Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 719
Filter
Add more filters

Publication year range
1.
Nature ; 627(8004): 534-539, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38448599

ABSTRACT

Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references using a frequency comb1-3. Such systems, however, are constructed with bulk or fibre optics and are difficult to further reduce in size and power consumption. In this work we address this challenge by leveraging advances in integrated photonics to demonstrate low-noise microwave generation via two-point optical frequency division4,5. Narrow-linewidth self-injection-locked integrated lasers6,7 are stabilized to a miniature Fabry-Pérot cavity8, and the frequency gap between the lasers is divided with an efficient dark soliton frequency comb9. The stabilized output of the microcomb is photodetected to produce a microwave signal at 20 GHz with phase noise of -96 dBc Hz-1 at 100 Hz offset frequency that decreases to -135 dBc Hz-1 at 10 kHz offset-values that are unprecedented for an integrated photonic system. All photonic components can be heterogeneously integrated on a single chip, providing a significant advance for the application of photonics to high-precision navigation, communication and timing systems.

2.
Genome Res ; 34(5): 740-756, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38744529

ABSTRACT

Although DNA N 6-adenine methylation (6mA) is best known in prokaryotes, its presence in eukaryotes has recently generated great interest. Biochemical and genetic evidence supports that AMT1, an MT-A70 family methyltransferase (MTase), is crucial for 6mA deposition in unicellular eukaryotes. Nonetheless, the 6mA transmission mechanism remains to be elucidated. Taking advantage of single-molecule real-time circular consensus sequencing (SMRT CCS), here we provide definitive evidence for semiconservative transmission of 6mA in Tetrahymena thermophila In wild-type (WT) cells, 6mA occurs at the self-complementary ApT dinucleotide, mostly in full methylation (full-6mApT); after DNA replication, hemi-methylation (hemi-6mApT) is transiently present on the parental strand, opposite to the daughter strand readily labeled by 5-bromo-2'-deoxyuridine (BrdU). In ΔAMT1 cells, 6mA predominantly occurs as hemi-6mApT. Hemi-to-full conversion in WT cells is fast, robust, and processive, whereas de novo methylation in ΔAMT1 cells is slow and sporadic. In Tetrahymena, regularly spaced 6mA clusters coincide with the linker DNA of nucleosomes arrayed in the gene body. Importantly, in vitro methylation of human chromatin by the reconstituted AMT1 complex recapitulates preferential targeting of hemi-6mApT sites in linker DNA, supporting AMT1's intrinsic and autonomous role in maintenance methylation. We conclude that 6mA is transmitted by a semiconservative mechanism: full-6mApT is split by DNA replication into hemi-6mApT, which is restored to full-6mApT by AMT1-dependent maintenance methylation. Our study dissects AMT1-dependent maintenance methylation and AMT1-independent de novo methylation, reveals a 6mA transmission pathway with a striking similarity to 5-methylcytosine (5mC) transmission at the CpG dinucleotide, and establishes 6mA as a bona fide eukaryotic epigenetic mark.


Subject(s)
Adenine , DNA Methylation , Tetrahymena thermophila , Tetrahymena thermophila/genetics , Tetrahymena thermophila/metabolism , Adenine/metabolism , Adenine/analogs & derivatives , DNA Replication , DNA, Protozoan/genetics , DNA, Protozoan/metabolism
3.
Genes Dev ; 33(5-6): 348-364, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30808657

ABSTRACT

RNAi and Polycomb repression play evolutionarily conserved and often coordinated roles in transcriptional silencing. Here, we show that, in the protozoan Tetrahymena thermophila, germline-specific internally eliminated sequences (IESs)-many related to transposable elements (TEs)-become transcriptionally activated in mutants deficient in the RNAi-dependent Polycomb repression pathway. Germline TE mobilization also dramatically increases in these mutants. The transition from noncoding RNA (ncRNA) to mRNA production accompanies transcriptional activation of TE-related sequences and vice versa for transcriptional silencing. The balance between ncRNA and mRNA production is potentially affected by cotranscriptional processing as well as RNAi and Polycomb repression. We posit that interplay between RNAi and Polycomb repression is a widely conserved phenomenon, whose ancestral role is epigenetic silencing of TEs.


Subject(s)
DNA Transposable Elements/genetics , Polycomb-Group Proteins/genetics , Protozoan Proteins/genetics , RNA Interference , Tetrahymena thermophila/genetics , Transcriptional Activation/genetics , Epigenesis, Genetic , Gene Silencing , Mutation , RNA, Messenger/genetics , RNA, Untranslated/genetics
4.
Mol Cell ; 70(6): 985-986, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29932907

ABSTRACT

Buffering dosage imbalance of early- and late-replicating genes is important for dividing eukaryotic cells. Voichek et al. (2018) described critical roles of H3K4 methylation and Paf1C in this process, which was regulated by the S phase checkpoint and H3K56 acetylation.


Subject(s)
DNA Replication , Histones/genetics , Acetylation , Homeostasis , Methylation
5.
Proc Natl Acad Sci U S A ; 120(31): e2304755120, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37487067

ABSTRACT

Three-dimensional single-pixel imaging (3D SPI) has become an attractive imaging modality for both biomedical research and optical sensing. 3D-SPI techniques generally depend on time-of-flight or stereovision principle to extract depth information from backscattered light. However, existing implementations for these two optical schemes are limited to surface mapping of 3D objects at depth resolutions, at best, at the millimeter level. Here, we report 3D light-field illumination single-pixel microscopy (3D-LFI-SPM) that enables volumetric imaging of microscopic objects with a near-diffraction-limit 3D optical resolution. Aimed at 3D space reconstruction, 3D-LFI-SPM optically samples the 3D Fourier spectrum by combining 3D structured light-field illumination with single-element intensity detection. We build a 3D-LFI-SPM prototype that provides an imaging volume of ∼390 × 390 × 3,800 µm3 and achieves 2.7-µm lateral resolution and better than 37-µm axial resolution. Its capability of 3D visualization of label-free optical absorption contrast is demonstrated by imaging single algal cells in vivo. Our approach opens broad perspectives for 3D SPI with potential applications in various fields, such as biomedical functional imaging.

6.
J Biol Chem ; 300(9): 107690, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39159807

ABSTRACT

Iron homeostasis is essential for maintaining metabolic health and iron disorder has been linked to chronic metabolic diseases. Increasing thermogenic capacity in adipose tissue has been considered as a potential approach to regulate energy homeostasis. Both mitochondrial biogenesis and mitochondrial function are iron-dependent and essential for adipocyte thermogenic capacity, but the underlying relationships between iron accumulation and adipose thermogenesis is unclear. Firstly, we confirmed that iron homeostasis and the iron regulatory markers (e.g., Tfr1 and Hfe) are involved in cold-induced thermogenesis in subcutaneous adipose tissues using RNA-seq and bioinformatic analysis. Secondly, an Hfe (Hfe-/-)-deficient mouse model, in which tissues become overloaded with iron, was employed. We found iron accumulation caused by Hfe deficiency enhanced mitochondrial respiratory chain expression in subcutaneous white adipose in vivo and resulted in enhanced tissue thermogenesis with upregulation of PGC-1α and adipose triglyceride lipase, mitochondrial biogenesis and lipolysis. To investigate the thermogenic capacity in vitro, stromal vascular fraction from adipose tissues was isolated, followed with adipogenic differentiation. Primary adipocyte from Hfe-/- mice exhibited higher cellular oxygen consumption, associated with enhanced expression of mitochondrial oxidative respiratory chain protein, while primary adipocytes or stromal vascular fractions from WT mice supplemented with iron citrate) exhibited similar effect in thermogenic capacity. Taken together, these findings indicate iron supplementation and iron accumulation (Hfe deficiency) can regulate adipocyte thermogenic capacity, suggesting a potential role for iron homeostasis in adipose tissues.

7.
Brief Bioinform ; 25(1)2023 11 22.
Article in English | MEDLINE | ID: mdl-38168840

ABSTRACT

Gestational diabetes mellitus (GDM) is a common complication of pregnancy, which has significant adverse effects on both the mother and fetus. The incidence of GDM is increasing globally, and early diagnosis is critical for timely treatment and reducing the risk of poor pregnancy outcomes. GDM is usually diagnosed and detected after 24 weeks of gestation, while complications due to GDM can occur much earlier. Copy number variations (CNVs) can be a possible biomarker for GDM diagnosis and screening in the early gestation stage. In this study, we proposed a machine-learning method to screen GDM in the early stage of gestation using cell-free DNA (cfDNA) sequencing data from maternal plasma. Five thousand and eighty-five patients from north regions of Mainland China, including 1942 GDM, were recruited. A non-overlapping sliding window method was applied for CNV coverage screening on low-coverage (~0.2×) sequencing data. The CNV coverage was fed to a convolutional neural network with attention architecture for the binary classification. The model achieved a classification accuracy of 88.14%, precision of 84.07%, recall of 93.04%, F1-score of 88.33% and AUC of 96.49%. The model identified 2190 genes associated with GDM, including DEFA1, DEFA3 and DEFB1. The enriched gene ontology (GO) terms and KEGG pathways showed that many identified genes are associated with diabetes-related pathways. Our study demonstrates the feasibility of using cfDNA sequencing data and machine-learning methods for early diagnosis of GDM, which may aid in early intervention and prevention of adverse pregnancy outcomes.


Subject(s)
Cell-Free Nucleic Acids , Deep Learning , Diabetes, Gestational , beta-Defensins , Female , Pregnancy , Humans , Diabetes, Gestational/diagnosis , Diabetes, Gestational/genetics , DNA Copy Number Variations , Pregnancy Outcome , Cell-Free Nucleic Acids/genetics
8.
Circ Res ; 132(5): 586-600, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36756875

ABSTRACT

BACKGROUND: Myocardial infarction (MI) elicits cardiac fibroblast activation and extracellular matrix (ECM) deposition to maintain the structural integrity of the heart. Recent studies demonstrate that Fap (fibroblast activation protein)-a prolyl-specific serine protease-is an important marker of activated cardiac fibroblasts after MI. METHODS: Left ventricle and plasma samples from patients and healthy donors were used to analyze the expression level of FAP and its prognostic value. Echocardiography and histological analysis of heart sections were used to analyze cardiac functions, scar formation, ECM deposition and angiogenesis after MI. RNA-Sequencing, biochemical analysis, cardiac fibroblasts (CFs) and endothelial cells co-culture were used to reveal the molecular and cellular mechanisms by which Fap regulates angiogenesis. RESULTS: We found that Fap is upregulated in patient cardiac fibroblasts after cardiac injuries, while plasma Fap is downregulated and functions as a prognostic marker for cardiac repair. Genetic or pharmacological inhibition of Fap in mice significantly improved cardiac function after MI. Histological and transcriptomic analyses showed that Fap inhibition leads to increased angiogenesis in the peri-infarct zone, which promotes ECM deposition and alignment by cardiac fibroblasts and prevents their overactivation, thereby limiting scar expansion. Mechanistically, we found that BNP (brain natriuretic peptide) is a novel substrate of Fap that mediates postischemic angiogenesis. Fap degrades BNP to inhibit vascular endothelial cell migration and tube formation. Pharmacological inhibition of Fap in Nppb (encoding pre-proBNP) or Npr1 (encoding the BNP receptor)-deficient mice showed no cardioprotective effects, suggesting that BNP is a physiological substrate of Fap. CONCLUSIONS: This study identifies Fap as a negative regulator of cardiac repair and a potential drug target to treat MI. Inhibition of Fap stabilizes BNP to promote angiogenesis and cardiac repair.


Subject(s)
Myocardial Infarction , Natriuretic Peptide, Brain , Animals , Mice , Cicatrix , Endopeptidases/genetics , Endothelial Cells/pathology , Myocardial Infarction/pathology , Natriuretic Peptide, Brain/genetics
9.
Nature ; 574(7780): 647-652, 2019 10.
Article in English | MEDLINE | ID: mdl-31645762

ABSTRACT

Microfluidic systems are now being designed with precision as miniaturized fluid manipulation devices that can execute increasingly complex tasks. However, their operation often requires numerous external control devices owing to the typically linear nature of microscale flows, which has hampered the development of integrated control mechanisms. Here we address this difficulty by designing microfluidic networks that exhibit a nonlinear relation between the applied pressure and the flow rate, which can be harnessed to switch the direction of internal flows solely by manipulating the input and/or output pressures. We show that these networks- implemented using rigid polymer channels carrying water-exhibit an experimentally supported fluid analogue of Braess's paradox, in which closing an intermediate channel results in a higher, rather than lower, total flow rate. The harnessed behaviour is scalable and can be used to implement flow routing with multiple switches. These findings have the potential to advance the development of built-in control mechanisms in microfluidic networks, thereby facilitating the creation of portable systems and enabling novel applications in areas ranging from wearable healthcare technologies to deployable space systems.

10.
Proc Natl Acad Sci U S A ; 119(36): e2202395119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037382

ABSTRACT

A detailed framework for modeling and interpreting the data in totality from a cyclic voltammetric measurement of adsorbed redox monolayers on semiconductor electrodes has been developed. A three-layer model consisting of the semiconductor space-charge layer, a surface layer, and an electrolyte layer is presented that articulates the interplay between electrostatic, thermodynamic, and kinetic factors in the electrochemistry of a redox adsorbate on a semiconductor. Expressions are derived that describe the charging and faradaic current densities individually, and an algorithm is demonstrated that allows for the calculation of the total current density in a cyclic voltammetry measurement as a function of changes in the physical properties of the system (e.g., surface recombination, dielectric property of the surface layer, and electrolyte concentration). The most profound point from this analysis is that the faradaic and charging current densities can be coupled. That is, the common assumption that these contributions to the total current are always independent is not accurate. Their interrelation can influence the interpretation of the charge-transfer kinetics under certain experimental conditions. More generally, this work not only fills a long-standing knowledge gap in electrochemistry but also aids practitioners advancing energy conversion/storage strategies based on redox adsorbates on semiconductor electrodes.


Subject(s)
Electrochemistry , Electrodes , Semiconductors , Electrolytes , Oxidation-Reduction
11.
J Cell Mol Med ; 28(16): e18562, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39189552

ABSTRACT

Tumour deposits (TDs) significantly impact colorectal cancer (CRC) prognosis. Integrating TDs into the TNM staging system can enhance individualized disease management. Keeping abreast of evolving TDs research is pivotal for clinical advancement. We comprehensively reviewed both recent and popular literature to grasp the field's essence. Subsequently, a data retrieval sourced articles on TDs in CRC for bibliometric analysis, spanning from 1 January 1935 to 30 April 2023. Bibliometrix software facilitated paper analysis and visualization. Bibliometric indicators, the trends and hotspots were determined. A total of 2147 articles were successfully retrieved. Brown G emerged as the most productive author, and the USA as the most prolific country. Central South University and Memorial Sloan Kettering Cancer Center led productivity. Bradford's law categorized 48 journals into zone 1. Keywords co-occurrence analysis identified three main clusters: the application of TDs in TNM staging, the pathogenesis of TDs, and the assessment of TDs. The trend topic analysis highlighted research focused on refining TDs incorporation into tumour staging. TDs wield enduring medical significance, shaping ongoing research. Much literature focused on confirming TD's prognostic value and optimizing TNM integration. Additionally, it is worth highlighting that TD's enigmatic pathogenesis demands research priority, as it holds the potential to unveil concealed knowledge regarding their development.


Subject(s)
Colorectal Neoplasms , Neoplasm Staging , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/diagnosis , Prognosis , Bibliometrics , Clinical Decision-Making
12.
J Transl Med ; 22(1): 438, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720336

ABSTRACT

BACKGROUND: Advanced unresectable gastric cancer (GC) patients were previously treated with chemotherapy alone as the first-line therapy. However, with the Food and Drug Administration's (FDA) 2022 approval of programmed cell death protein 1 (PD-1) inhibitor combined with chemotherapy as the first-li ne treatment for advanced unresectable GC, patients have significantly benefited. However, the significant costs and potential adverse effects necessitate precise patient selection. In recent years, the advent of deep learning (DL) has revolutionized the medical field, particularly in predicting tumor treatment responses. Our study utilizes DL to analyze pathological images, aiming to predict first-line PD-1 combined chemotherapy response for advanced-stage GC. METHODS: In this multicenter retrospective analysis, Hematoxylin and Eosin (H&E)-stained slides were collected from advanced GC patients across four medical centers. Treatment response was evaluated according to iRECIST 1.1 criteria after a comprehensive first-line PD-1 immunotherapy combined with chemotherapy. Three DL models were employed in an ensemble approach to create the immune checkpoint inhibitors Response Score (ICIsRS) as a novel histopathological biomarker derived from Whole Slide Images (WSIs). RESULTS: Analyzing 148,181 patches from 313 WSIs of 264 advanced GC patients, the ensemble model exhibited superior predictive accuracy, leading to the creation of ICIsNet. The model demonstrated robust performance across four testing datasets, achieving AUC values of 0.92, 0.95, 0.96, and 1 respectively. The boxplot, constructed from the ICIsRS, reveals statistically significant disparities between the well response and poor response (all p-values < = 0.001). CONCLUSION: ICIsRS, a DL-derived biomarker from WSIs, effectively predicts advanced GC patients' responses to PD-1 combined chemotherapy, offering a novel approach for personalized treatment planning and allowing for more individualized and potentially effective treatment strategies based on a patient's unique response situations.


Subject(s)
Deep Learning , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Male , Female , Treatment Outcome , Middle Aged , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Aged , Retrospective Studies , ROC Curve , Adult
13.
Opt Express ; 32(10): 17362-17372, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858921

ABSTRACT

Target detection is significant in many fields, including oceanic security, marine ecology, etc. In this paper, phase sensitive optical time domain reflectometry (Φ-OTDR) is introduced for the non-cooperative ship detection, with large-scale diversity technology and suspended sensitized optical cable. In outfield experiments, the ship's voiceprint information is obtained in high fidelity, the ship's power spectrum is analyzed, and the over-top detection is achieved. Moreover, an array orientation method based on adaptive phase difference correction (APDC) is proposed to track the ship, suppressing the delay jitter influence of acoustic transmission underwater. This is the first time that voiceprint information of the non-cooperative ship is high-fidelity acquired and deeply analyzed with Φ-OTDR and suspended sensitized optical cable, which is conducive to the detection and identification of marine targets, and proves the potential of Φ-OTDR in hydroacoustic detection applications.

14.
Microb Pathog ; 194: 106802, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39032673

ABSTRACT

Interferon-inducible transmembrane protein 3 (IFITM3), a member of the interferon-stimulating factor (ISG) family, has various antiviral functions. Infectious bursal disease virus (IBDV) mainly invades the bursa of Fabricius in chickens, causing a reduction in their immunity and resulting in death from secondary infections. Our previous study found that IBDV infection promotes the expression of chicken IFITM3. However, the role of chicken IFITM3 in IBDV infection remains unknown. To explore this role, the overexpression vector for IFITM3 was constructed and transfected into HD-11 and DF-1 cells. The results showed that the overexpression of IFITM3 significantly reduced IBDV proliferation. While the IBDV proliferation increased when IFITM3 was inhibited by using siRNA. To further explore the mechanism by which IFITM3 reduces IBDV proliferation, the effects of IFITM3 on interferon (IFN) were investigated. Transfecting the constructed IFITM3 vectors into HD-11 and DF-1 cells demonstrated that IFITM3 promoted the expression of IFN-α, IFN-ß, and IFN-γ. To investigate the mechanism by which IFITM3 regulates IFN expression, the effects of IFITM3 on IFN production were explored. The results showed that the IKB gene mainly affected the regulatory effects of IFITM3 on IFN. Taken together, IFITM3 may reduce viral proliferation by regulating changes in IFNs, and this process may involve a positive feedback effect of IFITM3 on IFN. IKB plays an important role in the regulation of IFN effects by IFITM3.


Subject(s)
Chickens , Infectious bursal disease virus , Interferons , Membrane Proteins , Virus Replication , Infectious bursal disease virus/physiology , Animals , Chickens/virology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Cell Line , Interferons/metabolism , Interferons/genetics , Birnaviridae Infections/veterinary , Birnaviridae Infections/virology , Birnaviridae Infections/immunology , Poultry Diseases/virology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA, Small Interfering/genetics , Gene Expression Regulation , Bursa of Fabricius/virology , Bursa of Fabricius/metabolism , Interferon-beta/metabolism , Interferon-beta/genetics
15.
Opt Lett ; 49(12): 3384-3387, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38875626

ABSTRACT

Acoustic sensitive optical cables (ASOCs) and their shape detection are vital in underwater acoustic monitoring, and a distributed ASOC shape detection method is demonstrated with distributed acoustic sensing (DAS) technology. The accurate three-dimensional (3D) position of each ASOC unit is obtained from DAS signals and the prior position information of auxiliary acoustic sources by using a proposed adaptive peak allocation algorithm. Preliminary work has demonstrated single-point 3D localization and distributed ASOC shape detection, and the error is 6.53 cm. To the best of our knowledge, it is the first time that distributed ASOC shape detection is achieved with DAS. This method will promote the development of ASOC applications, such as underwater target detection and towed array correction.

16.
Opt Lett ; 49(16): 4737-4740, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39146148

ABSTRACT

Vacuum-gap Fabry-Perot cavities are indispensable for the realization of frequency-stable lasers, with applications across a diverse range of scientific and industrial pursuits. However, making these cavity-based laser stabilization systems compact, portable, and rugged enough for use outside of controlled laboratory conditions has proven difficult. Here, we present a fiber-coupled 1396 nm laser stabilization system requiring no free-space optics or alignment, built for a portable strontium optical lattice clock. Based on a 2 mL vacuum-gap Fabry-Perot cavity, this system demonstrates thermal noise-limited performance and 1 × 10-14 fractional frequency instability. Fiber-integrated optical components have been instrumental in both advancing the field of optics and leveraging those advances across disciplines to facilitate other fields of study. This portable system represents a major step toward making the frequency stability of cavity-based systems broadly accessible.

17.
Cytotherapy ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39217529

ABSTRACT

OBJECT: Autologous CD19 chimeric antigen receptor T-cell therapy (CAR-T) significantly modifies the natural course of chemorefractory diffuse large B-cell lymphoma (DLBCL). However, 25% to 50% of patients with relapsed/refractory DLBCL still do not achieve remission. Therefore, investigating new molecular prognostic indicators that affect the effectiveness of CAR-T for DLBCL and developing novel combination therapies are crucial. METHODS: Data from 73 DLBCL patients who received CD19 CAR-T (Axi-cel or Relma-cel) were retrospectively collected from Shanghai Tongji Hospital of Tongji University, The Second Affiliated Hospital Zhejiang University School of Medicine, and The Affiliated People's Hospital of Ningbo University. Prior to CD19 CAR-T-cell transfusions, the patients received fludarabine and cyclophosphamide chemotherapy regimen. RESULTS: Our study revealed that relapsed/refractory diffuse large B-cell lymphoma (r/r DLBCL) patients with both Double-expression (MYC > 40% and BCL2 > 50%) and TP53 alterations tend to have a poorer clinical prognosis after CAR-T therapy, even when CAR-T therapy is used in combination with other therapies. However, CAR-T therapy was found to be effective in patients with only TP53 alterations or DE status, suggesting that their prognosis is in line with that of patients without TP53 alterations or DE status. CONCLUSIONS: Our study suggests that r/r DLBCL patients with both DE status and TP53 alterations treated with CAR-T therapy are more likely to have a poorer clinical prognosis. However, CAR-T therapy has the potential to improve the prognosis of patients with only TP53 alterations or DE status to be similar to that of patients without these abnormalities.

18.
Phys Rev Lett ; 132(25): 253803, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38996228

ABSTRACT

The spin angular momentum (SAM) of an elliptically or circularly polarized light beam can be transferred to matter to drive a spinning motion. It is counterintuitive to find that a light beam without SAM can also cause the spinning of microparticles. Here, we demonstrate controllable spinning of birefringent microparticles via a tightly focused radially polarized vortex beam that has no SAM prior to focusing. To this end, the orbital Hall effect is proposed to control the radial separation of two spin components in the focused field, and tunable transfer of local SAM to microparticles is achieved by manipulating the twisted wavefront of the source light. Our work broadens the perspectives for controllable exertion of optical torques via the spin-orbit interactions.

19.
Chemistry ; 30(41): e202401449, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38749918

ABSTRACT

Divergent nitrogen-containing fused polycyclic ring systems are constructed from simple starting materials via a one-pot aldehyde-alkyne-amine (A3) coupling and intramolecular Diels-Alder reaction. This domino reaction directly furnishes linear 5/5/5 and 5/5/6, or nonlinear 5/5/6/5, polycyclic rings containing an oxa-bridged fused 5/5 bicycle and a 1,6-enyne substructure. One-step derivation of the oxa-bridged 5/5 bicycle leads to a polyfunctionalized 5/5 bicycle with tetrahydrofuran fused back-to-back to pyrroline or a 6/5 bicycle with the hexahydro-1H-isoindole structure, while cycloisomerizing the enyne substructure adds an extra fused 5-membered ring to afford functionalized linear 5/5/5/5 or 5/5/5/5/5 fused ring systems from selected substrates. In addition, the one-pot product can be designed so that the alkyne moiety is hydroalkoxylated to form an additional heterocyle in a linear 5/5/5/6 or nonlinear 5/5/6/5/5 ring system. This diversity-oriented synthetic approach thus allows rapid access to an under-explored structural space for discovery of new biological or non-biological activities or functions.

20.
PLoS Biol ; 19(10): e3001296, 2021 10.
Article in English | MEDLINE | ID: mdl-34618803

ABSTRACT

The widely held assumption that any important scientific information would be available in English underlies the underuse of non-English-language science across disciplines. However, non-English-language science is expected to bring unique and valuable scientific information, especially in disciplines where the evidence is patchy, and for emergent issues where synthesising available evidence is an urgent challenge. Yet such contribution of non-English-language science to scientific communities and the application of science is rarely quantified. Here, we show that non-English-language studies provide crucial evidence for informing global biodiversity conservation. By screening 419,679 peer-reviewed papers in 16 languages, we identified 1,234 non-English-language studies providing evidence on the effectiveness of biodiversity conservation interventions, compared to 4,412 English-language studies identified with the same criteria. Relevant non-English-language studies are being published at an increasing rate in 6 out of the 12 languages where there were a sufficient number of relevant studies. Incorporating non-English-language studies can expand the geographical coverage (i.e., the number of 2° × 2° grid cells with relevant studies) of English-language evidence by 12% to 25%, especially in biodiverse regions, and taxonomic coverage (i.e., the number of species covered by the relevant studies) by 5% to 32%, although they do tend to be based on less robust study designs. Our results show that synthesising non-English-language studies is key to overcoming the widespread lack of local, context-dependent evidence and facilitating evidence-based conservation globally. We urge wider disciplines to rigorously reassess the untapped potential of non-English-language science in informing decisions to address other global challenges. Please see the Supporting information files for Alternative Language Abstracts.


Subject(s)
Biodiversity , Conservation of Natural Resources , Language , Science , Animals , Geography , Publications
SELECTION OF CITATIONS
SEARCH DETAIL