, Aerial/chemistryABSTRACT
1RS.1BL translocations are centric translocations formed by misdivision and have been used extensively in wheat breeding. However, the role that the centromere plays in the formation of 1RS.1BL translocations is still unclear. Fluorescence in situ hybridization (FISH) was applied to detect the fine structures of the centromeres in 130 1RS.1BL translocation cultivars. Immuno-FISH, chromatin immunoprecipitation (ChIP)-qPCR and RT-PCR were used to investigate the functions of the hybrid centromeres in 1RS.1BL translocations. New 1R translocations with different centromere structures were created by misdivision and pollen irradiation to elucidate the role that the centromere plays in the formation of 1RS.1BL translocations. We found that all of the 1RS.1BL translocations detected contained hybrid centromeres and that wheat-derived CENH3 bound to both the wheat and rye centromeres in the 1RS.1BL translocation chromosomes. Moreover, a rye centromere-specific retrotransposon was actively transcribed in 1RS.1BL translocations. The frequencies of new 1RS hybrid centromere translocations and group-1 chromosome translocations were higher during 1R misdivision. Our study demonstrates the hybrid nature of the centromere in 1RS.1BL translocations. New 1R translocations with different centromere structures were created to help understand the fusion centromere used for wheat breeding and for use as breeding material for the improvement of wheat.
Subject(s)
Centromere , Secale/genetics , Translocation, Genetic , Triticum/genetics , Centromere/genetics , Chimera , Chromosomes, Plant , In Situ Hybridization, FluorescenceABSTRACT
Haspin-mediated phosphorylation of histone H3 at threonine 3 (H3T3ph) promotes proper deposition of Aurora B at the inner centromere to ensure faithful chromosome segregation in metazoans. However, the function of H3T3ph remains relatively unexplored in plants. Here, we show that in maize (Zea mays L.) mitotic cells, H3T3ph is concentrated at pericentromeric and centromeric regions. Additional weak H3T3ph signals occur between cohered sister chromatids at prometaphase. Immunostaining on dicentric chromosomes reveals that an inactive centromere cannot maintain H3T3ph at metaphase, indicating that a functional centromere is required for H3T3 phosphorylation. H3T3ph locates at a newly formed centromeric region that lacks detectable CentC sequences and strongly reduced CRM and ZmBs repeat sequences at metaphase II. These results suggest that centromeric localization of H3T3ph is not dependent on centromeric sequences. In maize meiocytes, H3T3 phosphorylation occurs at the late diakinesis and extends to the entire chromosome at metaphase I, but is exclusively limited to the centromere at metaphase II. The H3T3ph signals are absent in the afd1 (absence of first division) and sgo1 (shugoshin) mutants during meiosis II when the sister chromatids exhibit random distribution. Further, we show that H3T3ph is mainly located at the pericentromere during meiotic prophase II but is restricted to the inner centromere at metaphase II. We propose that this relocation of H3T3ph depends on tension at the centromere and is required to promote bi-orientation of sister chromatids.