Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Publication year range
1.
Nano Lett ; 24(9): 2689-2697, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38285690

ABSTRACT

Simulating the behavior of metal nanoparticles on supports is crucial for boosting their catalytic performance and various nanotechnology applications; however, such simulations are limited by the conflicts between accuracy and efficiency. Herein, we introduce a multiscale modeling strategy to unveil the morphology of Ru supported on pristine and N-doped graphene. Our multiscale modeling started with the electronic structures of a supported Ru single atom, revealing the strong metal-support interaction around pyridinic nitrogen sites. To determine the stable configurations of Ru2-13 clusters on three different graphene supports, global energy minimum searches were performed. The sintering of the global minimum Ru13 clusters on supports was further simulated by ab initio molecular dynamics (AIMD). The AIMD data set was then collected for deep potential molecular dynamics to study the melting of Ru nanoparticles. This study presents comprehensive descriptions of carbon-supported Ru and develops modeling approaches that bridge different scales and can be applied to various supported nanoparticle systems.

2.
Chemistry ; 28(31): e202200363, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35332603

ABSTRACT

As competitive next-generation rechargeable batteries, lithium-sulfur batteries (LSBs) suffer from the shuttle effect and the sluggish kinetics of intermediate polysulfides during charge and discharge processes, adversely affecting their electrochemical performances and actual applications. Herein, we demonstrate a polymer encapsulation strategy to synthesize atomic Fe and N co-doped hollow carbon nanospheres (Fe-NHC) with Fe-Nx sites for modifying commercial PP separator of LSBs to suppress the shuttle effect and promote the kinetics of intermediate polysulfides. Benefiting from the excellent structural design, the doped-N with positive charges could effectively adsorb negatively charged soluble polysulfides, help attract the soluble polysulfides to the Fe atoms and boost the catalytic transformation of the soluble polysulfides. Additionally, such a thin carbon shell could provide a short mass diffusion pathway and hence promote the adsorption and the catalytic conversion. Therefore, the battery with the Fe-NHC/PP separator delivers outstanding cycling and rate performances. At the large current density of 1 C, the specific capacity is 1079 mA h g-1 and maintains a low loss of 0.076 % per cycle within 500 cycles. Even at a harsh current density of 4 C, a high capacity of 824 mA h g-1 is still achieved, indicating the advantage of the Fe-NHC/PP separator in LSBs.

3.
Small ; 17(38): e2101857, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34350696

ABSTRACT

Although organosulfur compounds can protect lithium anodes, participate in the redox reaction, and suppress the shuttle effect, the sluggish electrochemical dynamics of their bulk structure and the notorious shuttle effect of covalent long-chain sulfurs largely impede their actual applications. Herein, sulfurized carbon nanotube@aminophenol-formaldehyde (SC@A) with covalently linked short-chain sulfurs is firstly synthesized by in situ polymerization of aminophenol-formaldehyde (AF) on the surface of carbon nanotubes (CNTs) followed by acetone etching and inverse sulfurization processes, forming mesoporous yolk-shell organosulfur nanotubes with abundant internal joints between the yolk of CNTs and the shell of sulfurized AF for the first time. In situ Raman spectra, in situ XRD patterns, and ex situ XPS spectra verify that the covalent short-chain sulfurs bring about a reversible solid-solid conversion process of sulfur, thoroughly avoiding the shuttle effect. The mesoporous yolk-shell structure with abundant internal joints can effectively accommodate the volume change, fully expose active sites and efficiently improve the transport of electrons and lithium ions, thus highly promoting the solid-solid electrochemical reaction kinetics. Therefore, the SC@A cathode exhibits a superior specific capacity of 841 mAh g-1 and a capacity decay of 0.06% per cycle within 500 cycles at a large current density of 5.0 C.

4.
Molecules ; 26(23)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34885794

ABSTRACT

A novel synthetic pathway to approach 3-(imino)isoindolin-1-ones by the Co-catalyzed cyclization reaction of 2-bromobenzamides with carbodiimides has been developed. This catalytic reaction can tolerate a variety of substituents and provide corresponding products in moderate yields for most cases. According to the literature, the reaction mechanism is proposed through the formation of a five-membered aza-cobalacycle complex, which carries out the following reaction subsequence, including nucleophilic addition and substitution, to furnish the desired structures.

5.
Neurourol Urodyn ; 39(7): 1958-1965, 2020 09.
Article in English | MEDLINE | ID: mdl-32658368

ABSTRACT

AIMS: The aims of this study were to compare surgical results and suture-related complications after uterosacral ligament suspension (USLS) with absorbable suture (AS) vs permanent suture (PS). METHODS: We systematically searched PubMed, Embase, clinicalTrial.gov, and Cochrane Library Central Register of Controlled Trials for articles that compared AS with PS for USLS. The primary outcomes were surgical success rate and suture-related complications (suture exposure/erosion and suture removal). Review Manager 5.3 (Cochrane Collaboration, Oxford, UK) was applied to conduct all analyses. RESULTS: Four articles involving 647 patients were eventually included. Our findings demonstrated that AS had a similar surgical success rates in comparison with PS (RR = 1.00; 95% CI, 0.94-1.06) and that no significant differences in anatomic failure rates were noted between two groups (RR = 1.10; 95% CI, 0.65-1.86). Subgroup analyses in anatomic failure revealed no statistical differences in apical prolapse ≥1/2 TVL (RR = 0.92; 95% CI, 0.48-1.75), recurrent prolapse beyond the hymen (RR = 1.18; 95% CI, 0.68-2.04), as well as in recurrent anterior, posterior or apical prolapse (P = .14, P = .08, P = .09, respectively). However, AS group indicated a lower risk in suture exposure/erosion (RR = 0.31; 95% CI, 0.15-0.63) and lower suture removal rate (RR = 0.35; 95% CI, 0.18-0.67). CONCLUSIONS: Due to similar surgical results, less suture exposure/erosion and less suture removal, the current data supported that AS is as effective as PS, but with a better safety profile.


Subject(s)
Gynecologic Surgical Procedures/methods , Ligaments/surgery , Sutures , Uterus/surgery , Female , Humans , Pelvic Organ Prolapse/surgery , Postoperative Complications/epidemiology , Sutures/adverse effects , Treatment Outcome , Uterine Prolapse/surgery
6.
J Cell Physiol ; 234(6): 9535-9550, 2019 06.
Article in English | MEDLINE | ID: mdl-30367500

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PAH) is characterized by the apoptosis resistance and hyperproliferation of pulmonary artery smooth muscle cells (PASMCs). Its pathogenesis has not been revealed. Here, we carried out experiments to investigate the functions of miR-140-5p and tumor necrosis factor-α (TNF-α). METHODS: We selected GSE703 from Gene Expression Omnibus (GEO) Database to conduct microarray analysis using R software and Gene Set Enrichment Analysis (GSEA). Combing bioinformatics results, the upregulation of miR-140-5p inhibited PAH progression through targeting TNF-α. RNA expression was measured by quantitative real-time polymerase chain reaction (RT-qPCR) and protein level was measured by western blot analysis and enzyme-linked immunosorbent assays (ELISA). We conducted monocrotaline (MCT) injection to rats to form PAH animal models. The lung tissues were observed by hematoxylin-eosin (HE) staining and Sirius red-picric acid staining. Right ventricular systolic pressure (RVSP) and the ratio of right ventricle (RV)-to-left ventricle (LV) plus septum (S) weight (RV/[LV + S]) were measured in MCT-induced animal models. Overexpression of miR-140-5p and TNF-α were utilized to research the proliferation, migration, and phenotypic variation of hypoxia-mediated PASMCs. The binding between miR-140-5p and TNF-α 3'-untranslated region (3'-UTR) was confirmed via luciferase reporter assay. RESULTS: Downregulation of miR-140-5p and upregulation of TNF-α were observed in PAH rat model and hypoxia-mediated PASMCs. And we proved that overexpression of miR-140-5p could suppress the proliferation, migration, and phenotypic variation of PASMCs, therefore inhibiting PAH pathogenesis. Luciferase assay verified that miR-140-5p targeted TNF-α directly. A converse correlation was also shown between miR-140-5p and TNF-α in PASMCs. CONCLUSIONS: miR-140-5p and TNF-α are important regulators in PAH pathology and may serve as a therapeutic target for PAH.


Subject(s)
MicroRNAs/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/prevention & control , Tumor Necrosis Factor-alpha/genetics , Animals , Antagomirs , Base Sequence , Cell Hypoxia/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Disease Models, Animal , Down-Regulation/genetics , HEK293 Cells , Humans , Male , MicroRNAs/genetics , Monocrotaline , Myocytes, Smooth Muscle/metabolism , Phenotype , Rats, Sprague-Dawley , Signal Transduction/genetics , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation/genetics
7.
Fish Shellfish Immunol ; 62: 153-163, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28108339

ABSTRACT

Vibrio vulnificus infection causes severe economic losses in Oreochromis niloticus aquaculture by inducing pro-inflammatory cytokines, that lead to inflammation and mortality. Omega-3 fatty acids, such as Docosahexaenoic acid (DHA) and Eicosapentaenoic acid (EPA), have been reported for their anti-inflammatory and antibacterial abilities in murine and zebrafish models. However, the anti-inflammatory and antibacterial functions of DHA and EPA in commercial aquaculture organisms such as Oreochromis niloticus remain unknown. The present study demonstrates antibacterial function and transcriptional modulation of inflammation-associated genes by DHA and EPA in Vibrio vulnificus infection in Oreochromis niloticus fish models. The administration of EPA or DHA improved the Oreochromis niloticus survival rate against Vibrio vulnificus infection. The induction of proinflammatory cytokines, Interleukin (IL)-1ß, IL-6, Tumor necrosis factor (TNF)-α, and Toll-like receptor (TLR)-2 by Vibrio vulnificus was suppressed in fish that were administered DHA. Bacterial membrane disruption and the killing of Vibrio vulnificus by EPA and DHA was observed using SEM, TEM, and cytoplasm leakage studies. In silico analysis of the transcription profile in Ingenuity Pathway Analysis software showed that DHA may enhance anti-Vibrio vulnificus activity in Oreochromis niloticus via the activation of peroxisome proliferator-activated receptor α (PPARα) to inhibit nuclear factor kappa B and suppress hepatocyte nuclear factor 4 α (HNF4α). In summary, the results of the present study demonstrated that DHA and EPA reduce the severity of Vibrio vulnificus infection and increase the survival rate of Oreochromis niloticus.


Subject(s)
Cichlids , Dietary Supplements , Docosahexaenoic Acids , Eicosapentaenoic Acid , Fish Diseases/prevention & control , Transcriptome , Vibrio Infections/veterinary , Animal Feed/analysis , Animals , Diet/veterinary , Fish Diseases/immunology , Gene Expression Profiling/veterinary , Vibrio Infections/immunology , Vibrio Infections/prevention & control , Vibrio vulnificus/physiology
8.
Adv Funct Mater ; 26(40): 7281-7290, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-28413376

ABSTRACT

This paper introduces a class of ferromagnetic, folded, soft composite material for skin-interfaced electrodes with releasable interfaces to stretchable, wireless electronic measurement systems. These electrodes establish intimate, adhesive contacts to the skin, in dimensionally stable formats compatible with multiple days of continuous operation, with several key advantages over conventional hydrogel based alternatives. The reported studies focus on aspects ranging from ferromagnetic and mechanical behavior of the materials systems, to electrical properties associated with their skin interface, to system-level integration for advanced electrophysiological monitoring applications. The work combines experimental measurement and theoretical modeling to establish the key design considerations. These concepts have potential uses across a diverse set of skin-integrated electronic technologies.

9.
Opt Express ; 23(3): 2187-95, 2015 Feb 09.
Article in English | MEDLINE | ID: mdl-25836089

ABSTRACT

Room-temperature fabricated ZnO/ST-cut quartz is adopted for SAW ultraviolet (UV) photodetector. The ST-cut quartz substrate and ZnO layer are used for SAW excitation and photodetection, respectively. High resolution x-ray diffraction (XRD) and photoluminescence (PL) measurement indicate that high quality ZnO films can be deposited on ST-cut quartz using radio frequency (RF) sputtering. As the SAW devices under UV illumination (6 mW/cm(2)), a downshift in frequency of about 35 KHz can be observed. The observed small temperature coefficient of frequency (TCF) indicates that SAW devices exhibit good temperature stability. The results present feasibility of using ZnO/ST-cut quartz SAW photodetectors in ultraviolet region.

10.
Bioconjug Chem ; 25(10): 1794-800, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25229206

ABSTRACT

In this study, we examined the self-assembly of four dipeptides conjugated with the electroactive dye naphthalenediimide (NDI). The presence of the NDI group at the N-terminus of Phe-Phe and Phe-Gly promoted the formation of one-dimensional (1-D) nanostructures and three-dimensional (3-D) colored hydrogels under both acidic and physiological conditions. The 1-D nanostructures of these gels were stabilized through intermolecular π-π interactions of the conjugated systems and extended hydrogen bonding of the dipeptide units.


Subject(s)
Coloring Agents/chemistry , Dipeptides/chemistry , Hydrogels/chemistry , Imides/chemistry , Nanofibers/chemistry , Naphthalenes/chemistry , Hydrogen Bonding , Nanofibers/ultrastructure
11.
Angew Chem Int Ed Engl ; 53(7): 1921-7, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24420005

ABSTRACT

A new system for the incorporation of a phenyl/perfluorophenyl pair in the structure of a peptide hydrogelator was developed. The strategy is based on the idea that the integration of an end-capped perfluorophenyl group and a phenylalanine with a phenyl moiety in the side chain forms an intramolecular phenyl/perfluorophenyl pair, which can be used to promote the formation of the supramolecular nanofibers and hydrogels. This work illustrates the importance of structure-hydrogelation relationship and provides new insights into the design of self-assembly nanobiomaterials.


Subject(s)
Fluorobenzenes/chemistry , Hydrogels/chemistry , Nanofibers/chemistry , Amino Acid Sequence , Humans , Molecular Sequence Data , Peptides/chemical synthesis , Peptides/chemistry , Phenylalanine/chemistry
12.
Huan Jing Ke Xue ; 45(1): 407-416, 2024 Jan 08.
Article in Zh | MEDLINE | ID: mdl-38216490

ABSTRACT

To investigate the impact of pyrite mining on the heavy metal pollution in the surrounding soil in Tongling City, 50 surface soil and sediment samples were collected from mining fields, farmland, forests, villages, and the river. The contents of Zn, Cr, Cu, Pb, Ni, Cd, and As in soils and sediments were analyzed. Then, the spatial distribution characteristics of heavy metals in soil were analyzed, and the degree of heavy metal pollution and potential ecological risk level were assessed. Finally, the sources of soil heavy metal pollution were identified. In general, the soil in the study area was weakly acidic (average pH=6.32), and the contents of other heavy metals except Ni exceeded the background values of the soil in Tongling City. Moreover, Ni and Cd were enriched in the river sediments. According to the Nemerow pollution index, Pb and As reached heavy pollution levels, Cu and Cd reached moderate pollution levels, and other elements belonged to light or non-pollution levels. The comprehensive pollution index of different land types was ranked in the order of mining field > river > forest > farmland > village. Mining fields and the river were heavily polluted, forest land was moderately polluted, and farmland and villages were mainly mildly polluted. Pb, As, and Cd belonged to the medium ecological risk category. The contribution rates of the potential ecological risk index were 33.27%, 27.39%, and 20.22%, which were much higher than the other four elements. The ranking results of the potential ecological risk index of different land types was the same as that of the comprehensive pollution index. Mining fields and the river were at a high-risk level, forest land reached moderate risk, and the rest were at a slight risk level. The consistent results of correlation analysis, principal component analysis (PCA), and positive definite matrix factor analysis (PMF) indicated that Zn, Cu, Pb, Cd, and As were mainly derived from pyrite mining activities, Cr mainly came from the parent material and agricultural production, and Ni was mainly affected by soil-forming parent material and pyrite mining activities.

13.
Biomed Environ Sci ; 37(4): 377-386, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38727160

ABSTRACT

Objective: This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans (C. elegans). Methods: In this study, the fermented barley protein LFBEP-C1 was prepared and tested for its potential anti-obesity effects on C. elegans. The worms were fed Escherichia coli OP50 ( E. coli OP50), glucose, and different concentrations of LFBEP-C1. Body size, lifespan, movement, triglyceride content, and gene expression were analyzed. The results were analyzed using ANOVA and Tukey's multiple comparison test. Results: Compared with the model group, the head-swing frequency of C. elegans in the group of LFBEP-C1 at 20 µg/mL increased by 33.88%, and the body-bending frequency increased by 27.09%. This indicated that LFBEP-C1 improved the locomotive ability of C. elegans. The average lifespan of C. elegans reached 13.55 days, and the body length and width of the C. elegans decreased after LFBEP-C1 intake. Additionally, LFBEP-C1 reduced the content of lipid accumulation and triglyceride levels. The expression levels of sbp-1, daf-2, and mdt-15 significantly decreased, while those of daf-16, tph-1, mod-1, and ser-4 significantly increased after LFBEP-C1 intake. Changes in these genes explain the signaling pathways that regulate lipid metabolism. Conclusion: LFBEP-C1 significantly reduced lipid deposition in C. elegans fed a high-glucose diet and alleviated the adverse effects of a high-glucose diet on the development, lifespan, and exercise behavior of C. elegans. In addition, LFBEP-C1 regulated lipid metabolism mainly by mediating the expression of genes in the sterol regulatory element-binding protein, insulin, and 5-hydroxytryptamine signaling pathways.


Subject(s)
Caenorhabditis elegans , Hordeum , Lipid Metabolism , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Hordeum/chemistry , Lipid Metabolism/drug effects , Fermentation , Plant Extracts/pharmacology , Plant Extracts/chemistry , Lactobacillus plantarum , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
14.
J Chin Med Assoc ; 87(3): 267-272, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38277620

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) have garnered significant attention in the field of cell-based therapy owing to their remarkable capabilities for differentiation and self-renewal. However, primary tissue-derived MSCs are plagued by various limitations, including constrained tissue sources, arduous and invasive retrieval procedures, heterogeneous cell populations, diminished purity, cellular senescence, and a decline in self-renewal and proliferative capacities after extended expansion. Addressing these challenges, our study focuses on establishing a robust differentiation platform to generate mesenchymal stem cells derived from induced pluripotent stem cells (iMSCs). METHODS: To achieve this, we used a comprehensive methodology involving the differentiation of induced pluripotent stem cells into MSCss. The process was meticulously designed to ensure the expression of key MSC positive markers (CD73, CD90, and CD105) at elevated levels, coupled with the minimal expression of negative markers (CD34, CD45, CD11b, CD19, and HLA-DR). Moreover, the stability of these characteristics was evaluated across 10th generations. RESULTS: Our findings attest to the success of this endeavor. iMSCs exhibited robust expression of positive markers and limited expression of negative markers, confirming their MSC identity. Importantly, these characteristics remained stable even up to the 10th generation, signifying the potential for sustained use in therapeutic applications. Furthermore, our study demonstrated the successful differentiation of iMSCs into osteocytes, chondrocytes, and adipocytes, showcasing their multilineage potential. CONCLUSION: In conclusion, the establishment of induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs) presents a significant advancement in overcoming the limitations associated with primary tissue-derived MSCs. The remarkable stability and multilineage differentiation potential exhibited by iMSCs offer a strong foundation for their application in regenerative medicine and tissue engineering. This breakthrough paves the way for further research and development in harnessing the full therapeutic potential of iMSCs.


Subject(s)
Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Cell Differentiation
15.
J Chin Med Assoc ; 87(1): 12-16, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38016117

ABSTRACT

A maternal inheritance disorder called Leber's hereditary optic neuropathy (LHON) is the most common primary mitochondrial deoxyribonucleic acid (DNA) disorder. In most studies, there are more male patients than female patients, which contradicts the usual pattern in mitochondrial hereditary diseases. This suggests that nuclear DNA (nDNA) may influence the degeneration of retinal ganglion cells (RGCs) in LHON. The primary cause of this is dysfunction in complex I of the electron transport chain, leading to ineffective adenosine triphosphate (ATP) production. In addition to MT-ND4 or MT-ND1 mutations, genes such as PRICKLE3 , YARS2 , and DNAJC30 , which come from nDNA, also play a role in LHON. These three genes affect the electron chain transport differently. PRICKLE3 interacts with ATP synthase (complex V) at Xp11.23, while YARS2 is a tyrosyl-tRNA synthetase 2 involved in mitochondria . DNAJC30 mutations result in autosomal recessive LHON (arLHON). Understanding how genes impact the disease is crucial for developing new treatments. Idebenone has been approved for treating LHON and has shown safety and efficacy in clinical trials. Mesenchymal stem cell-based therapy has also emerged as a potential treatment for LHON by transferring mitochondria into target cells. Gene therapy research focuses on specific gene mutations, and the wild-type ND4 gene target in the adeno-associated viruses (AAV) vector has shown promise in clinical trials as a potential treatment for LHON.


Subject(s)
Optic Atrophy, Hereditary, Leber , Humans , Male , Female , Optic Atrophy, Hereditary, Leber/therapy , Optic Atrophy, Hereditary, Leber/drug therapy , DNA, Mitochondrial/genetics , Mitochondria , Mutation , Adenosine Triphosphate/therapeutic use
16.
J Chin Med Assoc ; 87(2): 163-170, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38132887

ABSTRACT

BACKGROUND: The potential of induced pluripotent stem cells (iPSCs) in revolutionizing regenerative medicine cannot be overstated. iPSCs offer a profound opportunity for therapies involving cell replacement, disease modeling, and cell transplantation. However, the widespread application of iPSC cellular therapy faces hurdles, including the imperative to regulate iPSC differentiation rigorously and the inherent genetic disparities among individuals. To address these challenges, the concept of iPSC super donors emerges, holding exceptional genetic attributes and advantageous traits. These super donors serve as a wellspring of standardized, high-quality cell sources, mitigating inter-individual variations and augmenting the efficacy of therapy. METHODS: In pursuit of this goal, our study embarked on the establishment of iPSC cell lines specifically sourced from donors possessing the HLA type (A33:03-B58:01-DRB1*03:01). The reprogramming process was meticulously executed, resulting in the successful generation of iPSC lines from these carefully selected donors. Subsequently, an extensive characterization was conducted to comprehensively understand the features and attributes of these iPSC lines. RESULTS: The outcomes of our research were highly promising. The reprogramming efforts culminated in the generation of iPSC lines from donors with the specified HLA type. These iPSC lines displayed a range of distinctive characteristics that were thoroughly examined and documented. This successful generation of iPSC lines from super donors possessing advantageous genetic traits represents a significant stride towards the realization of their potential in therapeutic applications. CONCLUSION: In summary, our study marks a crucial milestone in the realm of regenerative medicine. The establishment of iPSC lines from super donors with specific HLA types signifies a paradigm shift in addressing challenges related to iPSC cellular therapy. The standardized and high-quality cell sources derived from these super donors hold immense potential for various therapeutic applications. As we move forward, these findings provide a solid foundation for further research and development, ultimately propelling the field of regenerative medicine toward new horizons of efficacy and accessibility.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Cellular Reprogramming , Cell Differentiation , Cell- and Tissue-Based Therapy
17.
J Chin Med Assoc ; 87(5): 488-497, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38451105

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) have promising potential in clinical application, whereas their limited amount and sources hinder their bioavailability. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have become prominent options in regenerative medicine as both possess the ability to differentiate into MSCs. METHODS: Recently, our research team has successfully developed human leukocyte antigen (HLA)-homozygous iPSC cell lines with high immune compatibility, covering 13.5% of the Taiwanese population. As we deepen our understanding of the differences between these ESCs and HLA-homozygous iPSCs, our study focused on morphological observations and flow cytometry analysis of specific surface marker proteins during the differentiation of ESCs and iPSCs into MSCs. RESULTS: The results showed no significant differences between the two pluripotent stem cells, and both of them demonstrated the equivalent ability to further differentiate into adipose, cartilage, and bone cells. CONCLUSION: Our research revealed that these iPSCs with high immune compatibility exhibit the same differentiation potential as ESCs, enhancing the future applicability of highly immune-compatible iPSCs.


Subject(s)
Cell Differentiation , Embryonic Stem Cells , Induced Pluripotent Stem Cells , Induced Pluripotent Stem Cells/cytology , Humans , Embryonic Stem Cells/cytology , Mesenchymal Stem Cells , Mesoderm/cytology , Cells, Cultured
18.
J Chin Med Assoc ; 87(3): 261-266, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38305450

ABSTRACT

BACKGROUND: Leber hereditary optic neuropathy (LHON) is mainly the degeneration of retinal ganglion cells (RGCs) associated with high apoptosis and reactive oxygen species (ROS) levels, which is accepted to be caused by the mutations in the subunits of complex I of the mitochondrial electron transport chain. The treatment is still infant while efforts of correcting genes or using antioxidants do not bring good and consistent results. Unaffected carrier carries LHON mutation but shows normal phenotype, suggesting that the disease's pathogenesis is complex, in which secondary factors exist and cooperate with the primary complex I dysfunction. METHODS: Using LHON patient-specific induced pluripotent stem cells (iPSCs) as the in vitro disease model, we previously demonstrated that circRNA_0087207 had the most significantly higher expression level in the LHON patient-iPSC-derived RGCs compared with the unaffected carrier-iPSC-derived RGCs. To elaborate the underlying pathologies regulated by circRNA_008720 mechanistically, bioinformatics analysis was conducted and elucidated that circRNA_0087207 could act as a sponge of miR-548c-3p and modulate PLSCR1/TGFB2 levels in ND4 mutation-carrying LHON patient-iPSC-derived RGCs. RESULTS: Using LHON iPSC-derived RGCs as the disease-based platform, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis on targeted mRNA of miR-548c-3p showed the connection with apoptosis, suggesting downregulation of miR548c-3p contributes to the apoptosis of LHON patient RGCs. CONCLUSION: We showed that the downregulation of miR548c-3p plays a critical role in modulating cellular dysfunction and the apoptotic program of RGCs in LHON.


Subject(s)
MicroRNAs , Optic Atrophy, Hereditary, Leber , Humans , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/pathology , RNA, Circular/genetics , Mitochondria , Apoptosis , Mutation , MicroRNAs/genetics , MicroRNAs/metabolism , Transforming Growth Factor beta2/genetics , Transforming Growth Factor beta2/metabolism
19.
Virus Res ; 345: 199391, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754785

ABSTRACT

Coronaviruses (CoVs) are enveloped single-stranded RNA viruses that predominantly attack the human respiratory system. In recent decades, several deadly human CoVs, including SARS-CoV, SARS-CoV-2, and MERS-CoV, have brought great impact on public health and economics. However, their high infectivity and the demand for high biosafety level facilities restrict the pathogenesis research of CoV infection. Exacerbated inflammatory cell infiltration is associated with poor prognosis in CoV-associated diseases. In this study, we used human CoV 229E (HCoV-229E), a CoV associated with relatively fewer biohazards, to investigate the pathogenesis of CoV infection and the regulation of neutrophil functions by CoV-infected lung cells. Induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells (iAECIIs) exhibiting specific biomarkers and phenotypes were employed as an experimental model for CoV infection. After infection, the detection of dsRNA, S, and N proteins validated the infection of iAECIIs with HCoV-229E. The culture medium conditioned by the infected iAECIIs promoted the migration of neutrophils as well as their adhesion to the infected iAECIIs. Cytokine array revealed the elevated secretion of cytokines associated with chemotaxis and adhesion into the conditioned media from the infected iAECIIs. The importance of IL-8 secretion and ICAM-1 expression for neutrophil migration and adhesion, respectively, was demonstrated by using neutralizing antibodies. Moreover, next-generation sequencing analysis of the transcriptome revealed the upregulation of genes associated with cytokine signaling. To summarize, we established an in vitro model of CoV infection that can be applied for the study of the immune system perturbations during severe coronaviral disease.


Subject(s)
Alveolar Epithelial Cells , Induced Pluripotent Stem Cells , Neutrophils , Humans , Neutrophils/immunology , Neutrophils/virology , Induced Pluripotent Stem Cells/virology , Alveolar Epithelial Cells/virology , COVID-19/virology , COVID-19/immunology , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , SARS-CoV-2/immunology , Interleukin-8/genetics , Interleukin-8/metabolism
20.
Materials (Basel) ; 16(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37374473

ABSTRACT

Flip Chip Ball Grid Array (FCBGA) packages, together with many other heterogeneous integration packages, are widely used in high I/O (Input/Output) density and high-performance computing applications. The thermal dissipation efficiency of such packages is often improved through the use of an external heat sink. However, the heat sink increases the solder joint inelastic strain energy density, and thus reduces the board-level thermal cycling test reliability. The present study constructs a three-dimensional (3D) numerical model to investigate the solder joint reliability of a lidless on-board FCBGA package with heat sink effects under thermal cycling testing, in accordance with JEDEC standard test condition G (a thermal range of -40 to 125 °C and a dwell/ramp time of 15/15 min). The validity of the numerical model is confirmed by comparing the predicted warpage of the FCBGA package with the experimental measurements obtained using a shadow moiré system. The effects of the heat sink and loading distance on the solder joint reliability performance are then examined. It is shown that the addition of the heat sink and a longer loading distance increase the solder ball creep strain energy density (CSED) and degrade the package reliability performance accordingly.

SELECTION OF CITATIONS
SEARCH DETAIL