Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Plant Cell ; 36(5): 1844-1867, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38146915

ABSTRACT

Hypothetical chloroplast open reading frames (ycfs) are putative genes in the plastid genomes of photosynthetic eukaryotes. Many ycfs are also conserved in the genomes of cyanobacteria, the presumptive ancestors of present-day chloroplasts. The functions of many ycfs are still unknown. Here, we generated knock-out mutants for ycf51 (sll1702) in the cyanobacterium Synechocystis sp. PCC 6803. The mutants showed reduced photoautotrophic growth due to impaired electron transport between photosystem II (PSII) and PSI. This phenotype results from greatly reduced PSI content in the ycf51 mutant. The ycf51 disruption had little effect on the transcription of genes encoding photosynthetic complex components and the stabilization of the PSI complex. In vitro and in vivo analyses demonstrated that Ycf51 cooperates with PSI assembly factor Ycf3 to mediate PSI assembly. Furthermore, Ycf51 interacts with the PSI subunit PsaC. Together with its specific localization in the thylakoid membrane and the stromal exposure of its hydrophilic region, our data suggest that Ycf51 is involved in PSI complex assembly. Ycf51 is conserved in all sequenced cyanobacteria, including the earliest branching cyanobacteria of the Gloeobacter genus, and is also present in the plastid genomes of glaucophytes. However, Ycf51 has been lost from other photosynthetic eukaryotic lineages. Thus, Ycf51 is a PSI assembly factor that has been functionally replaced during the evolution of oxygenic photosynthetic eukaryotes.


Subject(s)
Bacterial Proteins , Open Reading Frames , Photosystem I Protein Complex , Synechocystis , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/genetics , Synechocystis/genetics , Synechocystis/metabolism , Open Reading Frames/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Chloroplasts/metabolism , Photosynthesis/genetics , Thylakoids/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Mutation
2.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3848-3856, 2024 Jul.
Article in Zh | MEDLINE | ID: mdl-39099358

ABSTRACT

This paper investigated the effect of total saponins from Rhizoma Panacis Majoris on the proliferation, apoptosis, and autophagy of human cervical carcinoma HeLa cells. The saponin content was detected by ultraviolet-visible spectrophotometry. Cell coun-ting kit-8(CCK-8) assay, 4,6-diamidino-2-phenylindole(DAPI) staining, and flow cytometry were used to detect the effects of total saponins of Panacis Majoris Rhizoma on cell viability, morphology, cell cycle and apoptosis of HeLa cells. Western blot was used to detect the expression of apoptosis-related proteins B cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cleaved caspase-9, and cleaved caspase-3, autophagy-related proteins Beclin-1 and SQSTM1(p62), and the proteins related to the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR) and mitogen-activated protein kinase(MAPK) signaling pathways. It was found that the yield and saponin content of total saponins from Rhizoma Panacis Majoris were 6.3% and 78.3%, respectively. Total saponins from Rhizoma Panacis Majoris could significantly inhibit the proliferation(P<0.001), effect the nuclear morphology, block the G_0/G_1 cycle, and induce cell apoptosis in HeLa cells with a concentration-dependent manner. In addition, total saponins from Rhizoma Panacis Majoris up-regulated the expression of pro-apoptotic proteins Bax, cleaved caspase-9, and cleaved caspase-3, and autophagy-related protein p62(P<0.05), while down-regulated the expression of anti-apoptotic protein Bcl-2 and autophagy-related protein Beclin-1(P<0.01). Total saponins from Rhizoma Panacis Majoris could promote the expression of p-p38/p38, p-Jun N-terminal kinase(JNK)/JNK, p-PI3K/PI3K, p-Akt/Akt, p-mTOR/mTOR proteins in PI3K/Akt/mTOR and MAPK signaling pathways(P<0.05). In contrast, the effect on p-ERK/ERK expression was not obvious. Therefore, total saponins from Rhizoma Panacis Majoris may inhibit autophagy and promote apoptosis of HeLa cells through the activation of the PI3K/Akt/mTOR, c-JNK, and p38 MAPK signaling pathways, which indicates that total saponins from Rhizoma Panacis Majoris may have a potential role in cervical cancer treatment.


Subject(s)
Apoptosis , Autophagy , Cell Proliferation , Rhizome , Saponins , Uterine Cervical Neoplasms , Humans , Saponins/pharmacology , Saponins/chemistry , HeLa Cells , Apoptosis/drug effects , Cell Proliferation/drug effects , Autophagy/drug effects , Rhizome/chemistry , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Female , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Cell Survival/drug effects
3.
Anal Chem ; 95(19): 7503-7511, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37130068

ABSTRACT

Accurate discrimination and classification of unknown species are the basis to predict its characteristics or applications to make correct decisions. However, for biogenic solutions that are ubiquitous in nature and our daily lives, direct determination of their similarities and disparities by their molecular compositions remains a scientific challenge. Here, we explore a standard and visualizable ontology, termed "biogenic solution map", that organizes multifarious classes of biogenic solutions into a map of hierarchical structures. To build the map, a novel 4-dimensional (4D) fingerprinting method based on data-independent acquisition data sets of untargeted metabolomics is developed, enabling accurate characterization of complex biogenic solutions. A generic parameter of metabolic correlation distance, calculated based on averaged similarities between 4D fingerprints of sample groups, is able to define "species", "genus", and "family" of each solution in the map. With the help of the "biogenic solution map", species of unknown biogenic solutions can be explicitly defined. Simultaneously, intrinsic correlations and subtle variations among biogenic solutions in the map are accurately illustrated. Moreover, it is worth mentioning that samples of the same analyte but prepared by alternative protocols may have significantly different metabolic compositions and could be classified into different "genera".


Subject(s)
Metabolomics , Metabolomics/methods
4.
Anal Biochem ; 674: 115184, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37285946

ABSTRACT

OBJECTIVE: To investigate the therapeutic effect and mechanism of the traditional Chinese medicine Saposhnikovia divaricata (Trucz.) Schischk in rats with complete Freund's adjuvant-induced rheumatoid arthritis (RA). METHODS: The chemical targets and RA targets of Saposhnikovia divaricata (Trucz.) Schischk were acquired by the network pharmacological method. The complete Freund's adjuvant-induced rat RA model was used to further explore the mechanism of Saposhnikovia divaricata (Trucz.) Schischk in improving RA. Pathological changes in the volume of toes, body weight and synovial tissues of joints as well as serum inflammatory factor levels before and after the intervention of Saposhnikovia divaricata (Trucz.) Schischk were investigated. The key metabolic pathways were screened by correlations between metabolites and key targets. Finally, a quantitative analysis of key targets and metabolites was experimentally validated. RESULTS: Saposhnikovia divaricata (Trucz.) Schischk administration increased body weight, mitigated foot swelling and downregulated inflammatory cytokine levels in model rats. The histopathology showed that treatment with Saposhnikovia divaricata (Trucz.) Schischk can induce inflammatory cell infiltration and synovial hyperplasia and obviously reduce cartilage injuries, thus improving arthritis symptoms in rats. According to the network pharmacology-metabonomics association analysis results, the purine metabolic signaling pathway might be the key pathway for RA intervention with Saposhnikovia divaricata (Trucz.) Schischk. Targeted metabonomics, Western blotting (WB) and reverse transcription-polymerase chain reaction (RT‒PCR) assays showed that the recombinant adenosine deaminase (ADA) mRNA expression level and metabolic level of inosine in Saposhnikovia divaricata (Trucz.) Schischk administration group were lower than those of the model group. This reflected that Saposhnikovia divaricata (Trucz.) Schischk could improve RA by downregulating ADA mRNA expression levels and the metabolic level of inosine in the purine signaling pathway. CONCLUSION: Based on the "component-disease-target" association analysis, this study concludes that Saposhnikovia divaricata (Trucz.) Schischk improves complete Freund's adjuvant-induced RA symptoms in rats mainly by downregulating ADA mRNA expression levels in the purine metabolic signaling pathway, mitigating foot swelling, improving the levels of serum inflammatory factors (IL-1ß, IL-6 and TNF-α), and decreasing the ADA protein expression level to intervene in purine metabolism.


Subject(s)
Apiaceae , Arthritis, Experimental , Arthritis, Rheumatoid , Rats , Animals , Freund's Adjuvant/adverse effects , Arthritis, Rheumatoid/metabolism , Inflammation/drug therapy , RNA, Messenger , Arthritis, Experimental/drug therapy , Arthritis, Experimental/chemically induced
5.
Molecules ; 28(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37687203

ABSTRACT

In this paper, we report the synthesis of spirocyclopropane-containing 4H-pyrazolo[1,5-a]indoles 6a-e via alkylative dearomatization and intramolecular N-imination of indole-O-(methylsulfonyl)oxime 11. Starting materials tryptophol (7) and 2-bromocyclopetanone (8) were reacted in the presence of HBF4·OEt2, providing 1,2,3,5,6,11-hexahydrocyclopenta[2,3]oxepino[4,5-b]indole (9) in a 63% yield. Compound 9 was reacted with hydroxylamine hydrochloride to afford oxime 10 (65% yield), which was subsequently bis-methanesulfonated to form 11 in a 85% yield. Heating 11 with various alcohols in the presence of N,N-diisopropylethylamine (DIPEA) triggered the alkylative dearomatization and intramolecular N-imination, forming the spirocyclopropane and 4H-pyrazolo[1,5-a]indole structures in the targets 6a-e with 67-84% yields.

6.
Zhongguo Zhong Yao Za Zhi ; 48(2): 366-373, 2023 Jan.
Article in Zh | MEDLINE | ID: mdl-36725226

ABSTRACT

An analytical method for 10 mycotoxins in Hippophae Fructus medicinal and edible products was established in this study, and the contamination of their mycotoxins was analyzed. First of all, the mixed reference solution of ten mycotoxins such as aflatoxin, ochratoxin, zearalenone, and dexoynivalenol was selected as the control, and the Hippophae Fructus medicinal and edible products were prepared. Secondly, based on the ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) technology, 10 mycotoxins in Hippophae Fructus medicinal and edible products were quantitatively investigated and their content was determined. Finally, the contamination of mycotoxins was analyzed and evaluated. The optimal analysis conditions were determined, and the methodological inspection results showed that the 10 mycotoxins established a good linear relationship(r>0.99). The method had good repeatability, test sample specificity, stability, and instrument precision. The average recovery rates of 10 mycotoxins in Hippophae Fructus medicinal products, edible solids, and edible liquids were 90.31%-109.4%, 87.86%-107.8%, and 85.61%-109.1%, respectively. Relative standard deviation(RSD) values were 0.22%-10%, 0.75%-13%, and 0.84%-8.5%, repsectively. Based on UPLC-MS/MS technology, the simultaneous determination method for the limits of 10 mycotoxins established in this study has fast detection speed, less matrix interference, high sensitivity, and accurate results, which is suitable for the limit examination of 10 mycoto-xins in Hippophae Fructus medicinal and edible products.


Subject(s)
Hippophae , Mycotoxins , Mycotoxins/analysis , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Limit of Detection , Chromatography, High Pressure Liquid/methods
7.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5365-5376, 2023 Oct.
Article in Zh | MEDLINE | ID: mdl-38114126

ABSTRACT

The present study aimed to explore the underlying mechanism of Wuling Capsules in the treatment of hepatic fibrosis(HF) through network pharmacology, molecular docking, and animal experiments. Firstly, the chemical components and targets of Wuling Capsules against HF were searched from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), Traditional Chinese Medicines Integrated Database(TCMID), GeneCards, and literature retrieval. The protein-protein interaction(PPI) network analysis was carried out on the common targets by STRING database and Cytoscape 3.9.1 software, and the core targets were screened, followed by Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses. Enrichment analysis was conducted on the core targets and the "drug-core component-target-pathway-disease" network was further constructed. Subsequently, molecular docking between core components and core targets was conducted using AutoDock Vina software to predict the underlying mechanism of action against HF. Finally, an HF model induced by CCl_4 was constructed in rats, and the general signs and liver tissue morphology were observed. HE and Masson staining were used to analyze the liver tissue sections. The effects of Wuling Capsules on the levels of inflammatory factors, hydroxyproline(HYP) levels, and core targets were analyzed by ELISA, RT-PCR, etc. A total of 445 chemical components of Wuling Capsules were screened, corresponding to 3 882 potential targets, intersecting with 1 240 targets of HF, and 47 core targets such as TNF, IL6, INS, and PIK3CA were screened. GO and KEGG enrichment analysis showed that the core targets mainly affected the process of cell stimulation response and metabolic regulation, involving cancer, PI3K-Akt, MAPK, and other signaling pathways. Molecular docking showed that the core components of Wuling Capsules, such as lucidenic acid K, ganoderic acid B, lucidenic acid N, saikosaponin Q2, and neocryptotanshinone, had high affinities with the core targets, such as TNF, IL6 and PIK3CA. Animal experiments showed that Wuling Capsules could reduce fat vacuole, inflammatory infiltration, and collagen deposition in rat liver, decrease the levels of inflammatory cytokines TNF-α, IL-6, and HYP, and downregulated the expressions of PI3K and Akt mRNA. This study suggests that the anti-HF effect of Wuling Capsules may be achieved by regulating the PI3K-Akt signaling pathway, reducing the levels of TNF-α and IL-6 inflammatory factors, and inhibiting the excessive deposition of collagen.


Subject(s)
Animal Experimentation , Drugs, Chinese Herbal , Animals , Rats , Interleukin-6 , Network Pharmacology , Tumor Necrosis Factor-alpha , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Medicine, Chinese Traditional , Capsules , Class I Phosphatidylinositol 3-Kinases , Collagen , Drugs, Chinese Herbal/pharmacology
8.
Zhongguo Zhong Yao Za Zhi ; 44(14): 3002-3009, 2019 Jul.
Article in Zh | MEDLINE | ID: mdl-31602846

ABSTRACT

A UPLC method has been developed for simultaneous determination of nine furanocoumarins of Angelica dahurics,and was used for quality evaluation of A. dahurica from different habitats. ACQUITY UPLC BEH C18 chromatographic column was employed,the separation was performed with the mobile phase consisting of acetonitrile and water,and the detection wavelength was set at254 nm. This method was used to simultaneously determine the content of xanthotoxol,oxypeucedaninhydrate,byak-angelicin,psoralen,xanthotoxin,bergapten,oxypeucedanin,imperatorin and isoimperatorin in A. dahurica from different habitats. Then,the further quality assessment of the drug was carried out by similarity evaluation,cluster analysis( CA),principal component analysis( PCA),and orthogonal partial least squares discriminant analysis( OPLS-DA). The content order of measured furanocoumarins from high to low was: oxypeucedanin>imperatorin>isoimperatorin>oxypeucedaninhydrate>bergapten>byak-angelicin>xanthotoxin>xanthotoxol>psoralen,with the mean content 2. 844,1. 277,0. 649 2,0. 216 2,0. 129 8,0. 062 68,0. 052 68,0. 019 30,0. 018 19 mg·g-1,respectively. There were difference between the batches of the drug,and the quality was influenced by smouldering sulphur based on the results of chemical pattern recognition and content determination. Finally,six active ingredients were recognized as the quality makers using OPLS-DA method. The validated UPLC fingerprint combined with chemical pattern recognition method can be used in the quality control and evaluation of A. dahurica.


Subject(s)
Angelica/chemistry , Drugs, Chinese Herbal/standards , Ecosystem , Furocoumarins/analysis , Chromatography, High Pressure Liquid , Quality Control
9.
J Cell Biochem ; 119(7): 5528-5537, 2018 07.
Article in English | MEDLINE | ID: mdl-29377244

ABSTRACT

Epilepsy is a common neurological disorder in the central nervous system. Inflammation disrupts the blood-brain barrier (BBB), which is responsible for maintaining brain homeostasis. This study was aimed to investigate the functional role of microRNA (miR)-132 in hippocampal HT-22 cells under lipopolysaccharide (LPS) stimulation. In vitro cell inflammatory model was constructed by LPS stimulation. Inflammatory cell injury was evaluated according to the alterations of cell viability, apoptosis, and expression of inflammatory cytokines. Then, miR-132 level after LPS treatment was assessed. Subsequently, miR-132 was abnormally expressed after cell transfection, and the effects of miR-132 on LPS-induced cell inflammatory injury as well as phosphorylated levels of key kinases in the NF-κB and MAPK kinase (MEK)/ERK pathways were determined. The target gene of miR-132 was virtually screened and verified, and whether miR-132 affected HT-22 cells under LPS stimulation through regulating the target gene was verified. The results showed that the level of miR-132 was down-regulated by LPS in HT-22 cells, and the LPS-induced inflammatory injury could be reduced by miR-132 overexpression. Then, the phosphorylated levels of kinases in the NF-κB and MEK/ERK pathways were decreased by miR-132 overexpression. Tumor necrosis factor receptor-associated factor 6 (TRAF6) was predicted and verified to be a target of miR-132. Moreover, the alterations induced by miR-132 overexpression in the LPS-treated HT-22 cells were abrogated by TRAF6 overexpression. Therefore, we drew the conclusion that LPS down-regulated miR-132 and miR-132 attenuated LPS-induced inflammatory cell injury by targeting TRAF6, along with the inhibition of the NF-κB and MEK/ERK pathways.


Subject(s)
Inflammation/prevention & control , MicroRNAs/genetics , Neurons/drug effects , TNF Receptor-Associated Factor 6/metabolism , Animals , Apoptosis , Cell Survival , Cells, Cultured , Cytokines , Inflammation/chemically induced , Inflammation/genetics , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/drug effects , Mice , NF-kappa B/genetics , NF-kappa B/metabolism , Neurons/immunology , Neurons/metabolism , Phosphorylation , Signal Transduction , TNF Receptor-Associated Factor 6/genetics
10.
Langmuir ; 34(35): 10270-10275, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30085677

ABSTRACT

The self-aggregation of a surfactant in a deep eutectic solvent (DES) for electrodeposition is reported. The physical properties and electrochemical behavior of an anionic surfactant, sodium dodecyl sulfate (SDS), in a widely used DES, a choline chloride-urea mixture (ChCl-urea), were investigated. On the basis of surface tension and the conductivity measurements, the SDS micelles that were formed in the ChCl-urea system remained stable at higher temperatures, that is, 90 °C. Cyclic voltammetric and chronoamperometric data indicate that the addition of SDS to the DES may alter the nucleation and the growth processes that occur in the electrodeposition process. Scanning electron microscopy images show that the SDS adsorption prevents dendrite formation during the electrodeposition process. A simple mechanism for the formation of the SDS micelles in the DES system for electrodeposition is proposed.

11.
Zhongguo Zhong Yao Za Zhi ; 43(2): 353-362, 2018 Jan.
Article in Zh | MEDLINE | ID: mdl-29552855

ABSTRACT

To explore the flavor and meridian tropism classification of Callianthemum taipaicum by principal components analysis(PCA) and partial least square analysis(PLS). Meanwhile,to establish a high performance liquid chromatography-tandem mass spectrometry(HPLC-ESI-MS) method for the simultaneous determination of 55 active components from 13 kinds of Ranunculaceae of Chinese traditional herbs. Samples were separated on HPLC system by Agilent 5 TC-C18(2)(4.6 mm×250 mm,5 µm)column and eluted with acetonitrile and 0.1% formic acid at the flow rate of 0.6 mL·min⁻¹. The data were performed by HPLC-ESI-MS with multiple reaction monitoring(MRM)scanning mode under positive and negative ion modes and quantified by external standards. The data from 13 Ranunculaceae herbs were analyzed by the PLS-tree and cooman's prediction of PCA and PLS to evaluate the similarities and differences of C. taipaicum in flavor and meridian tropism. The results showed that calibration curves of 55 components all showed good linearity, r>0.99,with good precision, repeatability and stability. After compared to other 12 herbs,PCA and PLS results revealed that the C. taipaicum belonged to lung and bladder meridians while its flavor attributive to pungent,warm in nature. In conclusion,the analysis approach of chemometric calculation combined with multi-components quantification is suitable for the classification of meridian tropism and flavor of Chinese traditional medicine,which can be used for alternative research of rare herbs.


Subject(s)
Drugs, Chinese Herbal/chemistry , Meridians , Plants, Medicinal/chemistry , Ranunculaceae/chemistry , Chromatography, High Pressure Liquid , Mass Spectrometry , Phytochemicals/analysis , Tandem Mass Spectrometry
12.
Zhong Yao Cai ; 39(1): 113-6, 2016 Jan.
Article in Zh | MEDLINE | ID: mdl-30080012

ABSTRACT

Objective: To establish the high performance liquid chromatography-fingerprint of Yunvjian. Methods: The method was established on a C18column( 250 mm × 4. 6 mm,5 µm),and the column temperature was 30 ℃. The mobile phase consisted of 0. 2%aqueous phosphoric acid-methanol in gradient elution and the flow rate was 1. 0 m L / min. The detection wavelength was 254 nm. Results: HPLC fingerprint of Yunvjian was established,and 17 characteristic peaks were contained in Yunvjian fingerprint. The peak5 was 5-hydroxy methyl furfural,peak 11 was mangiferin,peak 12 was verbascoside,peak 13 was ecdysterone,and peak 17 was methylophiopogonanone A. Conclusion: The method provides experimental evidence and logical proofs for determination of the effective components of Yunvjian.


Subject(s)
Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Quality Control , Reproducibility of Results
13.
Neurol Sci ; 35(8): 1229-33, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24584634

ABSTRACT

This study aimed to investigate the effects of catalpol on ATPase and amino acids in gerbils following cerebral ischemia/reperfusion (CI/R) injury. Gerbil model of CI/R was prepared by bilateral common carotid occlusion for 10 min followed by 6 h of reperfusion. Catalpol (5, 10 or 20 mg/kg per day) was injected intraperitoneally for 3 days before the carotid occlusion. Stroke index was measured during the reperfusion. ATPase activity, glutamate (Glu) and aspartate contents in brain tissue homogenate were examined. The results showed that catalpol significantly improved the stroke index compared with sham group (P < 0.05 or P < 0.01). Catalpol markedly increased the activities of Na(+)-K(+)-ATPase and Ca(2+)-ATPase (P < 0.05 or P < 0.01), and significantly decreased the content of Glu in brain tissue (P < 0.05 or P < 0.01). These data suggest that the efficacy of catalpol pretreatment on CI/R injury is associated with the enhancement of ATPase activity and the inhibition of excitatory amino acid toxicity.


Subject(s)
Adenosine Triphosphatases/analysis , Aspartic Acid/analysis , Brain Chemistry/drug effects , Brain Ischemia/drug therapy , Glutamic Acid/analysis , Iridoid Glucosides/therapeutic use , Nerve Tissue Proteins/analysis , Neuroprotective Agents/therapeutic use , Reperfusion Injury/drug therapy , Animals , Brain Ischemia/metabolism , Carotid Artery, Common , Cell Membrane/enzymology , Constriction , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Gerbillinae , Iridoid Glucosides/administration & dosage , Iridoid Glucosides/chemistry , Iridoid Glucosides/pharmacology , Male , Models, Animal , Molecular Structure , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Premedication , Reperfusion Injury/metabolism , Single-Blind Method
14.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 43(5): 607-11, 2014 09.
Article in Zh | MEDLINE | ID: mdl-25372650

ABSTRACT

Long noncoding RNAs are a group of noncoding RNAs with a length more than 200 nucleotides. Recent studies have revealed that long noncoding RNAs play an important role in the development and progression of cancer. Lung cancer is the leading cause of cancer-related death all over the world. In this article, we review the roles of long noncoding RNAs in lung cancer to provide new insights into the diagnosis and treatment of the disease.


Subject(s)
Lung Neoplasms/genetics , RNA, Long Noncoding/genetics , Humans
15.
Phytomedicine ; 123: 155160, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984122

ABSTRACT

BACKGROUND: Hypericum perforatum L. (HPL) is a potential traditional Chinese medicine. It could promotes menopausal 'kidney-yin deficiency syndrome' that characterized by renal function decline. However, its potential pharmacological effect and mechanism remains unknown. OBJECTIVE: The aim of this study was to investigate whether HPL can improve menopausal renal function decline and to explore its mechanism of action. METHODS: The mainly ingredients of HPL were identified using UPLC-Q-TOF-MS/MS approach, and the potential therapeutic targets of HPL for renal function decline were chose via network pharmacology technique. The key therapeutic metabolites were selected through non-targeted metabolomic and chemometric methods. Then, the network were constructed and the key targets and metabolites were screened. At last, the validation experiments and mechanism exploring were adopted by using Immunofluorescence, enzyme-linked immunosorbent assay (ELISA), real-time PCR (RT-PCR), and western blotting assays. RESULTS: mainly ingredients of HPL were identified and determined 17 compounds and 29 targets were chose as mainly active compounds and potential therapeutic targets. Based on OVX induced renal decline rat model, after chemometric analysis, 59 endo-metabolites were selected as key therapeutic metabolites, and AGE-RAGE signal pathway in diabetes complications was enriched as the key pathway. By constructing a "disease-component-target" network, Hyperoside, Quercetrin, and quinic were selected as the key therapeutic compounds, and the AKT1 and NOS3 were selected as the key therapeutic targets. The results of ELISA, RT-PCR and western blot experiments indicated that HPL could rescue the abnormal expressions both of AKT1 and NOS3, as well as their related metabolites distortion. CONCLUSION: Our findings indicated that HPL regulated expression of AKT1 and NOS3 through modulating AGE-RAGE signaling pathway in OVX stimulated rats` renal dysfunction, implicating the potential values of HPL in menopause syndromes therapy.


Subject(s)
Antineoplastic Agents , Drugs, Chinese Herbal , Hypericum , Female , Humans , Animals , Rats , Tandem Mass Spectrometry , Metabolomics , Kidney , Ovariectomy , Plant Oils , Molecular Docking Simulation , Proto-Oncogene Proteins c-akt , Nitric Oxide Synthase Type III
16.
Int J Biol Macromol ; 269(Pt 1): 131812, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670197

ABSTRACT

An important micronutrient involved in immune response and antitumor is selenium. LMW-GFP, a polysaccharide extracted from Grifola frondosa seed bodies, has a relatively weak antitumor effect on BGC-823 and MFC cells in vitro, whereas selenium binding to LMW-GFP can significantly increase the in vitro antitumor activity of LMW-GFP. In this study, Se-LMW-GFP was prepared by the HNO3-Na2SeO3 method, and the structures of LMW-GFP and Se-LMW-GFP were characterized by UV-visible spectroscopy of absorption, FTIR spectroscopy, and electron scanning microscopy, and these structural analyses showed that selenium was successfully complexed to LMW-GFP. The selenium content of Se-LMW-GFP was measured to be 2.08 % ± 0.08 % by ICP-MS. The anti-tumor activity of LMW-GFP before and after selenium modification was compared by cellular experiments, and the findings indicated that the anti-tumor activity of Se-LMW-GFP was considerably improved over that of LMW-GFP, and inhibited the proliferation of BGC-823 cells and MFC cells through a combination of the Fas/FasL-mediated exogenous death receptor pathway as well as the endogenous mitochondrial pathway. Our results suggest that Se-LMW-GFP not only has great potential for natural health food and anti-gastric cancer drug development but is also a good selenium supplement.


Subject(s)
Cell Proliferation , Grifola , Molecular Weight , Selenium , Stomach Neoplasms , Grifola/chemistry , Humans , Selenium/chemistry , Selenium/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry
17.
Curr Biol ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39146941

ABSTRACT

Chlorosis dormancy resulting from nitrogen starvation and its resuscitation upon available nitrogen contributes greatly to the fitness of cyanobacterial population under nitrogen-fluctuating environments. The reinstallation of the photosynthetic machinery is a key process for resuscitation from a chlorotic dormant state; however, the underlying regulatory mechanism is still elusive. Here, we reported that red light is essential for re-greening chlorotic Synechocystis sp. PCC 6803 (a non-diazotrophic cyanobacterium) after nitrogen supplement under weak light conditions. The expression of dark-operative protochlorophyllide reductase (DPOR) governed by the transcriptional factor RpaB was strikingly induced by red light in chlorotic cells, and its deficient mutant lost the capability of resuscitation from a dormant state, indicating DPOR catalyzing chlorophyll synthesis is a key step in the photosynthetic recovery of dormant cyanobacteria. Although light-dependent protochlorophyllide reductase is widely considered as a master switch in photomorphogenesis, this study unravels the primitive DPOR as a spark to activate the photosynthetic recovery of chlorotic dormant cyanobacteria. These findings provide new insight into the biological significance of DPOR in cyanobacteria and even some plants thriving in extreme environments.

18.
J Chromatogr A ; 1720: 464808, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38471298

ABSTRACT

Juices and beverages are produced by industry for long-distance distribution and shelf-stability, providing valuable nutrients. However, their nutritional value is often underestimated due to insufficient analytical methods. We have employed non-targeted analysis through a standardized analytical protocol, taking advantage of Data Independent Acquisition (DIA) technique and a novel Chromatographic Retention Behavior (CRB) data deconvolution algorithm. After analyzing 9 fruits and their products, correlations between fruits and their juices are accurately digitalized by similarities of their LC-MS fingerprints. We also specify non-targeted molecules primarily associate with nutrient loss in these analyzed juice products, including nitrogenous nutrients, flavonoids, glycosides, and vitamins. Moreover, we unveiled previously unreported fruit-characteristic metabolites, of which reconstituted-from-concentrate (RFC) juices contain over 40% of the content found in their fresh counterparts. Conclusively, our method establishes a quantitative benchmark for rational selection of RFC juices to substitute natural fruits.


Subject(s)
Beverages , Fruit , Fruit/chemistry , Beverages/analysis , Flavonoids/analysis , Fruit and Vegetable Juices/analysis
19.
Planta Med ; 79(3-4): 301-7, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23364886

ABSTRACT

Six new 9,19-cycloartane triterpene glycosides, heracleifolinosides A-F (1-6), and one new chromone, norkhelloside (7), were isolated from the rhizome of Cimicifuga heracleifolia, together with 15 known compounds (8-22). The structures of the new compounds were elucidated by means of spectroscopic methods including 2D NMR and mass spectrometry. The extracts of C. heracleifolia and all the isolated compounds were tested for activities against hypoxia and reoxygenation injury in human umbilical vein endothelial cells. Heracleifolinoside B (2) is effectively resistant to hypoxia and reoxygenation-induced human umbilical vein endothelial cell injury, with cell viabilities of 61.95 ± 2.04 %, 77.04 ± 4.44 %, and 83.65 ± 3.29 % at concentrations of 1, 10, and 100 µM, respectively.


Subject(s)
Cell Hypoxia/drug effects , Cimicifuga/chemistry , Glycosides/chemistry , Triterpenes/chemistry , Triterpenes/pharmacology , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Glycosides/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rhizome/chemistry , Saponins/chemistry , Saponins/pharmacology
20.
Chin Med ; 18(1): 103, 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37598173

ABSTRACT

BACKGROUND: Fushenmu (Pini Radix in Poria, FSM) is a folk parasitic herb that has been mainly used for palpitation and amnesiain in traditional Chinese medicine (TCM). Recently, as an individual herb or a component of formulations, Fushenmu exhibits therapeutic potential for the treatment of cardiac arrhythmias. Yet, how specific targets or pathways of Fushenmu inhibit arrhythmia has not yet been reported. METHODS: Here, based on clinical functional genomics, metabolomics and molecular biologic technologies, a network construction strategy was adopted to identify FSM therapeutic targets and biomarkers that might explore its functions. RESULTS: In this study, it was found that FSM recovered arrhythmia-associated heart failure in barium chloride (BaCl2) induced arrhythmic zebrafish embryos, as was evidenced by the shortened cardiac sinus venosus-bulbus arteriosus (SV-BA) distance, smaller cardiovascular bleeding areas, and reduced cardiomyocyte apoptosis. Moreover, analysis via ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-QTOF-ESI-MS/MS) components identification and network pharmacology prediction showed that 11 main active components of FSM acted on 33 candidate therapeutic targets. Metabolomic analysis also suggested that FSM could rescue 242 abnormal metabolites from arrhythmic zebrafish embryos. Further analysis based on the combination of target prediction and metabolomic results illustrated that FSM down-regulated Ryanodine Receptor 2 (RyR2) expressions, inhibited adrenaline and 3',5'-Cyclic AMP (cAMP) levels in a dose-dependent manner, which was confirmed by metabolites quantification and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay. CONCLUSION: In summary, this study revealed that FSM mitigated BaCl2 induced cardiac damage caused by arrhythmia by suppressing RyR2 expressions, decreasing adrenaline and cAMP through the adrenergic signalling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL