ABSTRACT
BACKGROUND: Despite its federally restricted status, cannabis is widely used medicinally and recreationally. The pharmacokinetics (PK) and central nervous system (CNS) effects of tetrahydrocannabinol (THC), the major psychoactive cannabinoid, are not well understood. The objective of this study was to develop a population PK model of inhaled THC, including sources of variability, and to conduct an exploratory analysis of potential exposure-response relationships. METHODS: Regular adult cannabis users smoked a single cannabis cigarette containing 5.9% THC (Chemovar A) or 13.4% THC (Chemovar B) ad libitum. THC concentrations in whole blood were measured and used to develop a population PK model to identify potential factors contributing to interindividual variability in THC PK and to describe THC disposition. Relationships between model-predicted exposure and heart rate, change in composite driving score on a driving simulator, and perceived highness were evaluated. RESULTS: From the 102 participants, a total of 770 blood THC concentrations were obtained. A two-compartment structural model adequately fit the data. Chemovar and baseline THC (THC BL ) were found to be significant covariates for bioavailability, with Chemovar A having better THC absorption. The model predicted that heavy users-those with the highest THC BL -would have significantly higher absorption than those with lighter previous use. There was a statistically significant relationship between exposure and heart rate, and exposure and perceived highness. CONCLUSIONS: THC PK is highly variable and related to baseline THC concentrations and different chemovars. The developed population PK model showed that heavier users had higher THC bioavailability. To better understand the factors affecting THC PK and dose-response relationships, future studies should incorporate a wide range of doses, multiple routes of administration, and different formulations relevant to typical community use.
Subject(s)
Cannabinoids , Cannabis , Marijuana Smoking , Adult , Humans , Dronabinol/pharmacokinetics , Cannabis/chemistry , Cannabinoids/pharmacokinetics , Biological AvailabilityABSTRACT
OBJECTIVE: Fexofenadine is a probe drug used to phenotype P-glycoprotein (P-gp) and organic anion transporting polypeptide (OATP) 1B1/3 activities. This study evaluated a limited sampling strategy using plasma concentrations and/or partial area under the concentration versus time curves (AUCs) to estimate systemic exposure and, potentially, P-gp and OATP1B1/3 activities. MATERIALS AND METHODS: Plasma concentration versus time data were obtained from 53 healthy adult participants (22 females) from four published studies. Participants were administered a single oral dose (120 mg) of fexofenadine during constitutive P-gp and OATP1B1/3 conditions. Concentration-time data were divided into a training (n = 18) and validation (n = 35) set. Backwards stepwise linear regression generated single-, 2-timepoint, and partial AUC limited sampling models (LSMs). Noncompartmental analysis methods were used to determine total AUC (AUC0-lNF) from intensive sampling. Coefficient of determination (r2) and bias and precision were assessed via relative percent mean prediction error (%MPE), relative percent mean absolute error (%MAE), and relative percent root mean square error (%RMSE). RESULTS: The geometric mean observed AUC0-INF was 1,680 ng×h/mL. The 2-, 5-, and 2- plus 5-hour LSMs met backwards stepwise linear regression significance (p < 0.15) to remain in the model but had unacceptable %RMSE (17 - 29%). The majority of partial AUC LSMs had unacceptable r2 (0.21 - 0.83), with all models having unacceptable %MAE (12 - 35%). CONCLUSION: Fexofenadine limited sampling strategy using single-timepoint, 2-timepoint, and partial AUCs were unable to accurately estimate AUC0-lNF and thus constitutive P-gp and OATB1B1/3 activities in healthy adults. Timepoints that were not measured or selected may have improved LSM performance.
Subject(s)
Phenotype , Female , Humans , Area Under CurveABSTRACT
Inhibition of histone lysine acetyltransferases (KATs) KAT6A and KAT6B has shown antitumor activity in estrogen receptor-positive (ER+) breast cancer preclinical models. PF-07248144 is a selective catalytic inhibitor of KAT6A and KAT6B. In the present study, we report the safety, pharmacokinetics (PK), pharmacodynamics, efficacy and biomarker results from the first-in-human, phase 1 dose escalation and dose expansion study (n = 107) of PF-07248144 monotherapy and fulvestrant combination in heavily pretreated ER+ human epidermal growth factor receptor-negative (HER2-) metastatic breast cancer (mBC). The primary objectives of assessing the safety and tolerability and determining the recommended dose for expansion of PF-07248144, as monotherapy and in combination with fulvestrant, were met. Secondary endpoints included characterization of PK and evaluation of antitumor activity, including objective response rate (ORR) and progression-free survival (PFS). Common treatment-related adverse events (any grade; grades 3-4) included dysgeusia (83.2%, 0%), neutropenia (59.8%, 35.5%) and anemia (48.6%, 13.1%). Exposure was approximately dose proportional. Antitumor activity was observed as monotherapy. For the PF-07248144-fulvestrant combination (n = 43), the ORR (95% confidence interval (CI)) was 30.2% (95% CI = 17.2-46.1%) and the median PFS was 10.7 (5.3-not evaluable) months. PF-07248144 demonstrated a tolerable safety profile and durable antitumor activity in heavily pretreated ER+HER2- mBC. These findings establish KAT6A and KAT6B as druggable cancer targets, provide clinical proof of concept and reveal a potential avenue to treat mBC. clinicaltrial.gov registration: NCT04606446 .
Subject(s)
Breast Neoplasms , Fulvestrant , Histone Acetyltransferases , Receptor, ErbB-2 , Receptors, Estrogen , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Histone Acetyltransferases/antagonists & inhibitors , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Middle Aged , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Receptors, Estrogen/metabolism , Fulvestrant/therapeutic use , Fulvestrant/administration & dosage , Aged , Adult , Neoplasm Metastasis , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effectsABSTRACT
Neuroblastomas harbor ALK aberrations clinically resistant to crizotinib yet sensitive pre-clinically to the third-generation ALK inhibitor lorlatinib. We conducted a first-in-child study evaluating lorlatinib with and without chemotherapy in children and adults with relapsed or refractory ALK-driven neuroblastoma. The trial is ongoing, and we report here on three cohorts that have met pre-specified primary endpoints: lorlatinib as a single agent in children (12 months to <18 years); lorlatinib as a single agent in adults (≥18 years); and lorlatinib in combination with topotecan/cyclophosphamide in children (<18 years). Primary endpoints were safety, pharmacokinetics and recommended phase 2 dose (RP2D). Secondary endpoints were response rate and 123I-metaiodobenzylguanidine (MIBG) response. Lorlatinib was evaluated at 45-115 mg/m2/dose in children and 100-150 mg in adults. Common adverse events (AEs) were hypertriglyceridemia (90%), hypercholesterolemia (79%) and weight gain (87%). Neurobehavioral AEs occurred mainly in adults and resolved with dose hold/reduction. The RP2D of lorlatinib with and without chemotherapy in children was 115 mg/m2. The single-agent adult RP2D was 150 mg. The single-agent response rate (complete/partial/minor) for <18 years was 30%; for ≥18 years, 67%; and for chemotherapy combination in <18 years, 63%; and 13 of 27 (48%) responders achieved MIBG complete responses, supporting lorlatinib's rapid translation into active phase 3 trials for patients with newly diagnosed high-risk, ALK-driven neuroblastoma. ClinicalTrials.gov registration: NCT03107988 .
Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Neuroblastoma , Adult , Humans , 3-Iodobenzylguanidine/therapeutic use , Aminopyridines/therapeutic use , Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Lactams, Macrocyclic/adverse effects , Lung Neoplasms/drug therapy , Neoplasm Recurrence, Local/drug therapy , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Protein Kinase Inhibitors/therapeutic use , Child , Infant , Child, Preschool , AdolescentABSTRACT
BACKGROUND: Treatment and prophylaxis options for neonatal HIV are limited. This study aimed to develop a population pharmacokinetic model to characterize the disposition of maraviroc in neonates to inform dosing regimens and expand available options. METHODS: Using maraviroc concentrations from neonates who received either a single dose or multiple doses of 8 mg/kg of maraviroc in the first 6 weeks of life, a population pharmacokinetic model was developed to determine the effects of age, sex, maternal efavirenz exposure and concomitant ARV therapy on maraviroc disposition. The final model was used in Monte Carlo simulations to generate expected exposures with recommended dosing regimens. RESULTS: A total of 396 maraviroc concentrations, collected in the first 4 days of life, at 1 week, at 4 weeks and at 6 weeks, from 44 neonates were included in the analysis. After allometrically scaling for weight, age less than 4 days was associated with a 44% decreased apparent clearance compared with participants 7 days to 6 weeks of life. There were no differences identified in apparent clearance or volume of distribution from ages 7 days to 6 weeks, sex, maternal efavirenz exposure or concomitant nevirapine therapy. Monte Carlo simulations with FDA-approved weight band dosing resulted in the majority of simulated patients (84.3%) achieving an average concentration of ≥75 ng/mL. CONCLUSIONS: While maraviroc apparent clearance is decreased in the first few days of life, the current FDA-approved maraviroc weight band dosing provides maraviroc exposures for neonates in the first 6 weeks of life, which were consistent with adult maraviroc exposure range. Maraviroc provides another antiretroviral treatment option for very young infants.
Subject(s)
HIV Infections , Nevirapine , Adult , Alkynes , Benzoxazines/therapeutic use , Cyclopropanes/therapeutic use , HIV Infections/drug therapy , Humans , Infant , Infant, Newborn , Maraviroc/therapeutic useABSTRACT
Determining factors that contribute to interindividual and intra-individual variability in pharmacokinetics (PKs) and drug metabolism is essential for the optimal use of drugs in humans. Intestinal microbes are important contributors to variability; however, such gut microbe-drug interactions and the clinical significance of these interactions are still being elucidated. Traditional PKs can be complemented by untargeted mass spectrometry coupled with molecular networking to study the intricacies of drug metabolism. To show the utility of molecular networking on metabolism we investigated the impact of a 7-day course of cefprozil on cytochrome P450 (CYP) activity using a modified Cooperstown cocktail and assessed plasma, urine, and fecal data by targeted and untargeted metabolomics and molecular networking in healthy volunteers. This prospective study revealed that cefprozil decreased the activities of CYP1A2, CYP2C19, and CYP3A, decreased alpha diversity and increased interindividual microbiome variability. We further demonstrate a relationship between the loss of microbiome alpha diversity caused by cefprozil and increased drug and metabolite formation in fecal samples. Untargeted metabolomics/molecular networking revealed several omeprazole metabolites that we hypothesize may be metabolized by both CYP2C19 and bacteria from the gut microbiome. Our observations are consistent with the hypothesis that factors that perturb the gut microbiome, such as antibiotics, alter drug metabolism and ultimately drug efficacy and toxicity but that these effects are most strongly revealed on a per individual basis.
Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Cephalosporins/pharmacokinetics , Gastrointestinal Microbiome/drug effects , Omeprazole/pharmacokinetics , Adult , Aged , Anti-Bacterial Agents/administration & dosage , Cephalosporins/administration & dosage , Cross-Over Studies , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Drug Interactions , Feces/microbiology , Female , Healthy Volunteers , Humans , Male , Metabolomics , Middle Aged , Omeprazole/administration & dosage , Pharmacogenomic Testing , Pharmacogenomic Variants , Prospective Studies , Young Adult , CefprozilABSTRACT
As metagenomic studies move to increasing numbers of samples, communities like the human gut may benefit more from the assembly of abundant microbes in many samples, rather than the exhaustive assembly of fewer samples. We term this approach leaderboard metagenome sequencing. To explore protocol optimization for leaderboard metagenomics in real samples, we introduce a benchmark of library prep and sequencing using internal references generated by synthetic long-read technology, allowing us to evaluate high-throughput library preparation methods against gold-standard reference genomes derived from the samples themselves. We introduce a low-cost protocol for high-throughput library preparation and sequencing.