Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(23): 5699-5714.e11, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34735795

ABSTRACT

Extension of the interval between vaccine doses for the BNT162b2 mRNA vaccine was introduced in the United Kingdom to accelerate population coverage with a single dose. At this time, trial data were lacking, and we addressed this in a study of United Kingdom healthcare workers. The first vaccine dose induced protection from infection from the circulating alpha (B.1.1.7) variant over several weeks. In a substudy of 589 individuals, we show that this single dose induces severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody (NAb) responses and a sustained B and T cell response to the spike protein. NAb levels were higher after the extended dosing interval (6-14 weeks) compared with the conventional 3- to 4-week regimen, accompanied by enrichment of CD4+ T cells expressing interleukin-2 (IL-2). Prior SARS-CoV-2 infection amplified and accelerated the response. These data on dynamic cellular and humoral responses indicate that extension of the dosing interval is an effective immunogenic protocol.


Subject(s)
COVID-19 Vaccines/immunology , Vaccines, Synthetic/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Cross-Priming/immunology , Dose-Response Relationship, Immunologic , Ethnicity , Female , Humans , Immunity , Immunoglobulin G/immunology , Linear Models , Male , Middle Aged , Reference Standards , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Treatment Outcome , Young Adult , mRNA Vaccines
2.
Clin Microbiol Rev ; 36(3): e0016422, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37306571

ABSTRACT

Bordetella pertussis and Bordetella bronchiseptica belong to the genus Bordetella, which comprises 14 other species. B. pertussis is responsible for whooping cough in humans, a severe infection in children and less severe or chronic in adults. These infections are restricted to humans and currently increasing worldwide. B. bronchiseptica is involved in diverse respiratory infections in a wide range of mammals. For instance, the canine infectious respiratory disease complex (CIRDC), characterized by a chronic cough in dogs. At the same time, it is increasingly implicated in human infections, while remaining an important pathogen in the veterinary field. Both Bordetella can evade and modulate host immune responses to support their persistence, although it is more pronounced in B. bronchiseptica infection. The protective immune responses elicited by both pathogens are comparable, while there are important characteristics in the mechanisms that differ. However, B. pertussis pathogenesis is more difficult to decipher in animal models than those of B. bronchiseptica because of its restriction to humans. Nevertheless, the licensed vaccines for each Bordetella are different in terms of formulation, route of administration and immune responses induced, with no known cross-reaction between them. Moreover, the target of the mucosal tissues and the induction of long-lasting cellular and humoral responses are required to control and eliminate Bordetella. In addition, the interaction between both veterinary and human fields are essential for the control of this genus, by preventing the infections in animals and the subsequent zoonotic transmission to humans.


Subject(s)
Bordetella Infections , Bordetella bronchiseptica , Respiratory Tract Infections , Vaccines , Whooping Cough , Child , Animals , Dogs , Humans , Bordetella pertussis/physiology , Bordetella bronchiseptica/physiology , Whooping Cough/prevention & control , Bordetella Infections/prevention & control , Mammals
3.
Br J Haematol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867615

ABSTRACT

Immune responses to primary COVID-19 vaccination were investigated in 58 patients with follicular lymphoma (FL) as part of the PETReA trial of frontline therapy (EudraCT 2016-004010-10). COVID-19 vaccines (BNT162b2 or ChAdOx1) were administered before, during or after cytoreductive treatment comprising rituximab (depletes B cells) and either bendamustine (depletes CD4+ T cells) or cyclophosphamide-based chemotherapy. Blood samples obtained after vaccine doses 1 and 2 (V1, V2) were analysed for antibodies and T cells reactive to the SARS-CoV-2 spike protein using the Abbott Architect and interferon-gamma ELISpot assays respectively. Compared to 149 healthy controls, patients with FL exhibited lower antibody but preserved T-cell responses. Within the FL cohort, multivariable analysis identified low pre-treatment serum IgA levels and V2 administration during induction or maintenance treatment as independent determinants of lower antibody and higher T-cell responses, and bendamustine and high/intermediate FLIPI-2 score as additional determinants of a lower antibody response. Several clinical scenarios were identified where dichotomous immune responses were estimated with >95% confidence based on combinations of predictive variables. In conclusion, the immunogenicity of COVID-19 vaccines in FL patients is influenced by multiple disease- and treatment-related factors, among which B-cell depletion showed differential effects on antibody and T-cell responses.

4.
Clin Exp Immunol ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642547

ABSTRACT

Obesity and type 2 diabetes (DM) are risk factors for severe COVID-19 outcomes, which disproportionately affect South Asian populations. This study aims to investigate the humoral and cellular immune responses to SARS-CoV-2 in adult COVID-19 survivors with obesity and DM in Bangladesh. In this cross-sectional study, SARS-CoV-2-specific antibody and T cell responses were investigated in 63 healthy and 75 PCR-confirmed COVID-19 recovered individuals in Bangladesh, during the pre-vaccination first wave of the COVID-19 pandemic in 2020. In COVID-19 survivors, SARS-CoV-2 infection induced robust antibody and T cell responses, which correlated with disease severity. After adjusting for age, sex, DM status, disease severity, and time since onset of symptoms, obesity was associated with decreased neutralising antibody titers, and increased SARS-CoV-2 spike-specific IFN-γ response along with increased proliferation and IL-2 production by CD8+ T cells. In contrast, DM was not associated with SARS-CoV-2-specific antibody and T cell responses after adjustment for obesity and other confounders. Obesity is associated with lower neutralising antibody levels and higher T cell responses to SARS-CoV-2 post COVID-19 recovery, while antibody or T cell responses remain unaltered in DM.

5.
Clin Infect Dis ; 76(2): 201-209, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36196614

ABSTRACT

BACKGROUND: People with human immunodeficiency virus (HIV) on antiretroviral therapy (ART) with good CD4 T-cell counts make effective immune responses following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are few data on longer term responses and the impact of a booster dose. METHODS: Adults with HIV were enrolled into a single arm open label study. Two doses of ChAdOx1 nCoV-19 were followed 12 months later by a third heterologous vaccine dose. Participants had undetectable viraemia on ART and CD4 counts >350 cells/µL. Immune responses to the ancestral strain and variants of concern were measured by anti-spike immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA), MesoScale Discovery (MSD) anti-spike platform, ACE-2 inhibition, activation induced marker (AIM) assay, and T-cell proliferation. FINDINGS: In total, 54 participants received 2 doses of ChAdOx1 nCoV-19. 43 received a third dose (42 with BNT162b2; 1 with mRNA-1273) 1 year after the first dose. After the third dose, total anti-SARS-CoV-2 spike IgG titers (MSD), ACE-2 inhibition, and IgG ELISA results were significantly higher compared to Day 182 titers (P < .0001 for all 3). SARS-CoV-2 specific CD4+ T-cell responses measured by AIM against SARS-CoV-2 S1 and S2 peptide pools were significantly increased after a third vaccine compared to 6 months after a first dose, with significant increases in proliferative CD4+ and CD8+ T-cell responses to SARS-CoV-2 S1 and S2 after boosting. Responses to Alpha, Beta, Gamma, and Delta variants were boosted, although to a lesser extent for Omicron. CONCLUSIONS: In PWH receiving a third vaccine dose, there were significant increases in B- and T-cell immunity, including to known variants of concern (VOCs).


Subject(s)
COVID-19 , HIV Infections , Adult , Humans , HIV , ChAdOx1 nCoV-19 , BNT162 Vaccine , SARS-CoV-2 , COVID-19/prevention & control , Lymphocyte Activation , Vaccination , HIV Infections/drug therapy , Immunoglobulin G , Antibodies, Viral
6.
Emerg Infect Dis ; 29(2): 304-313, 2023 02.
Article in English | MEDLINE | ID: mdl-36692336

ABSTRACT

Lassa fever virus (LASV) is the causative agent of Lassa fever, a disease endemic in West Africa. Exploring the relationships between environmental factors and LASV transmission across ecologically diverse regions can provide crucial information for the design of appropriate interventions and disease monitoring. We investigated LASV exposure in 2 ecologically diverse regions of Guinea. Our results showed that exposure to LASV was heterogenous between and within sites. LASV IgG seropositivity was 11.9% (95% CI 9.7%-14.5%) in a coastal study site in Basse-Guinée, but it was 59.6% (95% CI 55.5%-63.5%) in a forested study site located in Guinée Forestière. Seropositivity increased with age in the coastal site. We also found significant associations between exposure risk for LASV and landscape fragmentation in coastal and forested regions. Our study highlights the potential link between environmental change and LASV emergence and the urgent need for research on land management practices that reduce disease risks.


Subject(s)
Lassa Fever , Humans , Lassa Fever/epidemiology , Guinea/epidemiology , Lassa virus , Africa, Western
7.
Clin Exp Immunol ; 212(3): 249-261, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36807499

ABSTRACT

T cells are important in preventing severe disease from SARS-CoV-2, but scalable and field-adaptable alternatives to expert T-cell assays are needed. The interferon-gamma release assay QuantiFERON platform was developed to detect T-cell responses to SARS-CoV-2 from whole blood with relatively basic equipment and flexibility of processing timelines. Forty-eight participants with different infection and vaccination backgrounds were recruited. Whole blood samples were analysed using the QuantiFERON SARS-CoV-2 assay in parallel with the well-established 'Protective Immunity from T Cells in Healthcare workers' (PITCH) ELISpot, which can evaluate spike-specific T-cell responses. The primary aims of this cross-sectional observational cohort study were to establish if the QuantiFERON SARS-Co-V-2 assay could discern differences between specified groups and to assess the sensitivity of the assay compared with the PITCH ELISpot. The QuantiFERON SARS-CoV-2 distinguished acutely infected individuals (12-21 days post positive PCR) from naïve individuals (P < 0.0001) with 100% sensitivity and specificity for SARS-CoV-2 T cells, whilst the PITCH ELISpot had reduced sensitivity (62.5%) for the acute infection group. Sensitivity with QuantiFERON for previous infection was 12.5% (172-444 days post positive test) and was inferior to the PITCH ELISpot (75%). Although the QuantiFERON assay could discern differences between unvaccinated and vaccinated individuals (55-166 days since second vaccination), the latter also had reduced sensitivity (44.4%) compared to the PITCH ELISpot (66.6%). The QuantiFERON SARS-CoV-2 assay showed potential as a T- cell evaluation tool soon after SARS-CoV-2 infection but has lower sensitivity for use in reliable evaluation of vaccination or more distant infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cross-Sectional Studies , Interferon-gamma Release Tests , Vaccination , Antibodies, Viral
8.
Bioconjug Chem ; 29(3): 613-623, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29300463

ABSTRACT

Mucosal immune responses are in the first line of defense against most infections and protective mucosal immunity can be achieved by mucosal vaccination. However, mucosal tolerance and physicochemical features of the mucosal environment pose challenging obstacles to the development of mucosal vaccines. Vaccine formulations must be designed to enhance stability at the mucosae and incorporate features that induce innate immunity at mucosal inductive sites. To face these challenges, a number of novel delivery systems for targeting of mucosal vaccines to specific mucosal locations have been developed. In addition, specific mucosal immune cell targeting can potentially be achieved with ligand-antigen bioconjugates, in particular, those directed to specific receptors expressed on Microfold (M) cells, mucosal epithelial cells, or mucosal antigen presenting cells (APCs). In this topical review, targeted strategies to enhance the effectiveness of mucosal vaccines are addressed, and obstacles to the design and progression of effective ligand-mediated mucosal vaccines are highlighted.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems/methods , Mucous Membrane/immunology , Vaccination/methods , Vaccines/administration & dosage , Animals , Antigen-Presenting Cells/immunology , Epithelial Cells/immunology , Humans , Immunity , Ligands , Mucous Membrane/cytology , Vaccines/chemistry , Vaccines/immunology
10.
J Biol Chem ; 289(31): 21617-26, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24951593

ABSTRACT

Intravenous administration of polyclonal and monoclonal antibodies has proven to be a clinically valid approach in the treatment, or at least relief, of many acute and chronic pathologies, such as infection, immunodeficiency, and a broad range of autoimmune conditions. Plasma-derived IgG or recombinant IgG are most frequently used for intravenous or subcutaneous administration, whereas a few IgM-based products are available as well. We have established recently that secretory-like IgA and IgM can be produced upon association of plasma-derived polymeric IgA and IgM with a recombinant secretory component. As a next step toward potential future mucosal administration, we sought to unravel the mechanisms by which these secretory Igs protect epithelial cells located at the interface between the environment and the inside of the body. By using polarized epithelial Caco-2 cell monolayers and Shigella flexneri as a model enteropathogen, we found that polyspecific plasma-derived SIgA and SIgM fulfill many protective functions, including dose-dependent recognition of the antigen via formation of aggregated immune complexes, reduction of bacterial infectivity, maintenance of epithelial cell integrity, and inhibition of proinflammatory cytokine/chemokine production by epithelial cells. In this in vitro model devoid of other cellular or molecular interfering partners, IgM and secretory IgM showed stronger bacterial neutralization than secretory IgA. Together, these data suggest that mucosally delivered antibody preparations may be most effective when combining both secretory-like IgA and IgM, which, together, play a crucial role in preserving several levels of epithelial cell integrity.


Subject(s)
Epithelial Cells/cytology , Immunoglobulin A/immunology , Immunoglobulin M/immunology , Shigella flexneri/physiology , Caco-2 Cells , Chemokines/metabolism , Colony Count, Microbial , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Homeostasis , Humans , Immunoglobulin A/blood , Immunoglobulin M/blood , Microscopy, Confocal , Shigella flexneri/pathogenicity , Virulence
11.
J Biol Chem ; 288(6): 4085-94, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23250751

ABSTRACT

Immunotherapy with monoclonal and polyclonal immunoglobulin is successfully applied to improve many clinical conditions, including infection, autoimmune diseases, or immunodeficiency. Most immunoglobulin products, recombinant or plasma-derived, are based on IgG antibodies, whereas to date, the use of IgA for therapeutic application has remained anecdotal. In particular, purification or production of large quantities of secretory IgA (SIgA) for potential mucosal application has not been achieved. In this work, we sought to investigate whether polymeric IgA (pIgA) recovered from human plasma is able to associate with secretory component (SC) to generate SIgA-like molecules. We found that ∼15% of plasma pIgA carried J chain and displayed selective SC binding capacity either in a mixture with monomeric IgA (mIgA) or after purification. The recombinant SC associated covalently in a 1:1 stoichiometry with pIgA and with similar efficacy as colostrum-derived SC. In comparison with pIgA, the association with SC delayed degradation of SIgA by intestinal proteases. Similar results were obtained with plasma-derived IgM. In vitro, plasma-derived IgA and SIgA neutralized Shigella flexneri used as a model pathogen, resulting in a delay of bacteria-induced damage targeted to polarized Caco-2 cell monolayers. The sum of these novel data demonstrates that association of plasma-derived IgA or IgM with recombinant/colostrum-derived SC is feasible and yields SIgA- and SIgM-like molecules with similar biochemical and functional characteristics as mucosa-derived immunoglobulins.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Neutralizing/immunology , Immunoglobulin J-Chains/immunology , Immunoglobulin M/immunology , Plasma/immunology , Secretory Component/immunology , Shigella flexneri/immunology , Animals , Antibodies, Bacterial/chemistry , Antibodies, Bacterial/genetics , Antibodies, Bacterial/isolation & purification , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/isolation & purification , COS Cells , Chlorocebus aethiops , Humans , Immunoglobulin J-Chains/chemistry , Immunoglobulin J-Chains/genetics , Immunoglobulin J-Chains/isolation & purification , Immunoglobulin M/chemistry , Immunoglobulin M/genetics , Immunoglobulin M/isolation & purification , Plasma/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Secretory Component/chemistry , Secretory Component/genetics , Secretory Component/isolation & purification
12.
Antiviral Res ; 223: 105823, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331200

ABSTRACT

Mucosal immunity has regained its spotlight amidst the ongoing Coronavirus disease 19 (COVID-19) pandemic, with numerous studies highlighting the crucial role of mucosal secretory IgA (SIgA) in protection against Severe acute respiratory syndrome coronavirus-2 or SARS-CoV-2 infections. The observed limitations in the efficacy of currently authorized COVID-19 vaccines in inducing effective mucosal immune responses remind us of the limitations of systemic vaccination in promoting protective mucosal immunity. This resurgence of interest has motivated the development of vaccine platforms capable of enhancing mucosal responses, specifically the SIgA response, and the development of IgA-based therapeutics. Recognizing viral respiratory infections as a global threat, we would like to comprehensively review the existing knowledge on mucosal immunity, with a particular emphasis on SIgA, in the context of SARS-CoV-2, influenza, and Respiratory Syncytial Virus (RSV) infections. This review aims to describe the structural and functional specificities of SIgA, along with its nuanced role in combating influenza, RSV, and SARS-CoV-2 infections. Subsequent sections further elaborate promising vaccine strategies, including mucosal vaccines against Influenza, RSV, and SARS-CoV-2 respiratory viruses, currently undergoing preclinical and clinical development. Additionally, we address the challenges associated with mucosal vaccine development, concluding with a discussion on IgA-based therapeutics as a promising platform for the treatment of viral respiratory infections. This comprehensive review not only synthesizes current insights into mucosal immunity but also identifies critical knowledge gaps, strengthening the way for further advancements in our current understanding and approaches to combat respiratory viral threats.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Respiratory Syncytial Virus Infections , Humans , Immunoglobulin A, Secretory , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2
13.
Front Immunol ; 15: 1329805, 2024.
Article in English | MEDLINE | ID: mdl-38481993

ABSTRACT

mRNA vaccine technologies introduced following the SARS-CoV-2 pandemic have highlighted the need to better understand the interaction of adjuvants and the early innate immune response. Type I interferon (IFN-I) is an integral part of this early innate response that primes several components of the adaptive immune response. Women are widely reported to respond better than men to tri- and quadrivalent influenza vaccines. Plasmacytoid dendritic cells (pDCs) are the primary cell type responsible for IFN-I production, and female pDCs produce more IFN-I than male pDCs since the upstream pattern recognition receptor Toll-like receptor 7 (TLR7) is encoded by X chromosome and is biallelically expressed by up to 30% of female immune cells. Additionally, the TLR7 promoter contains several putative androgen response elements, and androgens have been reported to suppress pDC IFN-I in vitro. Unexpectedly, therefore, we recently observed that male adolescents mount stronger antibody responses to the Pfizer BNT162b2 mRNA vaccine than female adolescents after controlling for natural SARS-CoV-2 infection. We here examined pDC behaviour in this same cohort to determine the impact of IFN-I on anti-spike and anti-receptor-binding domain IgG titres to BNT162b2. Through flow cytometry and least absolute shrinkage and selection operator (LASSO) modelling, we determined that serum-free testosterone was associated with reduced pDC IFN-I, but contrary to the well-described immunosuppressive role for androgens, the most bioactive androgen dihydrotestosterone was associated with increased IgG titres to BNT162b2. Also unexpectedly, we observed that co-vaccination with live attenuated influenza vaccine boosted the magnitude of IgG responses to BNT162b2. Together, these data support a model where systemic IFN-I increases vaccine-mediated immune responses, yet for vaccines with intracellular stages, modulation of the local IFN-I response may alter antigen longevity and consequently improve vaccine-driven immunity.


Subject(s)
Influenza Vaccines , Interferon Type I , Humans , Male , Female , Adolescent , Interferon-alpha , Influenza Vaccines/metabolism , Toll-Like Receptor 7/metabolism , Androgens/metabolism , BNT162 Vaccine , mRNA Vaccines , Interferon Type I/metabolism , Vaccination , Dendritic Cells , Immunoglobulin G/metabolism
14.
Nat Commun ; 15(1): 4171, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755147

ABSTRACT

Human Ebola virus (EBOV) outbreaks caused by persistent EBOV infection raises questions on the role of zoonotic spillover in filovirus epidemiology. To characterise filovirus zoonotic exposure, we collected cross-sectional serum samples from bushmeat hunters (n = 498) in Macenta Prefecture Guinea, adjacent to the index site of the 2013 EBOV-Makona spillover event. We identified distinct immune signatures (20/498, 4.0%) to multiple EBOV antigens (GP, NP, VP40) using stepwise ELISA and Western blot analysis and, live EBOV neutralisation (5/20; 25%). Using comparative serological data from PCR-confirmed survivors of the 2013-2016 EBOV outbreak, we demonstrated that most signatures (15/20) were not plausibly explained by prior EBOV-Makona exposure. Subsequent data-driven modelling of EBOV immunological outcomes to remote-sensing environmental data also revealed consistent associations with intact closed canopy forest. Together our findings suggest exposure to other closely related filoviruses prior to the 2013-2016 West Africa epidemic and highlight future surveillance priorities.


Subject(s)
Antibodies, Viral , Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Animals , Guinea/epidemiology , Ebolavirus/immunology , Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/transmission , Adult , Male , Antibodies, Viral/blood , Antibodies, Viral/immunology , Middle Aged , Zoonoses/virology , Zoonoses/epidemiology , Zoonoses/transmission , Female , Cross-Sectional Studies , Disease Outbreaks , Young Adult , Aged , Enzyme-Linked Immunosorbent Assay , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Antigens, Viral/immunology
15.
Lancet Microbe ; 5(7): 655-668, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703782

ABSTRACT

BACKGROUND: A SARS-CoV-2 controlled human infection model (CHIM) has been successfully established in seronegative individuals using a dose of 1×101 50% tissue culture infectious dose (TCID50) pre-alpha SARS-CoV-2 virus. Given the increasing prevalence of seropositivity to SARS-CoV-2, a CHIM that could be used for vaccine development will need to induce infection in those with pre-existing immunity. Our aim was to find a dose of pre-alpha SARS-CoV-2 virus that induced infection in previously infected individuals. METHODS: Healthy, UK volunteers aged 18-30 years, with proven (quantitative RT-PCR or lateral flow antigen test) previous SARS-CoV-2 infection (with or without vaccination) were inoculated intranasally in a stepwise dose escalation CHIM with either 1×101, 1×102, 1×10³, 1×104, or 1×105 TCID50 SARS-CoV-2/human/GBR/484861/2020, the same virus used in the seronegative CHIM. Post-inoculation, volunteers were quarantined in functionally negative pressure rooms (Oxford, UK) for 14 days and until 12-hourly combined oropharyngeal-nasal swabs were negative for viable virus by focus-forming assay. Outpatient follow-up continued for 12 months post-enrolment, with additional visits for those who developed community-acquired SARS-CoV-2 infection. The primary objective was to identify a safe, well tolerated dose that induced infection (defined as two consecutive SARS-CoV-2 positive PCRs starting 24 h after inoculation) in 50% of seropositive volunteers. This study is registered with ClinicalTrials.gov (NCT04864548); enrolment and follow-up to 12 months post-enrolment are complete. FINDINGS: Recruitment commenced on May 6, 2021, with the last volunteer enrolled into the dose escalation cohort on Nov 24, 2022. 36 volunteers were enrolled, with four to eight volunteers inoculated in each dosing group from 1×101 to 1×105 TCID50 SARS-CoV-2. All volunteers have completed quarantine, with follow-up to 12 months complete. Despite dose escalation to 1×105 TCID50, we were unable to induce sustained infection in any volunteers. Five (14%) of 36 volunteers were considered to have transient infection, based on the kinetic of their PCR-positive swabs. Transiently infected volunteers had significantly lower baseline mucosal and systemic SARS-CoV-2-specific antibody titres and significantly lower peripheral IFNγ responses against a CD8+ T-cell SARS-CoV-2 peptide pool than uninfected volunteers. 14 (39%) of 36 volunteers subsequently developed breakthrough infection with the omicron variant after discharge from quarantine. Most adverse events reported by volunteers in quarantine were mild, with fatigue (16 [44%]) and stuffy nose (16 [44%]) being the most common. There were no serious adverse events. INTERPRETATION: Our study demonstrates potent protective immunity induced by homologous vaccination and homologous or heterologous previous SARS-CoV-2 infection. The community breakthrough infections seen with the omicron variant supports the use of newer variants to establish a model with sufficient rate of infection for use in vaccine and therapeutic development. FUNDING: Wellcome Trust and Department for Health and Social Care.


Subject(s)
Antibodies, Viral , COVID-19 , SARS-CoV-2 , Humans , Adult , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , Male , Young Adult , United Kingdom/epidemiology , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , Adolescent , Healthy Volunteers , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Vaccination/methods
16.
Lancet Rheumatol ; 6(6): e339-e351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734019

ABSTRACT

BACKGROUND: The humoral and T-cell responses to booster COVID-19 vaccine types in multidisease immunocompromised individuals who do not generate adequate antibody responses to two COVID-19 vaccine doses, is not fully understood. The OCTAVE DUO trial aimed to determine the value of third vaccinations in a wide range of patients with primary and secondary immunodeficiencies. METHODS: OCTAVE-DUO was a prospective, open-label, multicentre, randomised, controlled, phase 3 trial investigating humoral and T-cell responses in patients who are immunocompromised following a third vaccine dose with BNT162b2 or mRNA-1273, and of NVX-CoV2373 for those with lymphoid malignancies. We recruited patients who were immunocompromised from 11 UK hospitals, aged at least 18 years, with previous sub-optimal responses to two doses of SARS-CoV-2 vaccine. Participants were randomly assigned 1:1 (1:1:1 for those with lymphoid malignancies), stratified by disease, previous vaccination type, and anti-spike antibody response following two doses. Individuals with lived experience of immune susceptibility were involved in the study design and implementation. The primary outcome was vaccine-specific immunity defined by anti-SARS-CoV-2 spike antibodies (Roche Diagnostics UK and Ireland, Burgess Hill, UK) and T-cell responses (Oxford Immunotec, Abingdon, UK) before and 21 days after the third vaccine dose analysed by a modified intention-to-treat analysis. The trial is registered with the ISRCTN registry, ISRCTN 15354495, and the EU Clinical Trials Register, EudraCT 2021-003632-87, and is complete. FINDINGS: Between Aug 4, 2021 and Mar 31, 2022, 804 participants across nine disease cohorts were randomly assigned to receive BNT162b2 (n=377), mRNA-1273 (n=374), or NVX-CoV2373 (n=53). 356 (45%) of 789 participants were women, 433 (55%) were men, and 659 (85%) of 775 were White. Anti-SARS-CoV-2 spike antibodies measured 21 days after the third vaccine dose were significantly higher than baseline pre-third dose titres in the modified intention-to-treat analysis (median 1384 arbitrary units [AU]/mL [IQR 4·3-7990·0] compared with median 11·5 AU/mL [0·4-63·1]; p<0·001). Of participants who were baseline low responders, 380 (90%) of 423 increased their antibody concentrations to more than 400 AU/mL. Conversely, 166 (54%) of 308 baseline non-responders had no response after the third dose. Detectable T-cell responses following the third vaccine dose were seen in 494 (80%) of 616 participants. There were 24 serious adverse events (BNT612b2 eight [33%] of 24, mRNA-1273 12 [50%], NVX-CoV2373 four [17%]), two (8%) of which were categorised as vaccine-related. There were seven deaths (1%) during the trial, none of which were vaccine-related. INTERPRETATION: A third vaccine dose improved the serological and T-cell response in the majority of patients who are immunocompromised. Individuals with chronic renal disease, lymphoid malignancy, on B-cell targeted therapies, or with no serological response after two vaccine doses are at higher risk of poor response to a third vaccine dose. FUNDING: Medical Research Council, Blood Cancer UK.


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunocompromised Host , Immunogenicity, Vaccine , SARS-CoV-2 , Humans , Female , Male , COVID-19/prevention & control , COVID-19/immunology , Middle Aged , Immunocompromised Host/immunology , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Aged , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Antibodies, Viral/blood , Prospective Studies , Immunization, Secondary , 2019-nCoV Vaccine mRNA-1273/immunology , Adult , T-Lymphocytes/immunology , United Kingdom , ChAdOx1 nCoV-19/immunology
17.
Infect Immun ; 81(8): 3027-34, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23753631

ABSTRACT

Shigella flexneri, by invading intestinal epithelial cells (IECs) and inducing inflammatory responses of the colonic mucosa, causes bacillary dysentery. Although M cells overlying Peyer's patches are commonly considered the primary site of entry of S. flexneri, indirect evidence suggests that bacteria can also use IECs as a portal of entry to the lamina propria. Passive delivery of secretory IgA (SIgA), the major immunoglobulin secreted at mucosal surfaces, has been shown to protect rabbits from experimental shigellosis, but no information exists as to its molecular role in maintaining luminal epithelial integrity. We have established that the interaction of virulent S. flexneri with the apical pole of a model intestinal epithelium consisting of polarized Caco-2 cell monolayers resulted in the progressive disruption of the tight junction network and actin depolymerization, eventually resulting in cell death. The lipopolysaccharide (LPS)-specific agglutinating SIgAC5 monoclonal antibody (MAb), but not monomeric IgAC5 or IgGC20 MAbs of the same specificity, achieved protective functions through combined mechanisms, including limitation of the interaction between S. flexneri and epithelial cells, maintenance of the tight junction seal, preservation of the cell morphology, reduction of NF-κB nuclear translocation, and inhibition of proinflammatory mediator secretion. Our results add to the understanding of the function of SIgA-mediated immune exclusion by identifying a mode of action whereby the formation of immune complexes translates into maintenance of the integrity of epithelial cells lining the mucosa. This novel mechanism of protection mediated by SIgA is important to extend the arsenal of effective strategies to fight against S. flexneri mucosal invasion.


Subject(s)
Dysentery, Bacillary/immunology , Immunoglobulin A, Secretory/immunology , Intestinal Mucosa/immunology , Shigella flexneri/immunology , Caco-2 Cells , Enzyme-Linked Immunosorbent Assay , Humans , Microscopy, Electron, Scanning , Shigella flexneri/pathogenicity , Tight Junctions/immunology
18.
Front Immunol ; 14: 1166664, 2023.
Article in English | MEDLINE | ID: mdl-37063834

ABSTRACT

A defined immune profile that predicts protection against a pathogen-of-interest, is referred to as a correlate of protection (CoP). A validated SARS-CoV-2 CoP has yet to be defined, however considerable insights have been provided by pre-clinical vaccine and animal rechallenge studies which have fewer associated limitations than equivalent studies in human vaccinees or convalescents, respectively. This literature review focuses on the advantages of the use of animal models for the definition of CoPs, with particular attention on their application in the search for SARS-CoV-2 CoPs. We address the conditions and interventions required for the identification and validation of a CoP, which are often only made possible with the use of appropriate in vivo models.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Humans , SARS-CoV-2 , Models, Animal
19.
Vaccines (Basel) ; 11(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37112685

ABSTRACT

Antibody-dependent enhancement (ADE) can increase the rates and severity of infection with various viruses, including coronaviruses, such as MERS. Some in vitro studies on COVID-19 have suggested that prior immunization enhances SARS-CoV-2 infection, but preclinical and clinical studies have demonstrated the contrary. We studied a cohort of COVID-19 patients and a cohort of vaccinated individuals with a heterologous (Moderna/Pfizer) or homologous (Pfizer/Pfizer) vaccination scheme. The dependence on IgG or IgA of ADE of infection was evaluated on the serum samples from these subjects (twenty-six vaccinated individuals and twenty-one PCR-positive SARS-CoV-2-infected patients) using an in vitro model with CD16- or CD89-expressing cells and the Delta (B.1.617.2 lineage) and Omicron (B.1.1.529 lineage) variants of SARS-CoV-2. Sera from COVID-19 patients did not show ADE of infection with any of the tested viral variants. Some serum samples from vaccinated individuals displayed a mild IgA-ADE effect with Omicron after the second dose of the vaccine, but this effect was abolished after the completion of the full vaccination scheme. In this study, FcγRIIIa- and FcαRI-dependent ADE of SARS-CoV-2 infection after prior immunization, which might increase the risk of severe disease in a second natural infection, was not observed.

20.
Immunohorizons ; 7(11): 788-805, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38015460

ABSTRACT

The oral route is effective and convenient for vaccine administration to stimulate a protective immune response. GALT plays a crucial role in mucosal immune responses, with Peyer's patches (PPs) serving as the primary site of induction. A comprehensive understanding of the structures and functions of these structures is crucial for enhancing vaccination strategies and comprehending disease mechanisms; nonetheless, our current knowledge of these structures in dogs remains incomplete. We performed immunofluorescence and flow cytometry studies on canine PPs to identify cell populations and structures. We also performed single-cell RNA sequencing (scRNA-seq) to investigate the immune cell subpopulations present in PPs at steady state in dogs. We generated and validated an Ab specifically targeting canine M cells, which will be a valuable tool for elucidating Ag trafficking into the GALT of dogs. Our findings will pave the way for future studies of canine mucosal immune responses to oral vaccination and enteropathies. Moreover, they add to the growing body of knowledge in canine immunology, further expanding our understanding of the complex immune system of dogs.


Subject(s)
Antigen-Antibody Complex , Peyer's Patches , Animals , Dogs , Flow Cytometry , Fluorescent Antibody Technique , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL