Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nature ; 632(8025): 678-685, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39112703

ABSTRACT

The dopamine transporter (DAT) is crucial for regulating dopamine signalling and is the prime mediator for the rewarding and addictive effects of cocaine1. As part of the neurotransmitter sodium symporter family, DAT uses the Na+ gradient across cell membranes to transport dopamine against its chemical gradient2. The transport mechanism involves both intra- and extracellular gates that control substrate access to a central site. However, the molecular intricacies of this process and the inhibitory mechanism of cocaine have remained unclear. Here, we present the molecular structure of human DAT in complex with cocaine at a resolution of 2.66 Å. Our findings reveal that DAT adopts the expected LeuT-fold, posing in an outward-open conformation with cocaine bound at the central (S1) site. Notably, while an Na+ occupies the second Na+ site (Na2), the Na1 site seems to be vacant, with the side chain of Asn82 occupying the presumed Na+ space. This structural insight elucidates the mechanism for the cocaine inhibition of human DAT and deepens our understanding of neurotransmitter transport. By shedding light on the molecular underpinnings of how cocaine acts, our study lays a foundation for the development of targeted medications to combat addiction.


Subject(s)
Cocaine , Dopamine Plasma Membrane Transport Proteins , Humans , Binding Sites , Cocaine/metabolism , Cocaine/chemistry , Cocaine/pharmacology , Cryoelectron Microscopy , Dopamine/metabolism , Dopamine/chemistry , Dopamine Plasma Membrane Transport Proteins/chemistry , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/ultrastructure , Models, Molecular , Neurotransmitter Agents/metabolism , Protein Binding , Protein Conformation/drug effects , Sodium/chemistry , Sodium/metabolism
2.
Nature ; 632(8026): 930-937, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39085602

ABSTRACT

The noradrenaline transporter (also known as norepinephrine transporter) (NET) has a critical role in terminating noradrenergic transmission by utilizing sodium and chloride gradients to drive the reuptake of noradrenaline (also known as norepinephrine) into presynaptic neurons1-3. It is a pharmacological target for various antidepressants and analgesic drugs4,5. Despite decades of research, its structure and the molecular mechanisms underpinning noradrenaline transport, coupling to ion gradients and non-competitive inhibition remain unknown. Here we present high-resolution complex structures of NET in two fundamental conformations: in the apo state, and bound to the substrate noradrenaline, an analogue of the χ-conotoxin MrlA (χ-MrlAEM), bupropion or ziprasidone. The noradrenaline-bound structure clearly demonstrates the binding modes of noradrenaline. The coordination of Na+ and Cl- undergoes notable alterations during conformational changes. Analysis of the structure of NET bound to χ-MrlAEM provides insight into how conotoxin binds allosterically and inhibits NET. Additionally, bupropion and ziprasidone stabilize NET in its inward-facing state, but they have distinct binding pockets. These structures define the mechanisms governing neurotransmitter transport and non-competitive inhibition in NET, providing a blueprint for future drug design.


Subject(s)
Bupropion , Models, Molecular , Norepinephrine Plasma Membrane Transport Proteins , Norepinephrine , Piperazines , Humans , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Norepinephrine Plasma Membrane Transport Proteins/chemistry , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Norepinephrine/metabolism , Bupropion/metabolism , Bupropion/chemistry , Bupropion/pharmacology , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/metabolism , Allosteric Regulation/drug effects , Binding Sites , Biological Transport , Sodium/metabolism , Protein Conformation , Protein Binding , Thiazoles
3.
Bioconjug Chem ; 35(2): 223-231, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38215010

ABSTRACT

Membrane protein structures are essential for the molecular understanding of diverse cellular processes and drug discovery. Detergents are not only widely used to extract membrane proteins from membranes but also utilized to preserve native protein structures in aqueous solution. However, micelles formed by conventional detergents are suboptimal for membrane protein stabilization, necessitating the development of novel amphiphilic molecules with enhanced protein stabilization efficacy. In this study, we prepared two sets of tandem malonate-derived glucoside (TMG) variants, both of which were designed to increase the alkyl chain density in micelle interiors. The alkyl chain density was modulated either by reducing the spacer length (TMG-Ms) or by introducing an additional alkyl chain between the two alkyl chains of the original TMGs (TMG-Ps). When evaluated with a few membrane proteins including a G protein-coupled receptor, TMG-P10,8 was found to be substantially more efficient at extracting membrane proteins and also effective at preserving protein integrity in the long term compared to the previously described TMG-A13. This result reveals that inserting an additional alkyl chain between the two existing alkyl chains is an effective way to optimize detergent properties for membrane protein study. This new biochemical tool and the design principle described have the potential to facilitate membrane protein structure determination.


Subject(s)
Detergents , Membrane Proteins , Membrane Proteins/metabolism , Detergents/chemistry , Micelles
4.
Elife ; 122024 Jan 25.
Article in English | MEDLINE | ID: mdl-38271216

ABSTRACT

The neurotransmitter:sodium symporters (NSSs) are secondary active transporters that couple the reuptake of substrate to the symport of one or two sodium ions. One bound Na+ (Na1) contributes to the substrate binding, while the other Na+ (Na2) is thought to be involved in the conformational transition of the NSS. Two NSS members, the serotonin transporter (SERT) and the Drosophila dopamine transporter (dDAT), also couple substrate uptake to the antiport of K+ by a largely undefined mechanism. We have previously shown that the bacterial NSS homologue, LeuT, also binds K+, and could therefore serve as a model protein for the exploration of K+ binding in NSS proteins. Here, we characterize the impact of K+ on substrate affinity and transport as well as on LeuT conformational equilibrium states. Both radioligand binding assays and transition metal ion FRET (tmFRET) yielded similar K+ affinities for LeuT. K+ binding was specific and saturable. LeuT reconstituted into proteoliposomes showed that intra-vesicular K+ dose-dependently increased the transport velocity of [3H]alanine, whereas extra-vesicular K+ had no apparent effect. K+ binding induced a LeuT conformation distinct from the Na+- and substrate-bound conformation. Conservative mutations of the Na1 site residues affected the binding of Na+ and K+ to different degrees. The Na1 site mutation N27Q caused a >10-fold decrease in K+ affinity but at the same time a ~3-fold increase in Na+ affinity. Together, the results suggest that K+ binding to LeuT modulates substrate transport and that the K+ affinity and selectivity for LeuT is sensitive to mutations in the Na1 site, pointing toward the Na1 site as a candidate site for facilitating the interaction with K+ in some NSSs.


Subject(s)
Sodium , Symporters , Sodium/metabolism , Plasma Membrane Neurotransmitter Transport Proteins/metabolism , Symporters/metabolism , Binding Sites , Neurotransmitter Agents
5.
ACS Pharmacol Transl Sci ; 7(2): 515-532, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38357284

ABSTRACT

Currently, there are no FDA-approved medications for the treatment of psychostimulant use disorders (PSUD). We have previously discovered "atypical" dopamine transporter (DAT) inhibitors that do not display psychostimulant-like behaviors and may be useful as medications to treat PSUD. Lead candidates (e.g., JJC8-091, 1) have shown promising in vivo profiles in rodents; however, reducing hERG (human ether-à-go-go-related gene) activity, a predictor of cardiotoxicity, has remained a challenge. Herein, a series of 30 (([1,1'-biphenyl]-2-yl)methyl)sulfinylalkyl alicyclic amines was synthesized and evaluated for DAT and serotonin transporter (SERT) binding affinities. A subset of analogues was tested for hERG activity, and the IC50 values were compared to those predicted by our hERG QSAR models, which showed robust predictive power. Multiparameter optimization scores (MPO > 3) indicated central nervous system (CNS) penetrability. Finally, comparison of affinities in human DAT and its Y156F and Y335A mutants suggested that several compounds prefer an inward facing conformation indicating an atypical DAT inhibitor profile.

6.
J Med Chem ; 67(1): 709-727, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38117239

ABSTRACT

Atypical dopamine transporter (DAT) inhibitors have shown therapeutic potential in the preclinical models of psychostimulant use disorders (PSUD). In rats, 1-(4-(2-((bis(4-fluorophenyl)methyl)sulfinyl)ethyl)-piperazin-1-yl)-propan-2-ol (JJC8-091, 3b) was effective in reducing the reinforcing effects of both cocaine and methamphetamine but did not exhibit psychostimulant behaviors itself. Improvements in DAT affinity and metabolic stability were desirable for discovering pipeline drug candidates. Thus, a series of 1-(4-(2-bis(4-fluorophenyl)methyl)sulfinyl)alkyl alicyclic amines were synthesized and evaluated for binding affinities at DAT and the serotonin transporter (SERT). Replacement of the piperazine with either a homopiperazine or a piperidine ring system was well tolerated at DAT (Ki range = 3-382 nM). However, only the piperidine analogues (20a-d) showed improved metabolic stability in rat liver microsomes as compared to the previously reported analogues. Compounds 12b and 20a appeared to retain an atypical DAT inhibitor profile, based on negligible locomotor activity in mice and molecular modeling that predicts binding to an inward-facing conformation of DAT.


Subject(s)
Central Nervous System Stimulants , Cocaine , Rats , Mice , Animals , Dopamine Plasma Membrane Transport Proteins , Amines/pharmacology , Structure-Activity Relationship , Serotonin Plasma Membrane Transport Proteins/metabolism , Central Nervous System Stimulants/pharmacology , Piperidines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL