Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Blood ; 143(19): 1992-2004, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38290109

ABSTRACT

ABSTRACT: Activation of von Willebrand factor (VWF) is a tightly controlled process governed primarily by local elements around its A1 domain. Recent studies suggest that the O-glycosylated sequences flanking the A1 domain constitute a discontinuous and force-sensitive autoinhibitory module (AIM), although its extent and conformation remains controversial. Here, we used a targeted screening strategy to identify 2 groups of nanobodies. One group, represented by clone 6D12, is conformation insensitive and binds the N-terminal AIM (NAIM) sequence that is distal from A1; 6D12 activates human VWF and induces aggregation of platelet-rich plasma at submicromolar concentrations. The other group, represented by clones Nd4 and Nd6, is conformation sensitive and targets the C-terminal AIM (CAIM). Nd4 and Nd6 inhibit ristocetin-induced platelet aggregation and reduce VWF-mediated platelet adhesion under flow. A crystal structure of Nd6 in complex with AIM-A1 shows a novel conformation of both CAIM and NAIM that are primed to interact, providing a model of steric hindrance stabilized by the AIM as the mechanism for regulating GPIbα binding to VWF. Hydrogen-deuterium exchange mass spectrometry analysis shows that binding of 6D12 induces the exposure of the GPIbα-binding site in the A1 domain, but binding of inhibitory nanobodies reduces it. Overall, these results suggest that the distal portion of NAIM is involved in specific interactions with CAIM, and binding of nanobodies to the AIM could either disrupt its conformation to activate VWF or stabilize its conformation to upkeep VWF autoinhibition. These reported nanobodies could facilitate future studies of VWF functions and related pathologies.


Subject(s)
Single-Domain Antibodies , von Willebrand Factor , von Willebrand Factor/metabolism , von Willebrand Factor/chemistry , Humans , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism , Platelet Aggregation/drug effects , Protein Conformation , Protein Domains , Protein Binding , Platelet Adhesiveness/drug effects , Crystallography, X-Ray , Animals , Blood Platelets/metabolism
2.
Blood ; 141(10): 1221-1232, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36580664

ABSTRACT

Type 2B von Willebrand disease (VWD) is an inherited bleeding disorder in which a subset of point mutations in the von Willebrand factor (VWF) A1 domain and recently identified autoinhibitory module (AIM) cause spontaneous binding to glycoprotein Ibα (GPIbα) on the platelet surface. All reported type 2B VWD mutations share this enhanced binding; however, type 2B VWD manifests as variable bleeding complications and platelet levels in patients, depending on the underlying mutation. Understanding how these mutations localizing to a similar region can result in such disparate patient outcomes is essential for detailing our understanding of VWF regulatory and activation mechanisms. In this study, we produced recombinant glycosylated AIM-A1 fragments bearing type 2B VWD mutations and examined how each mutation affects the A1 domain's thermodynamic stability, conformational dynamics, and biomechanical regulation of the AIM. We found that the A1 domain with mutations associated with severe bleeding occupy a higher affinity state correlating with enhanced flexibility in the secondary GPIbα-binding sites. Conversely, mutation P1266L, associated with normal platelet levels, has similar proportions of high-affinity molecules to wild-type (WT) but shares regions of solvent accessibility with both WT and other type 2B VWD mutations. V1316M exhibited exceptional instability and solvent exposure compared with all variants. Lastly, examination of the mechanical stability of each variant revealed variable AIM unfolding. Together, these studies illustrate that the heterogeneity among type 2B VWD mutations is evident in AIM-A1 fragments.


Subject(s)
von Willebrand Disease, Type 2 , von Willebrand Factor , Humans , Binding Sites , Blood Platelets/metabolism , Mutation , Platelet Glycoprotein GPIb-IX Complex/metabolism , von Willebrand Disease, Type 2/genetics , von Willebrand Factor/chemistry , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
3.
Blood ; 142(2): 197-201, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37192299

ABSTRACT

The development of pathogenic antibody inhibitors against coagulation factor VIII (FVIII) occurs in ∼30% of patients with congenital hemophilia A receiving FVIII replacement therapy, as well as in all cases of acquired hemophilia A. KM33 is an anti-C1 domain antibody inhibitor previously isolated from a patient with severe hemophilia A. In addition to potently blocking FVIII binding to von Willebrand factor and phospholipid surfaces, KM33 disrupts FVIII binding to lipoprotein receptor-related protein 1 (LRP1), which drives FVIII hepatic clearance and antigen presentation in dendritic cells. Here, we report on the structure of FVIII bound to NB33, a recombinant derivative of KM33, via single-particle cryo-electron microscopy. Structural analysis revealed that the NB33 epitope localizes to the FVIII residues R2090-S2094 and I2158-R2159, which constitute membrane-binding loops in the C1 domain. Further analysis revealed that multiple FVIII lysine and arginine residues, previously shown to mediate binding to LRP1, dock onto an acidic cleft at the NB33 variable domain interface, thus blocking a putative LRP1 binding site. Together, these results demonstrate a novel mechanism of FVIII inhibition by a patient-derived antibody inhibitor and provide structural evidence for engineering FVIII with reduced LRP1-mediated clearance.


Subject(s)
Hemophilia A , Hemostatics , Humans , Factor VIII/metabolism , Cryoelectron Microscopy , Protein Domains , von Willebrand Factor/metabolism
4.
Blood ; 139(9): 1312-1317, 2022 03 03.
Article in English | MEDLINE | ID: mdl-34019619

ABSTRACT

Recombinant factor VIII (FVIII) products represent a life-saving intervention for patients with hemophilia A. However, patients can develop antibodies against FVIII that prevent its function and directly increase morbidity and mortality. The development of anti-FVIII antibodies varies depending on the type of recombinant product used, with previous studies suggesting that second-generation baby hamster kidney (BHK)-derived FVIII products display greater immunogenicity than do third-generation Chinese hamster ovary (CHO)-derived FVIII products. However, the underlying mechanisms responsible for these differences remain incompletely understood. Our results demonstrate that BHK cells express higher levels of the nonhuman carbohydrate α1-3 galactose (αGal) than do CHO cells, suggesting that αGal incorporation onto FVIII may result in anti-αGal antibody recognition that could positively influence the development of anti-FVIII antibodies. Consistent with this, BHK-derived FVIII exhibits increased levels of αGal, which corresponds to increased reactivity with anti-αGal antibodies. Infusion of BHK-derived, but not CHO-derived, FVIII into αGal-knockout mice, which spontaneously generate anti-αGal antibodies, results in significantly higher anti-FVIII antibody formation, suggesting that the increased levels of αGal on BHK-derived FVIII can influence immunogenicity. These results suggest that posttranslational modifications of recombinant FVIII products with nonhuman carbohydrates may influence the development of anti-FVIII antibodies.


Subject(s)
Antibodies , Antibody Formation , Blood Coagulation Factor Inhibitors , Factor VIII , Polysaccharides , Protein Processing, Post-Translational/immunology , Animals , Antibodies/genetics , Antibodies/immunology , Blood Coagulation Factor Inhibitors/genetics , Blood Coagulation Factor Inhibitors/immunology , CHO Cells , Cricetinae , Cricetulus , Factor VIII/immunology , Factor VIII/pharmacology , Hemophilia A/genetics , Hemophilia A/immunology , Mice , Mice, Knockout , Polysaccharides/genetics , Polysaccharides/immunology , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology
5.
Blood ; 137(21): 2981-2986, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33529335

ABSTRACT

Antibody inhibitor development in hemophilia A represents the most significant complication resulting from factor VIII (fVIII) replacement therapy. Recent studies have demonstrated that epitopes present in the C1 domain contribute to a pathogenic inhibitor response. In this study, we report the structure of a group A anti-C1 domain inhibitor, termed 2A9, in complex with a B domain-deleted, bioengineered fVIII construct (ET3i). The 2A9 epitope forms direct contacts to the C1 domain at 3 different surface loops consisting of Lys2065-Trp2070, Arg2150-Tyr2156, and Lys2110-Trp2112. Additional contacts are observed between 2A9 and the A3 domain, including the Phe1743-Tyr1748 loop and the N-linked glycosylation at Asn1810. Most of the C1 domain loops in the 2A9 epitope also represent a putative interface between fVIII and von Willebrand factor. Lastly, the C2 domain in the ET3i:2A9 complex adopts a large, novel conformational change, translocating outward from the structure of fVIII by 20 Å. This study reports the first structure of an anti-C1 domain antibody inhibitor and the first fVIII:inhibitor complex with a therapeutically active fVIII construct. Further structural understanding of fVIII immunogenicity may result in the development of more effective and safe fVIII replacement therapies.


Subject(s)
Antibodies, Monoclonal/chemistry , Antigen-Antibody Complex/chemistry , Factor VIII/chemistry , Recombinant Fusion Proteins/chemistry , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Crystallography, X-Ray , Epitopes/chemistry , Epitopes/immunology , Factor VIII/genetics , Factor VIII/immunology , Factor VIII/metabolism , Hemophilia A/genetics , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/metabolism , Mice , Models, Molecular , Protein Conformation , Protein Domains/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , Swine
6.
J Biol Chem ; 296: 100420, 2021.
Article in English | MEDLINE | ID: mdl-33600794

ABSTRACT

Von Willebrand factor (VWF) is a plasma glycoprotein that circulates noncovalently bound to blood coagulation factor VIII (fVIII). VWF is a population of multimers composed of a variable number of ∼280 kDa monomers that is activated in shear flow to bind collagen and platelet glycoprotein Ibα. Electron microscopy, atomic force microscopy, small-angle neutron scattering, and theoretical studies have produced a model in which the conformation of VWF under static conditions is a compact, globular "ball-of-yarn," implying strong, attractive forces between monomers. We performed sedimentation velocity (SV) analytical ultracentrifugation measurements on unfractionated VWF/fVIII complexes. There was a 20% per mg/ml decrease in the weight-average sedimentation coefficient, sw, in contrast to the ∼1% per mg/ml decrease observed for compact globular proteins. SV and dynamic light scattering measurements were performed on VWF/fVIII complexes fractionated by size-exclusion chromatography to obtain sw values and z-average diffusion coefficients, Dz. Molecular weights estimated using these values in the Svedberg equation ranged from 1.7 to 4.1 MDa. Frictional ratios calculated from Dz and molecular weights ranged from 2.9 to 3.4, in contrast to values of 1.1-1.3 observed for globular proteins. The Mark-Houwink-Kuhn-Sakurada scaling relationships between sw, Dz and molecular weight, [Formula: see text] and [Formula: see text] , yielded estimates of 0.51 and -0.49 for as and aD, respectively, consistent with a random coil, in contrast to the as value of 0.65 observed for globular proteins. These results indicate that interactions between monomers are weak or nonexistent and that activation of VWF is intramonomeric.


Subject(s)
Factor VIII/metabolism , von Willebrand Factor/metabolism , Blood Platelets/metabolism , Collagen , Drug Combinations , Factor VIII/isolation & purification , Factor VIII/pharmacology , Factor VIII/physiology , Humans , Molecular Conformation , Molecular Weight , Plasma/chemistry , Scattering, Small Angle , Ultracentrifugation , von Willebrand Factor/isolation & purification , von Willebrand Factor/pharmacology , von Willebrand Factor/physiology
7.
Mol Microbiol ; 111(6): 1449-1462, 2019 06.
Article in English | MEDLINE | ID: mdl-30793388

ABSTRACT

Bacterial toxin-antitoxin systems are important factors implicated in growth inhibition and plasmid maintenance. Type II toxin-antitoxin pairs are regulated at the transcriptional level by the antitoxin itself. Here, we examined how the HigA antitoxin regulates the expression of the Proteus vulgaris higBA toxin-antitoxin operon from the Rts1 plasmid. The HigBA complex adopts a unique architecture suggesting differences in its regulation as compared to classical type II toxin-antitoxin systems. We find that the C-terminus of the HigA antitoxin is required for dimerization and transcriptional repression. Further, the HigA structure reveals that the C terminus is ordered and does not transition between disorder-to-order states upon toxin binding. HigA residue Arg40 recognizes a TpG dinucleotide in higO2, an evolutionary conserved mode of recognition among prokaryotic and eukaryotic transcription factors. Comparison of the HigBA and HigA-higO2 structures reveals the distance between helix-turn-helix motifs of each HigA monomer increases by ~4 Å in order to bind to higO2. Consistent with these data, HigBA binding to each operator is twofold less tight than HigA alone. Together, these data show the HigB toxin does not act as a co-repressor suggesting potential novel regulation in this toxin-antitoxin system.


Subject(s)
Bacterial Proteins/chemistry , Gene Expression Regulation, Bacterial , Proteus vulgaris/genetics , Repressor Proteins/chemistry , Bacterial Proteins/genetics , Operon , Promoter Regions, Genetic , Protein Multimerization , Proteus vulgaris/chemistry , Repressor Proteins/genetics , Toxin-Antitoxin Systems
8.
Blood ; 130(23): 2559-2568, 2017 12 07.
Article in English | MEDLINE | ID: mdl-28978569

ABSTRACT

Although factor VIII (FVIII) replacement therapy can be lifesaving for patients with hemophilia A, neutralizing alloantibodies to FVIII, known as inhibitors, develop in a significant number of patients and actively block FVIII activity, making bleeding difficult to control and prevent. Although a variety of downstream immune factors likely regulate inhibitor formation, the identification and subsequent targeting of key initiators in inhibitor development may provide an attractive approach to prevent inhibitor formation before amplification of the FVIII immune response occurs. As the initial steps in FVIII inhibitor development remain incompletely understood, we sought to define early regulators of FVIII inhibitor formation. Our results demonstrate that FVIII localizes in the marginal sinus of the spleen of FVIII-deficient mice shortly after injection, with significant colocalization with marginal zone (MZ) B cells. FVIII not only colocalizes with MZ B cells, but specific removal of MZ B cells also completely prevented inhibitor development following FVIII infusion. Subsequent rechallenge with FVIII following MZ B-cell reconstitution resulted in a primary antibody response, demonstrating that MZ B-cell depletion did not result in FVIII tolerance. Although recipient exposure to the viral-like adjuvant polyinosinic:polycytidylic acid enhanced anti-FVIII antibody formation, MZ B-cell depletion continued to display similar effectiveness in preventing inhibitor formation following FVIII infusion in this inflammatory setting. These data strongly suggest that MZ B cells play a critical role in initiating FVIII inhibitor formation and suggest a potential strategy to prevent anti-FVIII alloantibody formation in patients with hemophilia A.


Subject(s)
B-Lymphocytes/immunology , Factor VIII/immunology , Hemophilia A/blood , Hemophilia A/immunology , Isoantibodies/blood , Isoantibodies/immunology , Animals , B-Lymphocytes/metabolism , Disease Models, Animal , Factor VIII/genetics , Factor VIII/metabolism , Female , Hemophilia A/genetics , Lymphocyte Depletion , Male , Mice , Mice, Knockout , Protein Transport , Spleen/immunology , Spleen/metabolism
9.
Blood ; 130(6): 808-816, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28507083

ABSTRACT

Several studies showed that neutralizing anti-factor VIII (anti-fVIII) antibodies (inhibitors) in patients with acquired hemophilia A (AHA) and congenital hemophilia A (HA) are primarily directed to the A2 and C2 domains. In this study, the frequency and epitope specificity of anti-C1 antibodies were analyzed in acquired and congenital hemophilia inhibitor patients (n = 178). The domain specificity of antibodies was studied by homolog-scanning mutagenesis (HSM) with single human domain human/porcine fVIII proteins and antibody binding to human A2, C1, and C2 domains presented as human serum albumin (HSA) fusion proteins. The analysis with HSA-fVIII domain proteins confirmed the results of the HSM approach but resulted in higher detection levels. The higher detection levels with HSA-fVIII domain proteins are a result of antibody cross-reactivity with human and porcine fVIII leading to false-negative HSM results. Overall, A2-, C1-, and C2-specific antibodies were detected in 23%, 78%, and 68% of patients with AHA (n = 115) and in 52%, 57%, and 81% of HA inhibitor patients (n = 63). Competitive binding of the human monoclonal antibody (mAb) LE2E9 revealed overlapping epitopes with murine C1-specific group A mAbs including 2A9. Mutational analyses identified distinct crucial binding residues for LE2E9 (E2066) and 2A9 (F2068) that are also recognized by anti-C1 antibodies present in patients with hemophilia. A strong contribution of LE2E9- and 2A9-like antibodies was particularly observed in patients with AHA. Overall, our study demonstrates that the C1 domain, in addition to the A2 and C2 domains, contributes significantly to the humoral anti-fVIII immune response in acquired and congenital hemophilia inhibitor patients.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Factor VIII/immunology , Hemophilia A/immunology , Immunoglobulin G/immunology , Animals , Epitope Mapping , Factor VIII/chemistry , Humans , Mice , Protein Domains , Swine
10.
Blood ; 128(16): 2055-2067, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27381905

ABSTRACT

Inhibitor formation in hemophilia A is the most feared treatment-related complication of factor VIII (fVIII) therapy. Most inhibitor patients with hemophilia A develop antibodies against the fVIII A2 and C2 domains. Recent evidence demonstrates that the C1 domain contributes to the inhibitor response. Inhibitory anti-C1 monoclonal antibodies (mAbs) have been identified that bind to putative phospholipid and von Willebrand factor (VWF) binding epitopes and block endocytosis of fVIII by antigen presenting cells. We now demonstrate by competitive enzyme-linked immunosorbent assay and hydrogen-deuterium exchange mass spectrometry that 7 of 9 anti-human C1 mAbs tested recognize an epitope distinct from the C1 phospholipid binding site. These mAbs, designated group A, display high binding affinities for fVIII, weakly inhibit fVIII procoagulant activity, poorly inhibit fVIII binding to phospholipid, and exhibit heterogeneity with respect to blocking fVIII binding to VWF. Another mAb, designated group B, inhibits fVIII procoagulant activity, fVIII binding to VWF and phospholipid, fVIIIa incorporation into the intrinsic Xase complex, thrombin generation in plasma, and fVIII uptake by dendritic cells. Group A and B epitopes are distinct from the epitope recognized by the canonical, human-derived inhibitory anti-C1 mAb, KM33, whose epitope overlaps both groups A and B. Antibodies recognizing group A and B epitopes are present in inhibitor plasmas from patients with hemophilia A. Additionally, group A and B mAbs increase fVIII clearance and are pathogenic in a hemophilia A mouse tail snip bleeding model. Group A anti-C1 mAbs represent the first identification of pathogenic, weakly inhibitory antibodies that increase fVIII clearance.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/immunology , Blood Coagulation Factor Inhibitors/immunology , Dendritic Cells/immunology , Epitopes/immunology , Factor VIII , Hemophilia A/immunology , Animals , Antibody Affinity , Binding Sites, Antibody , Dendritic Cells/pathology , Disease Models, Animal , Factor VIII/antagonists & inhibitors , Factor VIII/immunology , Hemophilia A/pathology , Humans , Mice , Protein Domains , von Willebrand Factor/immunology
11.
Blood ; 123(17): 2732-9, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24591205

ABSTRACT

Neutralizing anti-factor VIII (FVIII) antibodies that develop in patients with hemophilia A and in murine hemophilia A models, clinically termed "inhibitors," bind to several distinct surfaces on the FVIII-C2 domain. To map these epitopes at high resolution, 60 recombinant FVIII-C2 proteins were generated, each having a single surface-exposed residue mutated to alanine or a conservative substitution. The binding kinetics of these muteins to 11 monoclonal, inhibitory anti-FVIII-C2 antibodies were evaluated by surface plasmon resonance and the results compared with those obtained for wild-type FVIII-C2. Clusters of residues with significantly altered binding kinetics identified "functional" B-cell epitopes, defined as those residues contributing appreciable antigen-antibody avidity. These antibodies were previously shown to neutralize FVIII activity by interfering with proteolytic activation of FVIII by thrombin or factor Xa, or with its binding to phospholipid surfaces, von Willebrand factor, or other components of the intrinsic tenase complex. Fine mapping of epitopes by surface plasmon resonance also indicated surfaces through which FVIII interacts with proteins and phospholipids as it participates in coagulation. Mutations that significantly altered the dissociation times/half-lives identified functionally important interactions within antigen-antibody interfaces and suggested specific sequence modifications to generate novel, less antigenic FVIII proteins with possible therapeutic potential for treatment of inhibitor patients.


Subject(s)
Epitope Mapping , Factor VIII/chemistry , Point Mutation , Surface Plasmon Resonance , Alanine/chemistry , Amino Acids/chemistry , Animals , Antibodies, Monoclonal/chemistry , Antigens/chemistry , Blood Coagulation , Crystallography, X-Ray , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Epitopes, B-Lymphocyte/chemistry , Humans , Mice , Mutagenesis , Mutation , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Swine
12.
Blood ; 121(14): 2785-95, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23349389

ABSTRACT

Approximately 30% of patients with severe hemophilia A develop inhibitory anti-factor VIII (fVIII) antibodies (Abs). We characterized 29 anti-human A2 monoclonal Abs (mAbs) produced in a murine hemophilia A model. A basis set of nonoverlapping mAbs was defined by competition enzyme-linked immunosorbent assay, producing 5 major groups. The overlapping epitopes covered nearly the entire A2 surface when mapped by homolog-scanning mutagenesis. Most group A mAbs recognized a previously described epitope bounded by Arg484-Ile508 in the N-terminal A2 subdomain, resulting in binding to activated fVIII and noncompetitive inhibition of the intrinsic fXase complex. Group B and C mAbs displayed little or no inhibitory activity. Group D and E mAbs recognized epitopes in the C-terminal A2 subdomain. A subset of group D mAbs inhibited the activation of fVIII by interfering with thrombin-catalyzed cleavage at Arg372 at the A1-A2 domain junction. Other group D mAbs displayed indeterminate or no inhibitory activity despite inhibiting cleavage at Arg740 at the A2-B domain junction. Group E mAbs inhibited fVIII light-chain cleavage at Arg1689. Inhibition of cleavages at Arg372 and Arg1689 represent novel mechanisms of inhibitor function and, along with the extensive epitope spectrum identified in this study, reveal hitherto unrecognized complexity in the immune response to fVIII.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody Specificity/immunology , Epitope Mapping , Factor VIII/immunology , Hemophilia A/immunology , Animals , Antibodies, Monoclonal/pharmacology , Cross Reactions/immunology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Epitopes/immunology , Factor VIII/chemistry , Factor VIII/genetics , Hemophilia A/drug therapy , Humans , Mice , Mutagenesis, Site-Directed , Protein Structure, Tertiary , Swine , Thrombin/immunology , Thrombin/metabolism
13.
Blood ; 122(26): 4270-8, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24085769

ABSTRACT

The factor VIII C2 domain is a highly immunogenic domain, whereby inhibitory antibodies develop following factor VIII replacement therapy for congenital hemophilia A patients. Inhibitory antibodies also arise spontaneously in cases of acquired hemophilia A. The structural basis for molecular recognition by 2 classes of anti-C2 inhibitory antibodies that bind to factor VIII simultaneously was investigated by x-ray crystallography. The C2 domain/3E6 FAB/G99 FAB ternary complex illustrates that each antibody recognizes epitopes on opposing faces of the factor VIII C2 domain. The 3E6 epitope forms direct contacts to the C2 domain at 2 loops consisting of Glu2181-Ala2188 and Thr2202-Arg2215, whereas the G99 epitope centers on Lys2227 and also makes direct contacts with loops Gln2222-Trp2229, Leu2261-Ser2263, His2269-Val2282, and Arg2307-Gln2311. Each binding interface is highly electrostatic, with positive charge present on both C2 epitopes and complementary negative charge on each antibody. A new model of membrane association is also presented, where the 3E6 epitope faces the negatively charged membrane surface and Arg2320 is poised at the center of the binding interface. These results illustrate the potential complexities of the polyclonal anti-factor VIII immune response and further define the "classical" and "nonclassical" types of antibody inhibitors against the factor VIII C2 domain.


Subject(s)
Antibodies/chemistry , Epitopes/chemistry , Factor VIII/chemistry , Hemophilia A/blood , Ternary Complex Factors/chemistry , Antibodies/immunology , Crystallography, X-Ray , Electrochemistry , Epitopes/immunology , Factor VIII/immunology , Hemophilia A/immunology , Humans , Protein Structure, Quaternary , Protein Structure, Tertiary , Ternary Complex Factors/immunology
14.
J Biol Chem ; 288(14): 9905-9914, 2013 Apr 05.
Article in English | MEDLINE | ID: mdl-23417672

ABSTRACT

The most significant complication for patients with severe cases of congenital or acquired hemophilia A is the development of inhibitor antibodies against coagulation factor VIII (fVIII). The C2 domain of fVIII is a significant antigenic target of anti-fVIII antibodies. Here, we have utilized small angle x-ray scattering (SAXS) and biochemical techniques to characterize interactions between two different classes of anti-C2 domain inhibitor antibodies and the isolated C2 domain. Multiple assays indicated that antibodies 3E6 and G99 bind independently to the fVIII C2 domain and can form a stable ternary complex. SAXS-derived numerical estimates of dimensional parameters for all studied complexes agree with the proportions of the constituent proteins. Ab initio modeling of the SAXS data results in a long kinked structure of the ternary complex, showing an angle centered at the C2 domain of ∼130°. Guided by biochemical data, rigid body modeling of subunits into the molecular envelope of the ternary complex suggests that antibody 3E6 recognizes a C2 domain epitope consisting of the Arg(2209)-Ser(2216) and Leu(2178)-Asp(2187) loops. In contrast, antibody G99 recognizes the C2 domain primarily through the Pro(2221)-Trp(2229) loop. These two epitopes are on opposing sides of the fVIII C2 domain, are consistent with the solvent accessibility in the context of the entire fVIII molecule, and provide further structural detail regarding the pathogenic immune response to fVIII.


Subject(s)
Factor VIII/chemistry , Blood Coagulation Factors/chemistry , Chromatography/methods , Enzyme-Linked Immunosorbent Assay/methods , Epitopes/chemistry , Factor VIII/metabolism , Hemophilia A/immunology , Humans , Immunoglobulin Fab Fragments/chemistry , Mutation , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Scattering, Small Angle , Solvents/chemistry
15.
J Mol Recognit ; 27(2): 73-81, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24436124

ABSTRACT

The objective of this investigation is to engender greater confidence in the validity of binding equations derived for multivalent ligands on the basis of reacted-site probability theory. To that end, a demonstration of the theoretical interconnection between expressions derived by the classical stepwise equilibria and reacted-site probability approaches for univalent ligands is followed by the use of the traditional stepwise procedure to derive binding equations for bivalent and trivalent ligands. As well as demonstrating the unwieldy nature of the classical binding equation for multivalent ligand systems, that exercise has allowed numerical simulation to be used to illustrate the equivalence of binding curves generated by the two approaches. The advantages of employing a redefined binding function for multivalent ligands are also confirmed by subjecting the simulated results to a published analytical procedure that has long been overlooked.


Subject(s)
Antigen-Antibody Reactions/immunology , Ligands , Proteins/chemistry , Kinetics , Models, Biological , Protein Binding/immunology , Proteins/immunology
16.
Blood ; 120(12): 2512-20, 2012 Sep 20.
Article in English | MEDLINE | ID: mdl-22855607

ABSTRACT

A main complication of treatment of patients with hemophilia A is the development of anti-factor VIII (fVIII) antibodies. The immunogenicity of fVIII potentially is a function of its procoagulant activity, which may result in danger signals that drive the immune response. Alternatively, intrinsic structural elements in fVIII may be particularly immunogenic. Finally, VWF, the carrier protein for fVIII in plasma, may play a role in immune recognition. We compared the immunogenicity of wild-type (wt) B domain-deleted fVIII and 2 inactive fVIII molecules, R372A/R1689A fVIII and V634M fVIII in fVIII(-/-) and fVIII(-/-)/VWF(-/-) mice. R372A/R1689A fVIII lacks proteolytic recognition sites and is not released from VWF. In contrast, V634M fVIII undergoes proteolytic cleavage and dissociation from VWF. No significant difference was observed in the immunogenicity of wt fVIII and V634M fVIII. R372A/R1689A fVIII was slightly less immunogenic in a subset of immunization regimens tested. High doses of wt fVIII were required to produce an immune response in fVIII(-/-)/VWF(-/-) mice. Our results indicate that a main component of the immune response to fVIII is independent of its procoagulant function, is both positively and negatively affected by its association with VWF, and may involve intrinsic elements of fVIII structure.


Subject(s)
Blood Coagulation/immunology , Factor VIII/immunology , Factor VIII/physiology , Hemophilia A/immunology , von Willebrand Factor/immunology , Animals , Antibody Formation , Enzyme-Linked Immunosorbent Assay , Factor Xa/metabolism , Hemophilia A/pathology , Mice , Mice, Knockout , Models, Animal , Mutant Proteins/genetics , Mutant Proteins/immunology , Mutant Proteins/metabolism , Mutation/genetics , Platelet Activation , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Thrombin/metabolism , von Willebrand Factor/metabolism
17.
J Thromb Haemost ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38849084

ABSTRACT

BACKGROUND: Hemophilia A arises from dysfunctional or deficient coagulation factor (F)VIII and leads to inefficient fibrin clot formation and uncontrolled bleeding events. The development of antibody inhibitors is a clinical complication in hemophilia A patients receiving FVIII replacement therapy. LE2E9 is an anti-C1 domain inhibitor previously isolated from a mild/moderate hemophilia A patient and disrupts FVIII interactions with von Willebrand factor and FIXa, though the intermolecular contacts that underpin LE2E9-mediated FVIII neutralization are undefined. OBJECTIVES: To determine the structure of the complex between FVIII and LE2E9 and characterize its mechanism of inhibition. METHODS: FVIII was bound to the antigen binding fragment (Fab) of NB2E9, a recombinant construct of LE2E9, and its structure was determined by cryogenic electron microscopy. RESULTS: This report communicates the 3.46 Å structure of FVIII bound to NB2E9, with its epitope comprising FVIII residues S2040 to Y2043, K2065 to W2070, and R2150 to H2155. Structural analysis reveals that the LE2E9 epitope overlaps with portions of the epitope for 2A9, a murine-derived inhibitor, suggesting that these residues represent a shared antigenic region on the C1 domain between FVIII-/- mice and hemophilia A patients. Furthermore, the FVIII:NB2E9 structure elucidates the orientation of the LE2E9 glycan, illustrating how the glycan sterically blocks interactions between the FVIII C1 domain and the von Willebrand factor D' domain. A putative model of the FVIIIa:FIXa complex suggests potential clashing between the NB2E9 glycan and FIXa light chain. CONCLUSION: These results describe an antigenic "hotspot" on the FVIII C1 domain and provide a structural basis for engineering FVIII replacement therapeutics with reduced antigenicity.

18.
J Thromb Haemost ; 22(7): 2052-2058, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704122

ABSTRACT

BACKGROUND: The activity of von Willebrand factor (VWF) in facilitating platelet adhesion and aggregation correlates with its multimer size. Traditional ristocetin-dependent functional assays lack sensitivity to multimer sizes. Recently, nanobodies targeting the autoinhibitory module and activating VWF were identified. OBJECTIVES: To develop an assay that can differentiate the platelet-binding activity of VWF multimers. METHODS: A novel enzyme-linked immunosorbent assay (nanobody-triggered glycoprotein Ib binding assay [VWF:GPIbNab]) utilizing a VWF-activating nanobody was developed. Recombinant VWF, plasma-derived VWF (pdVWF), and selected gel-filtrated fractions of pdVWF were evaluated for VWF antigen and activity levels. A linear regression model was developed to estimate the specific activity of VWF multimers. RESULTS: Of the 3 activating nanobodies tested, 6C11 with the lowest activation effect exhibited the highest sensitivity for high-molecular-weight multimers (HMWMs) of VWF. VWF:GPIbNab utilizing 6C11 (VWF:GPIbNab6C11) produced significantly higher activity/antigen ratios for recombinant VWF (>2.0) and HMWM-enriched pdVWF fractions (>2.0) than for pdVWF (∼1.0) or fractions enriched with shorter multimers (<1.0). The differences were much larger than those produced by VWF:GPIbNab utilizing other nanobodies, VWF:GPIbM, VWF:GPIbR, or VWF:CB assays. Linear regression analysis of 5 pdVWF fractions of various multimer sizes produced an estimated specific activity of 2.7 for HMWMs. The analysis attributed >90% of the VWF activity measured by VWF:GPIbNab6C11 to that of HMWMs, which is significantly higher than all other activity assays tested. CONCLUSION: The VWF:GPIbNab6C11 assay exhibits higher sensitivity to HMWMs than ristocetin-based and collagen-binding assays. Future studies examining the application of this assay in clinical settings and any associated therapeutic benefit of doing so are warranted.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Protein Multimerization , Single-Domain Antibodies , von Willebrand Factor , von Willebrand Factor/metabolism , von Willebrand Factor/analysis , Humans , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Linear Models , Recombinant Proteins , Blood Platelets/metabolism , Platelet Aggregation/drug effects , Platelet Glycoprotein GPIb-IX Complex/metabolism , Protein Binding , Platelet Adhesiveness , Molecular Weight
19.
Nat Commun ; 15(1): 5123, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879612

ABSTRACT

Bacteroidales (syn. Bacteroidetes) are prominent members of the human gastrointestinal ecosystem mainly due to their efficient glycan-degrading machinery, organized into gene clusters known as polysaccharide utilization loci (PULs). A single PUL was reported for catabolism of high-mannose (HM) N-glycan glyco-polypeptides in the gut symbiont Bacteroides thetaiotaomicron, encoding a surface endo-ß-N-acetylglucosaminidase (ENGase), BT3987. Here, we discover an ENGase from the GH18 family in B. thetaiotaomicron, BT1285, encoded in a distinct PUL with its own repertoire of proteins for catabolism of the same HM N-glycan substrate as that of BT3987. We employ X-ray crystallography, electron microscopy, mass spectrometry-based activity measurements, alanine scanning mutagenesis and a broad range of biophysical methods to comprehensively define the molecular mechanism by which BT1285 recognizes and hydrolyzes HM N-glycans, revealing that the stabilities and activities of BT1285 and BT3987 were optimal in markedly different conditions. BT1285 exhibits significantly higher affinity and faster hydrolysis of poorly accessible HM N-glycans than does BT3987. We also find that two HM-processing endoglycosidases from the human gut-resident Alistipes finegoldii display condition-specific functional properties. Altogether, our data suggest that human gut microbes employ evolutionary strategies to express distinct ENGases in order to optimally metabolize the same N-glycan substrate in the gastroinstestinal tract.


Subject(s)
Bacterial Proteins , Bacteroides thetaiotaomicron , Gastrointestinal Microbiome , Polysaccharides , Polysaccharides/metabolism , Humans , Bacteroides thetaiotaomicron/metabolism , Bacteroides thetaiotaomicron/enzymology , Bacteroides thetaiotaomicron/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Crystallography, X-Ray , Substrate Specificity , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Mannose/metabolism , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/metabolism , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/genetics , Multigene Family
20.
Blood ; 128(2): 156-7, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27418627
SELECTION OF CITATIONS
SEARCH DETAIL