Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 20(1)2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30577540

ABSTRACT

Catalytic decomposition of sucrose by acid invertases (AINVs) under acidic conditions plays an important role in the development of sink organs in plants. To reveal the function of AINVs in the development of pepper fruits, nine AINV genes of pepper were identified. Protein sequencing and phylogenetic analysis revealed that the CaAINV family may be divided into cell wall invertases (CaCWINV1⁻7) and vacuolar invertases (CaVINV1⁻2). CaAINVs contain conserved regions and protein structures typical of the AINVs in other plants. Gene expression profiling indicated that CaCWINV2 and CaVINV1 were highly expressed in reproductive organs but differed in expression pattern. CaCWINV2 was mainly expressed in buds and flowers, while CaVINV1 was expressed in developmental stages, such as the post-breaker stage. Furthermore, invertase activity of CaCWINV2 and CaVINV1 was identified via functional complementation in an invertase-deficient yeast. Optimum pH for CaCWINV2 and CaVINV1 was found to be 4.0 and 4.5, respectively. Gene expression and enzymatic activity of CaCWINV2 and CaVINV1 indicate that these AINV enzymes may be pivotal for sucrose hydrolysis in the reproductive organs of pepper.


Subject(s)
Capsicum/genetics , Gene Expression Regulation, Plant , Genome, Plant , Genome-Wide Association Study , Multigene Family , Transcriptome , beta-Fructofuranosidase/genetics , Amino Acid Motifs , Amino Acid Sequence , Capsicum/classification , Chromosomes, Plant , Gene Expression Profiling , Genome-Wide Association Study/methods , Imaging, Three-Dimensional , Models, Molecular , Phylogeny , Protein Conformation
2.
Int J Mol Sci ; 19(1)2018 Jan 11.
Article in English | MEDLINE | ID: mdl-29324672

ABSTRACT

Alkaline/neutral invertase (NINV) proteins irreversibly cleave sucrose into fructose and glucose, and play important roles in carbohydrate metabolism and plant development. To investigate the role of NINVs in the development of pepper fruits, seven NINV genes (CaNINV1-7) were identified. Phylogenetic analysis revealed that the CaNINV family could be divided into α and ß groups. CaNINV1-6 had typical conserved regions and similar protein structures to the NINVs of other plants, while CaNINV7 lacked amino acid sequences at the C-terminus and N-terminus ends. An expression analysis of the CaNINV genes in different tissues demonstrated that CaNINV5 is the dominant NINV in all the examined tissues (root, stem, leaf, bud, flower, and developmental pepper fruits stage). Notably, the expression of CaNINV5 was found to gradually increase at the pre-breaker stages, followed by a decrease at the breaker stages, while it maintained a low level at the post-breaker stages. Furthermore, the invertase activity of CaNINV5 was identified by functional complementation of the invertase-deficient yeast strain SEY2102, and the optimum pH of CaNINV5 was found to be ~7.5. The gene expression and enzymatic activity of CaNINV5 suggest that it might be the main NINV enzyme for hydrolysis of sucrose during pepper fruit development.


Subject(s)
Capsicum/genetics , Multigene Family , Plant Proteins/genetics , beta-Fructofuranosidase/genetics , Capsicum/classification , Capsicum/enzymology , Conserved Sequence , Gene Expression Regulation, Plant , Genome, Plant , Phylogeny , Plant Components, Aerial/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , beta-Fructofuranosidase/metabolism
3.
Theor Appl Genet ; 128(8): 1617-29, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25993896

ABSTRACT

KEY MESSAGE: Rapid evolution of powdery mildew resistance gene MlIW170 orthologous genomic regions in wheat subgenomes. Wheat is one of the most important staple grain crops in the world and also an excellent model for plant ploidy evolution research with different ploidy levels from diploid to hexaploid. Powdery mildew disease caused by Blumeria graminis f.sp. tritici can result in significant loss in both grain yield and quality in wheat. In this study, the wheat powdery mildew resistance gene MlIW170 locus located at the Triticum dicoccoides chromosome 2B short arm was further characterized by constructing and sequencing a BAC-based physical map contig covering a 0.3 cM genetic distance region (880 kb) and developing additional markers to delineate the resistance gene within a 0.16 cM genetic interval (372 kb). Comparative analyses of the T. dicoccoides 2BS region with the orthologous Aegilops tauschii 2DS region showed great gene colinearity, including the structure organization of both types of RGA1/2-like and RPS2-like resistance genes. Comparative analyses with the orthologous regions from Brachypodium and rice genomes revealed considerable dynamic evolutionary changes that have re-shaped this MlIW170 region in the wheat genome, resulting in a high number of non-syntenic genes including resistance-related genes. This result might reflect the rapid evolution in R-gene regions. Phylogenetic analysis on these resistance-related gene sequences indicated the duplication of these genes in the MlIW170 region, occurred before the separation of the wheat B and D genomes.


Subject(s)
Ascomycota/pathogenicity , Disease Resistance/genetics , Evolution, Molecular , Plant Diseases/genetics , Triticum/genetics , Chromosomes, Plant , DNA, Plant/genetics , Genes, Plant , Genetic Linkage , Genetic Markers , Genotype , Phylogeny , Physical Chromosome Mapping , Plant Diseases/microbiology , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL