Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Plant Physiol ; 192(2): 910-926, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36943277

ABSTRACT

Arsenate [As(V)] is a metalloid with heavy metal properties and is widespread in many environments. Dietary intake of food derived from arsenate-contaminated plants constitutes a major fraction of the potentially health-threatening human exposure to arsenic. However, the mechanisms underlying how plants respond to arsenate stress and regulate the function of relevant transporters are poorly understood. Here, we observed that As(V) stress induces a significant Ca2+ signal in Arabidopsis (Arabidopsis thaliana) roots. We then identified a calcium-dependent protein kinase, CALCIUM-DEPENDENT PROTEIN KINASE 23 (CPK23), that interacts with the plasma membrane As(V)/Pi transporter PHOSPHATE TRANSPORTER 1;1 (PHT1;1) in vitro and in vivo. cpk23 mutants displayed a sensitive phenotype under As(V) stress, while transgenic Arabidopsis plants with constitutively active CPK23 showed a tolerant phenotype. Furthermore, CPK23 phosphorylated the C-terminal domain of PHT1;1, primarily at Ser514 and Ser520. Multiple experiments on PHT1;1 variants demonstrated that PHT1;1S514 phosphorylation is essential for PHT1;1 function and localization under As(V) stress. In summary, we revealed that plasma-membrane-associated calcium signaling regulates As(V) tolerance. These results provide insight for crop bioengineering to specifically address arsenate pollution in soils.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Humans , Arabidopsis/genetics , Arabidopsis/metabolism , Arsenates/toxicity , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calcium Signaling , Phosphate Transport Proteins/metabolism , Phosphates/metabolism , Plants, Genetically Modified/metabolism , Cell Membrane/metabolism
2.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 511-519, 2024 Jun 25.
Article in Zh | MEDLINE | ID: mdl-38932537

ABSTRACT

In response to the issues of single-scale information loss and large model parameter size during the sampling process in U-Net and its variants for medical image segmentation, this paper proposes a multi-scale medical image segmentation method based on pixel encoding and spatial attention. Firstly, by redesigning the input strategy of the Transformer structure, a pixel encoding module is introduced to enable the model to extract global semantic information from multi-scale image features, obtaining richer feature information. Additionally, deformable convolutions are incorporated into the Transformer module to accelerate convergence speed and improve module performance. Secondly, a spatial attention module with residual connections is introduced to allow the model to focus on the foreground information of the fused feature maps. Finally, through ablation experiments, the network is lightweighted to enhance segmentation accuracy and accelerate model convergence. The proposed algorithm achieves satisfactory results on the Synapse dataset, an official public dataset for multi-organ segmentation provided by the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), with Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD95) scores of 77.65 and 18.34, respectively. The experimental results demonstrate that the proposed algorithm can enhance multi-organ segmentation performance, potentially filling the gap in multi-scale medical image segmentation algorithms, and providing assistance for professional physicians in diagnosis.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Diagnostic Imaging/methods , Neural Networks, Computer
3.
New Phytol ; 238(1): 313-331, 2023 04.
Article in English | MEDLINE | ID: mdl-36567524

ABSTRACT

Cadmium (Cd) is a toxic heavy element for plant growth and development, and plants have evolved many strategies to cope with Cd stress. However, the mechanisms how plants sense Cd stress and regulate the function of transporters remain very rudimentary. Here, we found that Cd stress induces obvious Ca2+ signals in Arabidopsis roots. Furthermore, we identified the calcium-dependent protein kinases CPK21 and CPK23 that interacted with the Cd transporter NRAMP6 through a variety of protein interaction techniques. Then, we confirmed that the cpk21 23 double mutants significantly enhanced the sensitive phenotype of cpk23 single mutant under Cd stress, while the overexpression and continuous activation of CPK21 and CPK23 enhanced plants tolerance to Cd stress. Multiple biochemical and physiological analyses in yeast and plants demonstrated that CPK21/23 phosphorylate NRAMP6 primarily at Ser489 and Thr505 to inhibit the Cd transport activity of NRAMP6, thereby improving the Cd tolerance of plants. Taken together, we found a plasma membrane-associated calcium signaling that modulates Cd tolerance. These results provide new insights into the molecular breeding of crop tolerance to Cd stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cadmium , Calcium , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cadmium/toxicity , Cadmium/metabolism , Calcium/metabolism , Calcium Signaling , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Cell Membrane/metabolism , Gene Expression Regulation, Plant , Plant Roots/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism
4.
J Org Chem ; 88(16): 11924-11934, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37560787

ABSTRACT

A new method for the synthesis of α-amino phenylpropanoids under blue light-emitting diode irradiation has been developed through α-C-H benzylation of readily available N-phenyl glycine ester with benzyl oxalates as a coupling partner under mild conditions. A range of N-phenyl glycine esters were successfully converted to α-amino phenylpropanoid products in moderate to good yields. The utility of this methodology is underlined by its application to the late-state modification of natural products.

5.
Molecules ; 28(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37446938

ABSTRACT

Ulcerative colitis (UC) is an inflammatory bowel disease (IBD), and its pathogenesis is related to intestinal mucosal barrier damage and gut microbiota imbalance. Protopine (PRO), an isoquinoline alkaloid, is one of the main anti-inflammatory ingredients of traditional Chinese medicine Macleaya cordata(Willd.) R. Br. This study investigated the effects of PRO on the intestinal mucosal barrier and gut microbiota in dextran sodium sulfate (DSS)-induced colitis mice. C57BL/6J mice were treated with 3% DSS in drinking water to induce acute colitis, while PRO was administered orally once daily for 7 days. The results showed that PRO administration significantly alleviated the symptoms of DSS-induced colitis in mice and inhibited the expression of inflammation-related genes. In addition, PRO restored the integrity of the intestinal barrier in colitis mice by restoring colonic mucin secretion and promoting the expression of tight junction proteins. Furthermore, PRO alleviated the DSS-induced gut microbiota dysbiosis by decreasing the abundance of Proteobacteria, Escherichia-Shigella and Enterococcus, as well as enhancing the abundance of beneficial bacteria, such as Firmicutes and Akkermansia. These findings suggested that PRO effectively alleviated DSS-induced ulcerative colitis by suppressing the expression of inflammation-related genes, maintaining the intestinal mucosal barrier and regulating the intestinal microbiota.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Animals , Mice , Mice, Inbred C57BL , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Dextrans , Inflammation , Colon , Dextran Sulfate/adverse effects , Disease Models, Animal
6.
Molecules ; 28(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37836654

ABSTRACT

Intestinal inflammation is a chronic gastrointestinal disorder with uncertain pathophysiology and causation that has significantly impacted both the physical and mental health of both people and animals. An increasing body of research has demonstrated the critical role of cellular signaling pathways in initiating and managing intestinal inflammation. This review focuses on the interactions of three cellular signaling pathways (TLR4/NF-κB, PI3K-AKT, MAPKs) with immunity and gut microbiota to explain the possible pathogenesis of intestinal inflammation. Traditional medicinal drugs frequently have drawbacks and negative side effects. This paper also summarizes the pharmacological mechanism and application of Chinese herbal compounds (Berberine, Sanguinarine, Astragalus polysaccharide, Curcumin, and Cannabinoids) and formulae (Wumei Wan, Gegen-Qinlian decoction, Banxia xiexin decoction) against intestinal inflammation. We show that the herbal compounds and formulae may influence the interactions among cell signaling pathways, immune function, and gut microbiota in humans and animals, exerting their immunomodulatory capacity and anti-inflammatory and antimicrobial effects. This demonstrates their strong potential to improve gut inflammation. We aim to promote herbal medicine and apply it to multispecies animals to achieve better health.


Subject(s)
Drugs, Chinese Herbal , Phosphatidylinositol 3-Kinases , Animals , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Inflammation/drug therapy , Anti-Inflammatory Agents , NF-kappa B
7.
J Nat Prod ; 84(8): 2390-2397, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34325506

ABSTRACT

Reduction of an iminium C═N double bond is the most important phase I metabolism process associated with the cytotoxic property of quaternary benzophenanthridine alkaloids (QBAs). Inspired by the light-mediated reduction of QBAs with nicotinamide adenine dinucleotide, a visible-light-promoted reductive functionalization reaction of QBAs is reported in this study. C4-Alkyl-1,4-dihydropyridines (DHPs) enable the direct reductive alkylation of QBA independently, serving as both single-electron-transfer reductant reagents under irradiation with 455 nm blue light in the absence of photocatalysts and additional additives. Our protocol can be further applied to the semisynthesis of natural 6-substituted dihydrobenzophenanthridine derivatives such as O-acetyl maclekarpine E.


Subject(s)
Benzophenanthridines/chemistry , Biomimetic Materials/chemistry , Alkylation , Benzophenanthridines/radiation effects , Biomimetic Materials/radiation effects , Electron Transport , Light , Molecular Structure
8.
Molecules ; 26(23)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34885803

ABSTRACT

Fungal pathogens have evolved combinations of plant cell-wall-degrading enzymes (PCWDEs) to deconstruct host plant cell walls (PCWs). An understanding of this process is hoped to create a basis for improving plant biomass conversion efficiency into sustainable biofuels and bioproducts. Here, an approach integrating enzyme activity assay, biomass pretreatment, field emission scanning electron microscopy (FESEM), and genomic analysis of PCWDEs were applied to examine digestibility or degradability of selected woody and herbaceous biomass by pathogenic fungi. Preferred hydrolysis of apple tree branch, rapeseed straw, or wheat straw were observed by the apple-tree-specific pathogen Valsa mali, the rapeseed pathogen Sclerotinia sclerotiorum, and the wheat pathogen Rhizoctonia cerealis, respectively. Delignification by peracetic acid (PAA) pretreatment increased PCW digestibility, and the increase was generally more profound with non-host than host PCW substrates. Hemicellulase pretreatment slightly reduced or had no effect on hemicellulose content in the PCW substrates tested; however, the pretreatment significantly changed hydrolytic preferences of the selected pathogens, indicating a role of hemicellulose branching in PCW digestibility. Cellulose organization appears to also impact digestibility of host PCWs, as reflected by differences in cellulose microfibril organization in woody and herbaceous PCWs and variation in cellulose-binding domain organization in cellulases of pathogenic fungi, which is known to influence enzyme access to cellulose. Taken together, this study highlighted the importance of chemical structure of both hemicelluloses and cellulose in host PCW digestibility by fungal pathogens.


Subject(s)
Cellulases/metabolism , Cellulose/metabolism , Fungal Proteins/metabolism , Fungi/physiology , Plant Diseases/microbiology , Brassica napus/microbiology , Brassica napus/physiology , Cell Wall/metabolism , Cell Wall/microbiology , Fungi/enzymology , Host-Pathogen Interactions , Hydrolysis , Malus/microbiology , Malus/physiology , Polysaccharides/metabolism , Triticum/microbiology , Triticum/physiology , Wood/microbiology , Wood/physiology
9.
Appl Environ Microbiol ; 86(15)2020 07 20.
Article in English | MEDLINE | ID: mdl-32471912

ABSTRACT

Filamentous fungi are intensively used for producing industrial enzymes, including lignocellulases. Employing insoluble cellulose to induce the production of lignocellulases causes some drawbacks, e.g., a complex fermentation operation, which can be overcome by using soluble inducers such as cellobiose. Here, a triple ß-glucosidase mutant of Neurospora crassa, which prevents rapid turnover of cellobiose and thus allows the disaccharide to induce lignocellulases, was applied to profile the proteome responses to cellobiose and cellulose (Avicel). Our results revealed a shared proteomic response to cellobiose and Avicel, whose elements included lignocellulases and cellulolytic product transporters. While the cellulolytic proteins showed a correlated increase in protein and mRNA levels, only a moderate correlation was observed on a proteomic scale between protein and mRNA levels (R2 = 0.31). Ribosome biogenesis and rRNA processing were significantly overrepresented in the protein set with increased protein but unchanged mRNA abundances in response to Avicel. Ribosome biogenesis, as well as protein processing and protein export, was also enriched in the protein set that showed increased abundance in response to cellobiose. NCU05895, a homolog of yeast CWH43, is potentially involved in transferring a glycosylphosphatidylinositol (GPI) anchor to nascent proteins. This protein showed increased abundance but no significant change in mRNA levels. Disruption of CWH43 resulted in a significant decrease in cellulase activities and secreted protein levels in cultures grown on Avicel, suggesting a positive regulatory role for CWH43 in cellulase production. The findings should have an impact on a systems engineering approach for strain improvement for the production of lignocellulases.IMPORTANCE Lignocellulases are important industrial enzymes for sustainable production of biofuels and bio-products. Insoluble cellulose has been commonly used to induce the production of lignocellulases in filamentous fungi, which causes a difficult fermentation operation and enzyme loss due to adsorption to cellulose. The disadvantages can be overcome by using soluble inducers, such as the disaccharide cellobiose. Quantitative proteome profiling of the model filamentous fungus Neurospora crassa revealed cellobiose-dependent pathways for cellulase production, including protein processing and export. A protein (CWH43) potentially involved in protein processing was found to be a positive regulator of lignocellulase production. The cellobiose-dependent mechanisms provide new opportunities to improve the production of lignocellulases in filamentous fungi.


Subject(s)
Cellobiose/metabolism , Fungal Proteins/metabolism , Neurospora crassa/metabolism , Proteome/metabolism , beta-Glucosidase/genetics , Biofuels/microbiology , Cellulose/metabolism , Fungal Proteins/genetics , Neurospora crassa/enzymology , Neurospora crassa/genetics , Proteome/genetics , beta-Glucosidase/deficiency
10.
J Vet Pharmacol Ther ; 42(2): 197-206, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30350369

ABSTRACT

Sanguinarine (SA) and chelerythrine (CHE) are the main active components of the phytogenic livestock feed additive, Sangrovit®. However, little information is available on the pharmacokinetics of Sangrovit® in poultry. The goal of this work was to study the pharmacokinetics of SA, CHE, and their metabolites, dihydrosanguinarine (DHSA) and dihydrochelerythrine (DHCHE), in 10 healthy female broiler chickens following oral (p.o.) administration of Sangrovit® and intravenous (i.v.) administration of a mixture of SA and CHE. The plasma samples were processed using two different simple protein precipitation methods because the parent drugs and metabolites are stable under different pH conditions. The absorption and metabolism of SA following p.o. administration were fast, with half-life (t1/2 ) values of 1.05 ± 0.18 hr and 0.83 ± 0.10 hr for SA and DHSA, respectively. The maximum concentration (Cmax ) of DHSA (2.49 ± 1.4 µg/L) was higher that of SA (1.89 ± 0.8 µg/L). The area under the concentration vs. time curve (AUC) values for SA and DHSA were 9.92 ± 5.4 and 6.08 ± 3.49 ng/ml hr, respectively. Following i.v. administration, the clearance (CL) of SA was 6.79 ± 0.63 (L·h-1 ·kg-1 ) with a t1/2 of 0.34 ± 0.13 hr. The AUC values for DHSA and DHCHE were 7.48 ± 1.05 and 0.52 ± 0.09 (ng/ml hr), respectively. These data suggested that Sangrovit® had low absorption and bioavailability in broiler chickens. The work reported here provides useful information on the pharmacokinetic behavior of Sangrovit® after p.o. and i.v. administration in broiler chickens, which is important for the evaluation of its use in poultry.


Subject(s)
Benzophenanthridines/pharmacokinetics , Chickens/metabolism , Isoquinolines/pharmacokinetics , Administration, Oral , Animals , Benzophenanthridines/administration & dosage , Benzophenanthridines/blood , Chickens/blood , Chromatography, High Pressure Liquid/veterinary , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacokinetics , Female , Half-Life , Injections, Intravenous/veterinary , Isoquinolines/administration & dosage , Isoquinolines/blood , Mass Spectrometry/veterinary
11.
Rapid Commun Mass Spectrom ; 32(1): 19-22, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29027298

ABSTRACT

RATIONALE: Gelsemine has been extensively studied because of its anti-tumor, immunomodulatory, insecticidal itching and other significant effects. However, limited information on the pharmacokinetics and metabolism of gelsemine has been reported. Therefore, the purpose of the present study was to investigate the in vitro metabolism of gelsemine in rat liver S9 by using rapid and accurate high-performance liquid chromatography/ quadrupole-time-of-flight mass spectrometry (HPLC/QqTOF-MS). METHODS: The incubation mixture was processed with 15% trichloroacetic acid. Multiple scans of gelsemine metabolites and accurate mass measurements were automatically performed simultaneously through data-dependent acquisition in only 30 min. The structural elucidations of these metabolites were performed by comparing their changes in accurate molecular masses and product ions with those of the parent drug. RESULTS: Five metabolites of gelsemine were identified in rat liver S9. Of these, four metabolites of gelsemine were identified for the first time. The present results showed that the metabolic pathways of gelsemine are oxidation, demethylation, and dehydrogenation in rat liver S9. CONCLUSIONS: In this study, metabolites of gelsemine in liver S9 were identified and elucidated firstly using the HPLC/QqTOF-MS method. The proposed metabolic pathways of gelsemine in liver S9 will provide a basis for further studies of the in vivo metabolism of gelsemine in animals and humans.


Subject(s)
Alkaloids/metabolism , Gelsemium/chemistry , Liver/metabolism , Plant Extracts/metabolism , Alkaloids/chemistry , Animals , Chromatography, High Pressure Liquid , Liver/chemistry , Mass Spectrometry , Molecular Structure , Plant Extracts/chemistry , Rats
12.
Korean J Parasitol ; 56(5): 495-500, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30419736

ABSTRACT

Trichuris suis infection in pigs is ubiquitous in intensive and extensive farms, which causes potential threat to human health. The objective of this research was to investigate the prevalence of T. suis in pigs in Hunan province. Total 2,267 fresh fecal samples distributed in 28 pig farms from 7 different administrative regions (Hunan province) were evaluated for the existence of T. suis eggs using saturated NaCl floating method. The average infection rate of T. suis in pigs was 8.91% in Hunan province. To determine genetic variation of the gained T. suis isolates in the present study, the internal transcribed spacer (ITS) regions from nuclear ribosomal DNA (rDNA) of 7 T. suis isolates were cloned and analyzed. Nucleotide diversities were 1.0-3.5% and 0-3.8% for ITS-1 and ITS-2, respectively. Phylogenetic analyses indicated that all isolates collected in the present study and T. suis available in Genbank generated a monophyletic clade. The present investigation revealed high infection rates of T. suis in pigs in Hunan province, which shed light on making effective measures to prevent and control T. suis infection in pigs in Hunan province.


Subject(s)
Phylogeny , Swine Diseases/epidemiology , Swine Diseases/parasitology , Trichuriasis/epidemiology , Trichuriasis/veterinary , Trichuris/genetics , Trichuris/isolation & purification , Animals , China/epidemiology , DNA, Helminth , DNA, Ribosomal , Feces/parasitology , Prevalence , Seasons , Swine , Swine Diseases/prevention & control , Trichuriasis/parasitology , Trichuriasis/prevention & control
13.
Rapid Commun Mass Spectrom ; 31(5): 397-410, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-27943430

ABSTRACT

RATIONALE: Tissue-specific metabolite profiling helps to find trace alkaloids masked during organ analysis, which contributes to understanding the alkaloid biosynthetic pathways in vivo and evaluating the quality of medical plants by morphology. As Macleaya cordata contains diverse types of benzylisoquinoline alkaloids (BIAs), the alkaloid metabolite profiling was carried out on various tissues of the root. METHODS: Laser microdissection with fluorescence detection was used to recognize and dissect different tissues from the root of M. cordata. Ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry was applied to analyze the trace alkaloids in tissues. These detected alkaloids were elucidated using their accurate molecular weights, MS/MS data, MS fragmentation patterns and the known biosynthetic pathways of BIAs. Finally, the distribution of alkaloids in dissected tissues and whole sections was mapped. RESULTS: Forty-nine alkaloids were identified from five microdissected tissues, and 24 of them were detected for the first time in M. cordata. Some types of alkaloids occurred specifically in dissected tissues. More alkaloids were detected in the cork and xylem vascular bundles which emit strong fluorescence under fluorescence microscopy. Some of the screened alkaloids were intermediates in sanguinarine and chelerythrine biosynthetic pathways, and others were speculated to be involved in the new branches of biosynthetic pathways. CONCLUSIONS: The integrated method is sensitive, specific and reliable for determining trace alkaloids, which is also a powerful tool for metabolite profiling of tissue-specific BIAs in situ. The present findings should contribute to a better understanding of the biosynthesis of BIAs in M. cordata root and provide scientific evidence for its quality evaluation based on morphological characteristics. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Benzylisoquinolines/analysis , Laser Capture Microdissection/methods , Papaveraceae/chemistry , Plant Roots/chemistry , Tandem Mass Spectrometry/methods , Benzylisoquinolines/chemistry , Benzylisoquinolines/metabolism , Chromatography, High Pressure Liquid/methods , Papaveraceae/metabolism , Plant Roots/metabolism
14.
Int J Mol Sci ; 18(11)2017 Nov 18.
Article in English | MEDLINE | ID: mdl-29156589

ABSTRACT

Microsatellite (simple sequence repeats, SSRs) marker is one of the most widely used markers in marker-assisted breeding. As one type of functional markers, MicroRNA-based SSR (miRNA-SSR) markers have been exploited mainly in animals, but the development and characterization of miRNA-SSR markers in plants are still limited. In the present study, miRNA-SSR markers for Medicago truncatula (M. truncatula) were developed and their cross-species transferability in six leguminous species was evaluated. A total of 169 primer pairs were successfully designed from 130 M. truncatula miRNA genes, the majority of which were mononucleotide repeats (70.41%), followed by dinucleotide repeats (14.20%), compound repeats (11.24%) and trinucleotide repeats (4.14%). Functional classification of SSR-containing miRNA genes showed that all targets could be grouped into three Gene Ontology (GO) categories: 17 in biological process, 11 in molecular function, and 14 in cellular component. The miRNA-SSR markers showed high transferability in other six leguminous species, ranged from 74.56% to 90.53%. Furthermore, 25 Mt-miRNA-SSR markers were used to evaluate polymorphisms in 20 alfalfa accessions, and the polymorphism information content (PIC) values ranged from 0.39 to 0.89 with an average of 0.71, the allele number per marker varied from 3 to 18 with an average of 7.88, indicating a high level of informativeness. The present study is the first time developed and characterized of M. truncatula miRNA-SSRs and demonstrated their utility in transferability, these novel markers will be valuable for genetic diversity analysis, marker-assisted selection and genotyping in leguminous species.


Subject(s)
DNA Primers/analysis , Medicago truncatula/genetics , MicroRNAs/genetics , Fabaceae/genetics , Gene Ontology , Genetic Markers , Genetic Variation , Genome, Plant , Microsatellite Repeats , Sensitivity and Specificity
15.
Rapid Commun Mass Spectrom ; 30(13): 1549-59, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27321842

ABSTRACT

RATIONALE: Allocryptopine (AL) and protopine (PR) have been extensively studied because of their anti-parasitic, anti-arrhythmic, anti-thrombotic, anti-inflammatory and anti-bacterial activity. However, limited information on the pharmacokinetics and metabolism of AL and PR has been reported. Therefore, the purpose of the present study was to investigate the in vitro metabolism of AL and PR in rat liver S9 using a rapid and accurate high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (HPLC/QqTOFMS) method. METHODS: The incubation mixture was processed with 15% trichloroacetic acid (TCA). Multiple scans of AL and PR metabolites and accurate mass measurements were automatically performed simultaneously through data-dependent acquisition in only a 30-min analysis. The structural elucidations of these metabolites were performed by comparing their changes in accurate molecular masses and product ions with those of the precursor ion or metabolite. RESULTS: Eight and five metabolites of AL and PR were identified in rat liver S9, respectively. Among these metabolites, seven and two metabolites of AL and PR were identified in the first time, respectively. The demethylenation of the 2,3-methylenedioxy, the demethylation of the 9,10-vicinal methoxyl group and the 2,3-methylenedioxy group were the main metabolic pathways of AL and PR in liver S9, respectively. In addition, the cleavage of the methylenedioxy group of the drugs and subsequent methylation or O-demethylation were also the common metabolic pathways of drugs in liver S9. In addition, the hydroxylation reaction was also the metabolic pathway of AL. CONCLUSIONS: This was the first investigation of in vitro metabolism of AL and PR in rat liver S9. The detailed structural elucidations of AL and PR metabolites were performed using a rapid and accurate HPLC/QqTOFMS method. The metabolic pathways of AL and PR in rat were tentatively proposed based on these characterized metabolites and early reports. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Benzophenanthridines/analysis , Berberine Alkaloids/analysis , Chromatography, High Pressure Liquid , Animals , Liver , Mass Spectrometry , Microsomes, Liver , Rats
16.
Rapid Commun Mass Spectrom ; 28(9): 1033-44, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24677525

ABSTRACT

RATIONALE: Alkaloids with significant therapeutic effects are the main active constituents of Macleaya cordata, which is a perennial herb plant in the Papaveraceae family. A systematic and novel method for speculating and identifying the structures of alkaloids in M. cordata fruits by high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (HPLC/Q-TOF-MS) with a screening procedure was reported. METHODS: Investigation of mass spectral fragmentation of alkaloids was carried out based on the tandem mass spectrometry (MS/MS) data analyses of eight reference substances. The skeletons of alkaloids were determined by their ultraviolet spectra (UV) and MS/MS data. The substituent groups of the alkaloids were acquired through a screening procedure developed in our laboratory and MS/MS data. The substituent linkage sites were deduced by MS/MS fragmentation behavior, as well as biosynthetic pathways of related alkaloids. RESULTS: The structures of 21 alkaloids were speculated in this study, 10 of which were reported for the first time in M. cordata. Furthermore, benzyltetrahydroisoquinoline and N-methyltetrahydroprotoberberine-type alkaloids were discovered, which indirectly proved that the biosynthetic pathways of benzophenanthridine alkaloids reported in Eschscholtzia california existed in M. cordata as well. CONCLUSIONS: HPLC/Q-TOF-MS combined with a screening procedure was a systematic and reliable method for speculating and elucidating the structures of alkaloids. This study might be useful for the identification of other compounds in herbal medicines.


Subject(s)
Alkaloids/analysis , Chromatography, High Pressure Liquid/methods , Fruit/chemistry , Papaveraceae/chemistry , Tandem Mass Spectrometry/methods , Plant Extracts/chemistry
17.
Animals (Basel) ; 14(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39123799

ABSTRACT

In this study, we assessed the therapeutic effects of Macleaya cordata (Willd). R. Br.-derived protopine-type alkaloids (MPTAs) in a mouse model of lipopolysaccharide (LPS)-induced intestinal inflammation. The experimental design involved the allocation of mice into distinct groups, including a control group, a model group treated with 6 mg/kg LPS, a berberine group treated with 50 mg/kg berberine hydrochloride and low-, medium- and high-dose MPTA groups treated with 6, 12 and 24 mg/kg MPTAs, respectively. Histological analysis of the ileum, jejunum and duodenum was performed using Hematoxylin and Eosin (H&E) staining. Moreover, the quantification of intestinal goblet cells (GCs) was performed based on PAS staining. The serum levels of IL-1ß, IL-6, IL-8 and TNF-α were quantified using an enzyme-linked immunosorbent assay (ELISA), while the mRNA levels of TLR4, NF-κB p65, NLRP3, IL-6 and IL-1ß were assessed using quantitative PCR (qPCR). The protein levels of TLR4, Md-2, MyD88, NF-κB p65 and NLRP3 were determined using Western blotting. Furthermore, the 16S rDNA sequences of bacterial taxa were amplified and analysed to determine alterations in the gut microbiota of the mice following MPTA treatment. Different doses of MPTAs were found to elicit distinct therapeutic effects, leading to enhanced intestinal morphology and an increased abundance of intestinal GCs. A significant decrease was noted in the levels of pro-inflammatory cytokines (IL-1ß, IL-6, IL-8 and TNF-α). Additionally, the protein levels of TLR4, MyD88, NLRP3 and p-p65/p65 were markedly reduced by MPTA treatment. Furthermore, 16S rDNA sequencing analysis revealed that the administration of 24 mg/kg MPTAs facilitated the restoration of microbial composition.

18.
Nat Prod Res ; 37(21): 3551-3555, 2023.
Article in English | MEDLINE | ID: mdl-35767365

ABSTRACT

Reduction of C = N double bond is the most important phase I metabolism process of quaternary benzophenanthridine alkaloids (QBAs). Inspired by the NADPH mediated reduction in QBAs, a visible-light promoted reductive aminomethylation of QBAs for synthesis of 6-substituted benzophenanthridines was reported using QBAs and N,N-dimethylaniline as coupling partners in this study. An α-amino radical that derived from QBAs was supposed to be the key intermediate in this visible-light promoted reductive aminomethylation reaction.

19.
Metabolites ; 13(6)2023 May 29.
Article in English | MEDLINE | ID: mdl-37367863

ABSTRACT

Ganpu vine tea is a new type of health care citrus fruit tea made from citrus shell, Pu-er tea, and vine tea baked as raw materials. In this study, the in vitro uric acid synthase inhibition system and hyperuric acid cell model were constructed to appraise the uric acid lowering efficacy of Ganpu vine tea, traditional Ganpu tea, and vine tea. Results showed that in the uric acid synthase inhibition system, the aqueous extract can inhibite the puric metabolically related enzymes, such as adenosine deaminase (ADA), purine nucleoside phosphorylase (PNP), and xanthine oxidase (XOD). The ability of the aqueous extract to inhibit the above enzyme was as follows: vine tea > Ganpu vine tea > Ganpu tea; all teas had a strong effect on XOD inhibition. The hyperuric acid cell model test showed that the aqueous extract inhibited uric acid production through accumulating inosine and hypoxanthine and hindering xanthine synthesis. The uric acid reductive ability was as follows: Vine tea > Ganpu vine tea > Ganpu tea. The inhibition of enzymes related to uric acid synthesis and the inhibition of uric acid production were significantly enhanced through adding vine tea to Ganpu tea. It also shows that flavonoids are the main factor driving this ability because they are the main active ingredients in these botanical drinks.

20.
Sheng Wu Gong Cheng Xue Bao ; 39(1): 286-303, 2023 Jan 25.
Article in Zh | MEDLINE | ID: mdl-36738217

ABSTRACT

Gelsemium elegans is a traditional Chinese herb of medicinal importance, with indole terpene alkaloids as its main active components. To study the expression of the most suitable housekeeping reference genes in G. elegans, the root bark, stem segments, leaves and inflorescences of four different parts of G. elegans were used as materials in this study. The expression stability of 10 candidate housekeeping reference genes (18S, GAPDH, Actin, TUA, TUB, SAND, EF-1α, UBC, UBQ, and cdc25) was assessed through real-time fluorescence quantitative PCR, GeNorm, NormFinder, BestKeeper, ΔCT, and RefFinder. The results showed that EF-1α was stably expressed in all four parts of G. elegans and was the most suitable housekeeping gene. Based on the coexpression pattern of genome, full-length transcriptome and metabolome, the key candidate targets of 18 related genes (AS, AnPRT, PRAI, IGPS, TSA, TSB, TDC, GES, G8H, 8-HGO, IS, 7-DLS, 7-DLGT, 7-DLH, LAMT, SLS, STR, and SGD) involved in the Gelsemium alkaloid biosynthesis were obtained. The expression of 18 related enzyme genes were analyzed by qRT-PCR using the housekeeping gene EF-1α as a reference. The results showed that these genes' expression and gelsenicine content trends were correlated and were likely to be involved in the biosynthesis of the Gelsemium alkaloid, gelsenicine.


Subject(s)
Alkaloids , Gelsemium , Genes, Essential , Gelsemium/genetics , Peptide Elongation Factor 1/genetics , Transcriptome , Gene Expression Profiling/methods , Real-Time Polymerase Chain Reaction/methods , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL