Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS Pathog ; 19(9): e1011138, 2023 09.
Article in English | MEDLINE | ID: mdl-37695784

ABSTRACT

Pneumonia is a worldwide threat, making discovery of novel means to combat lower respiratory tract infection an urgent need. Manipulating the lungs' intrinsic host defenses by therapeutic delivery of certain pathogen-associated molecular patterns protects mice against pneumonia in a reactive oxygen species (ROS)-dependent manner. Here we show that antimicrobial ROS are induced from lung epithelial cells by interactions of CpG oligodeoxynucleotides (ODN) with mitochondrial voltage-dependent anion channel 1 (VDAC1). The ODN-VDAC1 interaction alters cellular ATP/ADP/AMP localization, increases delivery of electrons to the electron transport chain (ETC), increases mitochondrial membrane potential (ΔΨm), differentially modulates ETC complex activities and consequently results in leak of electrons from ETC complex III and superoxide formation. The ODN-induced mitochondrial ROS yield protective antibacterial effects. Together, these studies identify a therapeutic metabolic manipulation strategy to broadly protect against pneumonia without reliance on antibiotics.


Subject(s)
Anti-Infective Agents , Pneumonia , Mice , Animals , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Lung/metabolism , Pneumonia/metabolism , Anti-Infective Agents/pharmacology , Membrane Potential, Mitochondrial
2.
JCI Insight ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352770

ABSTRACT

Pneumonia is a worldwide threat to public health, demanding novel preventative and therapeutic strategies. The lung epithelium is a critical environmental interface that functions as a physical barrier to pathogen invasion while also actively sensing and responding to pathogens. We have reported that stimulating lung epithelial cells with a combination therapeutic consisting of a diacylated lipopeptide and a synthetic CpG oligodeoxynucleotide (ODN) induces synergistic pneumonia protection against a wide range of pathogens. We report here that mice deficient in Toll-like receptor 9 (TLR9), the previously described receptor for ODN, still displayed partial ODN-induced protection. This prompted us to seek an alternate ODN receptor, and we discovered by mass spectroscopy that the RNA sensor RIG-I could also bind DNA-like ODN. ODN binding by RIG-I resulted in MAVS-dependent pneumonia-protective signaling events. While RIG-I is essential to native defenses against viral infections, we report that therapeutic RIG-I activation with ODN promoted pathogen killing and host survival following both viral and bacterial challenges. These data indicate that maximal ODN-induced pneumonia protection requires activation of both TLR9/MyD88 and RIG-I/MAVS signaling pathways. These findings not only identify what we believe to be a novel pattern recognition receptor for DNA-like molecules, but reveal a potential therapeutic strategy to protect susceptible individuals against lethal pneumonias during periods of peak vulnerability.

3.
Front Pharmacol ; 13: 833380, 2022.
Article in English | MEDLINE | ID: mdl-36105216

ABSTRACT

Allergic asthma is a chronic inflammatory respiratory disease associated with eosinophilic infiltration, increased mucus production, airway hyperresponsiveness, and airway remodeling. Epidemiologic data reveal that the prevalence of allergic sensitization and associated diseases has increased in the twentieth century. This has been hypothesized to be partly due to reduced contact with microbial organisms (the hygiene hypothesis) in industrialized society. Airway epithelial cells, once considered a static physical barrier between the body and the external world, are now widely recognized as immunologically active cells that can initiate, maintain, and restrain inflammatory responses, such as those that mediate allergic disease. Airway epithelial cells can sense allergens via expression of myriad Toll-like receptors (TLRs) and other pattern-recognition receptors. We sought to determine whether the innate immune response stimulated by a combination of Pam2CSK4 ("Pam2", TLR2/6 ligand) and a class C oligodeoxynucleotide ODN362 ("ODN", TLR9 ligand), when delivered together by aerosol ("Pam2ODN"), can modulate the allergic immune response to allergens. Treatment with Pam2ODN 7 days before sensitization to House Dust Mite (HDM) extract resulted in a strong reduction in eosinophilic and lymphocytic inflammation. This Pam2ODN immunomodulatory effect was also seen using Ovalbumin (OVA) and A. oryzae (Ao) mouse models. The immunomodulatory effect was observed as much as 30 days before sensitization to HDM, but ineffective just 2 days after sensitization, suggesting that Pam2ODN immunomodulation lowers the allergic responsiveness of the lung, and reduces the likelihood of inappropriate sensitization to aeroallergens. Furthermore, Pam2 and ODN cooperated synergistically suggesting that this treatment is superior to any single agonist in the setting of allergen immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL