Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Brief Bioinform ; 25(1)2023 11 22.
Article in English | MEDLINE | ID: mdl-38233091

ABSTRACT

Structural variations (SVs) are commonly found in cancer genomes. They can cause gene amplification, deletion and fusion, among other functional consequences. With an average read length of hundreds of kilobases, nano-channel-based optical DNA mapping is powerful in detecting large SVs. However, existing SV calling methods are not tailored for cancer samples, which have special properties such as mixed cell types and sub-clones. Here we propose the Cancer Optical Mapping for detecting Structural Variations (COMSV) method that is specifically designed for cancer samples. It shows high sensitivity and specificity in benchmark comparisons. Applying to cancer cell lines and patient samples, COMSV identifies hundreds of novel SVs per sample.


Subject(s)
Genome, Human , Neoplasms , Humans , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics
2.
Signal Transduct Target Ther ; 9(1): 6, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38169461

ABSTRACT

Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.


Subject(s)
Biological Phenomena , Zinc , Humans , Zinc/metabolism , Homeostasis , Membrane Transport Proteins , Disease Progression
3.
Cancer Res Commun ; 4(3): 645-659, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38358347

ABSTRACT

Nasopharyngeal carcinoma (NPC), a cancer that is etiologically associated with the Epstein-Barr virus (EBV), is endemic in Southern China and Southeast Asia. The scarcity of representative NPC cell lines owing to the frequent loss of EBV episomes following prolonged propagation and compromised authenticity of previous models underscores the critical need for new EBV-positive NPC models. Herein, we describe the establishment of a new EBV-positive NPC cell line, designated NPC268 from a primary non-keratinizing, differentiated NPC tissue. NPC268 can undergo productive lytic reactivation of EBV and is highly tumorigenic in immunodeficient mice. Whole-genome sequencing revealed close similarities with the tissue of origin, including large chromosomal rearrangements, while whole-genome bisulfite sequencing and RNA sequencing demonstrated a hypomethylated genome and enrichment in immune-related pathways, respectively. Drug screening of NPC268 together with six other NPC cell lines using 339 compounds, representing the largest high-throughput drug testing in NPC, revealed biomarkers associated with specific drug classes. NPC268 represents the first and only available EBV-positive non-keratinizing differentiated NPC model, and extensive genomic, methylomic, transcriptomic, and drug response data should facilitate research in EBV and NPC, where current models are limited. SIGNIFICANCE: NPC268 is the first and only EBV-positive cell line derived from a primary non-keratinizing, differentiated nasopharyngeal carcinoma, an understudied but important subtype in Southeast Asian countries. This model adds to the limited number of authentic EBV-positive lines globally that will facilitate mechanistic studies and drug development for NPC.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Animals , Mice , Nasopharyngeal Carcinoma/genetics , Herpesvirus 4, Human/genetics , Nasopharyngeal Neoplasms/genetics , Epstein-Barr Virus Infections/complications , Cell Line, Tumor
4.
Nat Commun ; 15(1): 3729, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702330

ABSTRACT

The unique virus-cell interaction in Epstein-Barr virus (EBV)-associated malignancies implies targeting the viral latent-lytic switch is a promising therapeutic strategy. However, the lack of specific and efficient therapeutic agents to induce lytic cycle in these cancers is a major challenge facing clinical implementation. We develop a synthetic transcriptional activator that specifically activates endogenous BZLF1 and efficiently induces lytic reactivation in EBV-positive cancer cells. A lipid nanoparticle encapsulating nucleoside-modified mRNA which encodes a BZLF1-specific transcriptional activator (mTZ3-LNP) is synthesized for EBV-targeted therapy. Compared with conventional chemical inducers, mTZ3-LNP more efficiently activates EBV lytic gene expression in EBV-associated epithelial cancers. Here we show the potency and safety of treatment with mTZ3-LNP to suppress tumor growth in EBV-positive cancer models. The combination of mTZ3-LNP and ganciclovir yields highly selective cytotoxic effects of mRNA-based lytic induction therapy against EBV-positive tumor cells, indicating the potential of mRNA nanomedicine in the treatment of EBV-associated epithelial cancers.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Liposomes , Nanoparticles , Trans-Activators , Humans , Herpesvirus 4, Human/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/drug therapy , Animals , Nanoparticles/chemistry , Cell Line, Tumor , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Virus Activation/drug effects , Xenograft Model Antitumor Assays , Gene Expression Regulation, Viral/drug effects , Mice, Nude , Female
5.
Cancer Res ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39047223

ABSTRACT

The Hippo-YAP1 pathway is an evolutionally conserved signaling cascade that controls organ size and tissue regeneration. Dysregulation of Hippo-YAP1 signaling promotes initiation and progression of several types of cancer, including gastric cancer (GC). As the Hippo-YAP1 pathway regulates expression of thousands of genes, it is important to establish which target genes contribute to the oncogenic program driven by YAP1 to identify strategies to circumvent it. Here, we identified a vital role of FOXP4 in YAP1-driven gastric carcinogenesis by maintaining stemness and promoting peritoneal metastasis. Loss of FOXP4 impaired GC spheroid formation and reduced stemness marker expression, while FOXP4 upregulation potentiated cancer cell stemness. RNA-seq analysis revealed SOX12 as downstream target of FOXP4, and functional studies established that SOX12 supports stemness in YAP1-induced carcinogenesis. A small molecule screen identified 42-(2-Tetrazolyl)rapamycin as a FOXP4 inhibitor, and targeting FOXP4 suppressed GC tumor growth and enhanced the efficacy of 5-FU chemotherapy in vivo. Collectively, these findings revealed that FOXP4 upregulation by YAP1 in GC regulates stemness and tumorigenesis by upregulating SOX12. Targeting the YAP1-FOXP4-SOX12 axis represents a potential therapeutic strategy for GC.

6.
Clin Transl Med ; 13(12): e1516, 2023 12.
Article in English | MEDLINE | ID: mdl-38148640

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs), integral to the tumour microenvironment, are pivotal in cancer progression, exhibiting either pro-tumourigenic or anti-tumourigenic functions. Their inherent phenotypic and functional diversity allows for the subdivision of CAFs into various subpopulations. While several classification systems have been suggested for different cancer types, a unified molecular classification of CAFs on a single-cell pan-cancer scale has yet to be established. METHODS: We employed a comprehensive single-cell transcriptomic atlas encompassing 12 solid tumour types. Our objective was to establish a novel molecular classification and to elucidate the evolutionary trajectories of CAFs. We investigated the functional profiles of each CAF subtype using Single-Cell Regulatory Network Inference and Clustering and single-cell gene set enrichment analysis. The clinical relevance of these subtypes was assessed through survival curve analysis. Concurrently, we employed multiplex immunofluorescence staining on tumour tissues to determine the dynamic changes of CAF subtypes across different tumour stages. Additionally, we identified the small molecule procyanidin C1 (PCC1) as a target for matrix-producing CAF (matCAF) using molecular docking techniques and further validated these findings through in vitro and in vivo experiments. RESULTS: In our investigation of solid tumours, we identified four molecular clusters of CAFs: progenitor CAF (proCAF), inflammatory CAF (iCAF), myofibroblastic CAF (myCAF) and matCAF, each characterised by distinct molecular traits. This classification was consistently applicable across all nine studied solid tumour types. These CAF subtypes displayed unique evolutionary pathways, functional roles and clinical relevance in various solid tumours. Notably, the matCAF subtype was associated with poorer prognoses in several cancer types. The targeting of matCAF using the identified small molecule, PCC1, demonstrated promising antitumour activity. CONCLUSIONS: Collectively, the various subtypes of CAFs, particularly matCAF, are crucial in the initiation and progression of cancer. Focusing therapeutic strategies on targeting matCAF in solid tumours holds significant potential for cancer treatment.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Molecular Docking Simulation , Neoplasms/pathology , Gene Expression Profiling , Transcriptome/genetics , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL