Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters

Publication year range
1.
Ann Neurol ; 95(3): 432-441, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38270253

ABSTRACT

The rapidly accelerating translation of biomedical advances is leading to revolutionary therapies that are often inaccessible to historically marginalized populations. We identified and synthesized recent guidelines and statements to propose 7 strategies to integrate equity within translational research in neurology: (1) learn history; (2) learn about upstream forces; (3) diversify and liberate; (4) change narratives and adopt best communication practices; (5) study social drivers of health and lived experiences; (6) leverage health technologies; and (7) build, sustain, and lead culturally humble teams. We propose that equity should be a major goal of translational research, equally important as safety and efficacy. ANN NEUROL 2024;95:432-441.


Subject(s)
Neurology , Translational Research, Biomedical , Humans , Translational Science, Biomedical
2.
Ann Neurol ; 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37714824

ABSTRACT

OBJECTIVE: We sought to better understand the workflow, outcomes, and complications of deep brain stimulation (DBS) for pediatric status dystonicus (SD). We present a systematic review, alongside a multicenter case series of pediatric patients with SD treated with DBS. METHODS: We collected individual data regarding treatment, stimulation parameters, and dystonia severity for a multicenter case series (n = 8) and all previously published cases (n = 77). Data for case series were used to create probabilistic voxelwise maps of stimulated tissue associated with dystonia improvement. RESULTS: In our institutional series, DBS was implanted a mean of 25 days after SD onset. Programming began a mean of 1.6 days after surgery. All 8 patients in our case series and 73 of 74 reported patients in the systematic review had resolution of their SD with DBS, most within 2 to 4 weeks of surgery. Mean follow-up for patients in the case series was 16 months. DBS target for all patients in the case series and 68 of 77 in our systematic review was the globus pallidus pars interna (GPi). In our case series, stimulation of the posterior-ventrolateral GPi was associated with improved dystonia. Mean dystonia improvement was 32% and 51% in our institutional series and systematic review, respectively. Mortality was 4% in the review, which is lower than reported for treatment with pharmacotherapy alone (10-12.5%). INTERPRETATION: DBS is a feasible intervention with potential to reverse refractory pediatric SD and improve survival. More work is needed to increase awareness of DBS in this setting, so that it can be implemented in a timely manner. ANN NEUROL 2023.

3.
Mov Disord ; 37(5): 1079-1087, 2022 05.
Article in English | MEDLINE | ID: mdl-35156734

ABSTRACT

BACKGROUND: Patients with Parkinson's disease might develop treatment-resistant axial dysfunction after bilateral subthalamic stimulation. OBJECTIVES: To study whether lateralized stimulation (unilateral 50% amplitude reduction) for ≥21 days results in ≥0.13 m/s faster gait velocity in the dopaminergic ON state in these patients, and its effects on motor and axial function, quantitative gait and speech measures, quality of life, and selected cognitive tasks. METHODS: Randomized, double-blinded, double-crossover trial. RESULTS: In 22 participants (51-79 years old, 15 women), there were no significant changes in gait velocity, quality of life, cognitive, and speech measures. Reducing left-sided amplitude resulted in a 2.5-point improvement in axial motor Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) (P = 0.005, uncorrected) and a 1.9-point improvement in the Freezing of Gait Questionnaire (P = 0.024, uncorrected). CONCLUSIONS: Lateralized subthalamic stimulation does not result in meaningful improvement in gait velocity in patients with Parkinson's disease who develop treatment-resistant axial dysfunction after bilateral subthalamic stimulation. Left subthalamic overstimulation may contribute to axial deterioration in these patients. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Deep Brain Stimulation , Gait Disorders, Neurologic , Parkinson Disease , Subthalamic Nucleus , Aged , Deep Brain Stimulation/methods , Female , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/therapy , Humans , Middle Aged , Parkinson Disease/complications , Parkinson Disease/therapy , Quality of Life , Subthalamic Nucleus/physiology , Treatment Outcome
4.
J Neurophysiol ; 125(4): 1236-1250, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33625938

ABSTRACT

The interconnection of the angular gyrus of right posterior parietal cortex (PPC) and the left motor cortex (LM1) is essential for goal-directed hand movements. Previous work with transcranial magnetic stimulation (TMS) showed that right PPC stimulation increases LM1 excitability, but right PPC followed by left PPC-LM1 stimulation (LPPC-LM1) inhibits LM1 corticospinal output compared with LPPC-LM1 alone. It is not clear if right PPC-mediated inhibition of LPPC-LM1 is due to inhibition of left PPC or to combined effects of right and left PPC stimulation on LM1 excitability. We used paired-pulse TMS to study the extent to which combined right and left PPC stimulation, targeting the angular gyri, influences LM1 excitability. We tested 16 healthy subjects in five paired-pulsed TMS experiments using MRI-guided neuronavigation to target the angular gyri within PPC. We tested the effects of different right angular gyrus (RAG) and LM1 stimulation intensities on the influence of RAG on LM1 and on influence of left angular gyrus (LAG) on LM1 (LAG-LM1). We then tested the effects of RAG and LAG stimulation on LM1 short-interval intracortical facilitation (SICF), short-interval intracortical inhibition (SICI), and long-interval intracortical inhibition (LICI). The results revealed that RAG facilitated LM1, inhibited SICF, and inhibited LAG-LM1. Combined RAG-LAG stimulation did not affect SICI but increased LICI. These experiments suggest that RAG-mediated inhibition of LAG-LM1 is related to inhibition of early indirect (I)-wave activity and enhancement of GABAB receptor-mediated inhibition in LM1. The influence of RAG on LM1 likely involves ipsilateral connections from LAG to LM1 and heterotopic connections from RAG to LM1.NEW & NOTEWORTHY Goal-directed hand movements rely on the right and left angular gyri (RAG and LAG) and motor cortex (M1), yet how these brain areas functionally interact is unclear. Here, we show that RAG stimulation facilitated right hand motor output from the left M1 but inhibited indirect (I)-waves in M1. Combined RAG and LAG stimulation increased GABAB, but not GABAA, receptor-mediated inhibition in left M1. These findings highlight unique brain interactions between the RAG and left M1.


Subject(s)
Hand/physiology , Motor Activity/physiology , Motor Cortex/physiology , Neural Inhibition/physiology , Neuronal Plasticity/physiology , Parietal Lobe/physiology , Transcranial Magnetic Stimulation , Adult , Electromyography , Female , Humans , Male , Middle Aged , Young Adult
6.
Mov Disord ; 36(4): 999-1005, 2021 04.
Article in English | MEDLINE | ID: mdl-33251639

ABSTRACT

BACKGROUND: Celiac disease is associated with motor cortex hyperexcitability and neurological manifestations including cortical myoclonus. Electroencephalography abnormalities have been described, but no distinct pattern has been reported. METHODS: We describe the neurophysiological characteristics of 3 patients with celiac-associated cortical myoclonus using electroencephalography, magnetoencephalography, and transcranial magnetic stimulation. RESULTS: Electroencephalography in all cases demonstrated lateralized low-amplitude, electropositive beta-frequency polyspike activity over the central head region, corresponding to motor cortex contralateral to the myoclonic limb. Jerk-locked back-averaging demonstrated a preceding cortical potential; magnetoencephalography source localization revealed a cortical generator in the posterior wall of the precentral gyrus for the back-averaged potential and oscillatory abnormality. In 1 patient, cerebellar inhibition of the motor cortex was physiologically normal. CONCLUSIONS: Central head oscillatory, low-amplitude, electropositive electroencephalography polyspike activity may be a distinct marker of celiac-related cortical myoclonus and is consistent with celiac-related motor cortex hyperexcitability, which may not necessarily result from cerebellar disinhibition. © 2020 International Parkinson and Movement Disorder Society.


Subject(s)
Celiac Disease , Myoclonus , Celiac Disease/complications , Electroencephalography , Electromyography , Humans , Magnetoencephalography , Myoclonus/etiology
7.
Semin Neurol ; 41(6): 717-730, 2021 12.
Article in English | MEDLINE | ID: mdl-34826874

ABSTRACT

The assessment of patients presenting with disorders of gait can be a daunting task for neurologists given the broad potential localization and differential diagnosis. However, gait disorders are extremely common in outpatient neurology, and all neurologists should be comfortable with the assessment, triage, and management of patients presenting with difficulty walking. Here, we aim to present a manageable framework for neurologists to approach the assessment of patients presenting with gait dysfunction. We suggest a chief complaint-based phenomenological characterization of gait, using components of the neurological history and examination to guide testing and treatment. We present the framework to mirror the outpatient visit with the patient, highlighting (1) important features of the gait history, including the most common gait-related chief complaints and common secondary (medical) causes of gait dysfunction; (2) gait physiology and a systematic approach to the gait examination allowing appropriate characterization of gait phenomenology; (3) an algorithmic approach to ancillary testing for patients with gait dysfunction based on historical and examination features; and (4) definitive and supportive therapies for the management of patients presenting with common neurological disorders of gait.


Subject(s)
Gait Disorders, Neurologic , Neurology , Diagnosis, Differential , Gait , Gait Disorders, Neurologic/diagnosis , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/therapy , Humans
8.
Curr Neurol Neurosci Rep ; 21(4): 16, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33660110

ABSTRACT

PURPOSE OF REVIEW: Digital technology affords the opportunity to provide objective, frequent, and sensitive assessment of disease outside of the clinic environment. This article reviews recent literature on the application of digital technology in movement disorders, with a focus on Parkinson's disease (PD) and Huntington's disease. RECENT FINDINGS: Recent research has demonstrated the ability for digital technology to discriminate between individuals with and without PD, identify those at high risk for PD, quantify specific motor features, predict clinical events in PD, inform clinical management, and generate novel insights. Digital technology has enormous potential to transform clinical research and care in movement disorders. However, more work is needed to better validate existing digital measures, including in new populations, and to develop new more holistic digital measures that move beyond motor features.


Subject(s)
Huntington Disease , Parkinson Disease , Digital Technology , Humans , Parkinson Disease/diagnosis , Parkinson Disease/therapy
9.
Neurocrit Care ; 33(3): 636-645, 2020 12.
Article in English | MEDLINE | ID: mdl-32959201

ABSTRACT

Effective treatment options for patients with life-threatening neurological disorders are limited. To address this unmet need, high-impact translational research is essential for the advancement and development of novel therapeutic approaches in neurocritical care. "The Neurotherapeutics Symposium 2019-Neurological Emergencies" conference, held in Rochester, New York, in June 2019, was designed to accelerate translation of neurocritical care research via transdisciplinary team science and diversity enhancement. Diversity excellence in the neuroscience workforce brings innovative and creative perspectives, and team science broadens the scientific approach by incorporating views from multiple stakeholders. Both are essential components needed to address complex scientific questions. Under represented minorities and women were involved in the organization of the conference and accounted for 30-40% of speakers, moderators, and attendees. Participants represented a diverse group of stakeholders committed to translational research. Topics discussed at the conference included acute ischemic and hemorrhagic strokes, neurogenic respiratory dysregulation, seizures and status epilepticus, brain telemetry, neuroprognostication, disorders of consciousness, and multimodal monitoring. In these proceedings, we summarize the topics covered at the conference and suggest the groundwork for future high-yield research in neurologic emergencies.


Subject(s)
Emergencies , Nervous System Diseases , Female , Humans , Nervous System Diseases/therapy
10.
Mov Disord ; 33(12): 1950-1955, 2018 12.
Article in English | MEDLINE | ID: mdl-30423204

ABSTRACT

BACKGROUND: SNCA mutations cause autosomal dominant parkinsonism and inform our understanding of the molecular underpinnings of synucleinopathies. The most recently identified mutation, p.Ala53Glu (A53E), has only been observed in Finland. The objectives of this study were to examine clinical, genetic, epigenetic, and biochemical features of the first family outside Finland with A53E. METHODS: We examined a Canadian family with parkinsonism because of A53E using haplotype and DNA methylation analyses. We assessed aggregation properties of A53E α-synuclein in vitro. RESULTS: Family members with parkinsonism shared a common haplotype distinct from Finnish patients with A53E. Increased acceleration of DNA methylation age was accompanied by earlier age at onset in the family members. We demonstrate that A53E α-synuclein has a propensity to form oligomers and phosphorylation promotes fibrillation. CONCLUSIONS: A53E as a cause of parkinsonism is not restricted to Finnish individuals. DNA methylation may contribute to disease age at onset. A53E enriches α-synuclein oligomers and fibrils dependent on the phosphorylation state. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Gene Expression/genetics , Mutation/genetics , Parkinsonian Disorders/genetics , alpha-Synuclein/genetics , Aged , Epigenomics/methods , Female , Haplotypes/genetics , Humans , Male , Middle Aged , Pedigree
12.
Semin Neurol ; 36(6): 615-624, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27907966

ABSTRACT

After prompt diagnosis, severe myasthenia gravis and Guillain-Barré syndrome (GBS) usually require management in the intensive care unit. In the myasthenic patient, recognition of precipitating factors is paramount, and frequent monitoring of bulbar, upper airway, and/or respiratory muscle strength is needed to identify impending myasthenic crisis. Noninvasive ventilation can be attempted prior to intubation and mechanical ventilation in the setting of respiratory failure. Cholinesterase inhibitors should be discontinued, but resumed prior to extubation, and steroid dosage could be increased once the airway is secured. In GBS, hemodynamic and respiratory monitoring are essential; however, respiratory failure can develop rapidly and intubation with mechanical ventilation is often required and can be prolonged. Guillain-Barré syndrome can also be complicated by dysautonomia necessitating specific therapies. Prompt recognition and initiation of immunotherapy including intravenous immunoglobulin or plasmapheresis, together with supportive care including treatment of underlying infections and physical therapy, can improve outcomes in both myasthenic crisis and GBS.


Subject(s)
Guillain-Barre Syndrome/therapy , Myasthenia Gravis/therapy , Respiration, Artificial , Respiratory Insufficiency/therapy , Guillain-Barre Syndrome/complications , Humans , Intensive Care Units , Myasthenia Gravis/complications , Respiratory Insufficiency/etiology
15.
Clin Nephrol ; 83(2): 104-10, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24691016

ABSTRACT

Anti-glomerular basement membrane (GBM) disease is a severe inflammatory renal disorder due to pathogenic autoantibodies directed mainly against the α3 chain of type IV collagen. In ~1/4 of patients with anti-GBM disease, antineutrophil cytoplasmic antibodies (ANCA) predominantly with myeloperoxidase (MPO) specificity can be detected. Although the inciting stimuli leading to the development of an immune response against the type IV collagen and neutrophils are unknown, evidence indicates that both genetic and environmental factors play a role. Of note, molecular mimicry between self-antigens and nonself-antigens such as antigenic determinants of microorganisms has been implicated in the pathogenesis of anti-GBM disease and ANCA-associated vasculitis. A mosquito-borne viral illness highly prevalent in the tropics and subtropics, dengue can be complicated by acute renal failure, proteinuria, hematuria and glomerulonephritis. We present a 66-year-old woman who was diagnosed with dengue infection and rapidly progressive glomerulonephritis during an outbreak of dengue in Honduras in the summer of 2013. Renal biopsy revealed severe crescentic glomerulonephritis. Immunofluorescence examination demonstrated strong linear IgG deposition along glomerular capillary walls. Serologic tests demonstrated antibodies against GBM, MPO and platelet glycoproteins. The patient was diagnosed with anti-GBM disease associated with p-ANCA with MPO specificity. Despite heavy immunosuppression and plasmapheresis, IgG titers against dengue virus continued to rise confirming the diagnosis of acute dengue infection. We present the first reported case of anti-GBM disease associated with p-ANCA with MPO specificity during dengue infection. This report calls for a heightened awareness of autoimmunity leading to crescentic glomerulonephritis in patients with dengue infection.


Subject(s)
Anti-Glomerular Basement Membrane Disease/virology , Antibodies, Antineutrophil Cytoplasmic/immunology , Dengue/immunology , Dengue/pathology , Aged , Anti-Glomerular Basement Membrane Disease/immunology , Antibodies, Antineutrophil Cytoplasmic/blood , Female , Humans
17.
Article in English | MEDLINE | ID: mdl-38083336

ABSTRACT

Parkinson's disease (PD) is one of the most common neurodegenerative disorders worldwide. Current identification and monitoring of its motor symptoms depends on the clinical expertise. Repetitive finger tapping is one of the most common clinical maneuvers to assess for bradykinesia. Despite the increasing use of technology aids to quantitatively characterize the motor symptoms of PD, there is still a relative lack of clinical evidence to support their widespread use, particularly in low-resource settings. In this pilot study, we used a low-cost design prototype coupled with an inertial sensor is coupled to quantify the frequency of the finger tapping movements in four participants with PD. Repetitive finger tapping was performed using both hands before and after taking levodopa as part of their clinical treatment. The proposed 3D design allowed repetitive movements to be performed without issues. The maximum frequency of finger tapping was in the range of 0.1 to 4.3 Hz. Levodopa was associated with variable changes in the maximum frequency of finger tapping. This pilot study shows the feasibility for low-cost technology to quantitatively characterize repetitive movements in people living with PD.Clinical relevance- In this pilot study, a low-cost inertial sensor coupled to a design prototype was feasible to characterize the frequency of repetitive finger tapping movements in four participants with PD. This method could be used to quantitatively identify and monitor bradykinesia in people living with PD.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Parkinson Disease/complications , Pilot Projects , Hypokinesia/complications , Levodopa/therapeutic use , Movement
18.
J Neurol Sci ; 450: 120690, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37210937

ABSTRACT

The prevalences of polyneuropathy and epilepsy are higher in people living with Parkinson's disease (PwPD) when compared to older adults. Vitamin B6 is widely available and affordable. PwPD are at higher risk of having abnormal serum levels of vitamin B6, which are associated with polyneuropathy and epilepsy that are potentially preventable and treatable. Potential contributors to abnormal B6 levels in PwPD include age, dietary habits, vitamin supplement misuse, gastrointestinal dysfunction and complex interactions with levodopa. The literature on the potential consequences of abnormal B6 levels in PwPD is limited by a small number of observational studies focused on polyneuropathy and epilepsy. Abnormal B6 levels have been reported in 60 of 145 PwPD (41.4% relative frequency). Low B6 levels were reported in 52 PwPD and high B6 levels were reported in 8 PwPD. There were 14 PwPD, polyneuropathy and low B6. There were 4 PwPD, polyneuropathy and high B6. There were 4 PwPD, epilepsy and low B6. Vitamin B6 level was low in 44.6% of PwPD receiving levodopa-carbidopa intestinal gel and in 30.1% of PwPD receiving oral levodopa-carbidopa. In almost all studies reporting low B6 in PwPD receiving oral levodopa-carbidopa, the dose of levodopa was ≥1000 mg/day. Rigorous epidemiological studies will clarify the prevalence, natural history and clinical relevance of abnormal serum levels of vitamin B6 in PwPD. These studies should account for diet, vitamin supplement use, gastrointestinal dysfunction, concurrent levels of vitamin B12, folate, homocysteine and methylmalonic acid, formulations and dosages of levodopa and other medications commonly used in PwPD.


Subject(s)
Epilepsy , Parkinson Disease , Polyneuropathies , Humans , Aged , Levodopa/adverse effects , Parkinson Disease/drug therapy , Parkinson Disease/epidemiology , Carbidopa/therapeutic use , Antiparkinson Agents/therapeutic use , Vitamin B 6/therapeutic use , Polyneuropathies/complications , Vitamin B 12/therapeutic use , Epilepsy/complications , Vitamins/therapeutic use
19.
J Neurooncol ; 109(1): 129-35, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22644536

ABSTRACT

This report shows the results of stereotactic radiation therapy for progressive residual pilocytic astrocytomas. Medical records of patients who had undergone stereotactic radiation therapy for a progressive residual pilocytic astrocytoma were reviewed. Between 1995 and 2010, 12 patients with progression of a residual pilocytic astrocytoma underwent stereotactic radiation therapy at UCLA. Presentation was headache (4), visual defects (3), hormonal disturbances (2), gelastic seizures (2) and ataxia (1). MRI showed a cystic (9), mixed solid/cystic (2) or solid tumor (1); located in the hypothalamus (5), midbrain (3), thalamus (2), optic chiasm (1) or deep cerebellum (1). Median age was 21 years (range 5-41). Nine tumors received stereotactic radiotherapy (SRT). Three tumors received stereotactic radiosurgery (SRS), two of them to their choline positive regions. SRT median total dose was 50.4 Gy (40-50.4 Gy) in a median of 28 fractions (20-28), using a median fraction dose of 1.8 Gy (1.8-2 Gy) to a median target volume of 6.5 cm(3). (2.4-33.57 cm(3)) SRS median dose was 18.75 Gy (16.66-20 Gy) to a median target volume of 1.69 cm(3) (0.74-2.22 cm(3)). Median follow-up time was 37.5 months. Actuarial long-term progression-free and disease-specific survival probabilities were 73.3 and 91.7 %, respectively. No radiation-induced complications were observed. Stereotactic radiation therapy is a safe and effective modality to control progressive residual pilocytic astrocytomas. Better outcomes are obtained with SRT to entire tumor volumes than with SRS targeting choline positive tumor regions.


Subject(s)
Astrocytoma/surgery , Brain Neoplasms/surgery , Radiosurgery , Adolescent , Adult , Astrocytoma/mortality , Astrocytoma/pathology , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Child , Child, Preschool , Disease Progression , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Prognosis , Survival Rate , Tumor Burden , Young Adult
20.
Ann Glob Health ; 88(1): 52, 2022.
Article in English | MEDLINE | ID: mdl-35860037

ABSTRACT

Medical education has drastically transformed during the COVID-19 pandemic. Measures such as adopting telemedicine visits, minimizing the number of trainees on service, discontinuing external rotations, and converting in-person to online didactics have been broadly and swiftly implemented. While these innovations have promoted greater interconnectivity amongst institutions and made continuing medical education possible, international exchange programs in medical education are still largely disrupted. In response to the changing guidelines and restrictions necessitated by the COVID-19 pandemic, the authors used Kern's six-step approach to design and implement a virtual curriculum to replace the in-person activities of the 2020-2021 Neurology Peru-Rochester exchange program (NeuroPro). Twenty-seven trainees participated in this virtual adaptation. The average daily attendance was ≥85% and the program was rated 9/10 on average in a feedback survey (63% response rate). The median percentage of correct answers during the pre-test was 64% and it increased to 79% during the post-test (P = 0.003). Virtual adaptation of international exchange programs in medical education is feasible to safely continue international collaborative efforts to promote symbiotic building of local expertise and cross-cultural exchange during the ongoing COVID-19 pandemic and beyond.


Subject(s)
COVID-19 , Neurology , COVID-19/epidemiology , Curriculum , Education, Medical, Continuing , Humans , Neurology/education , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL