Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Ann Rheum Dis ; 82(9): 1181-1190, 2023 09.
Article in English | MEDLINE | ID: mdl-37147113

ABSTRACT

OBJECTIVE: Identify autoantibodies in anti-Ro/SS-A negative primary Sjögren's syndrome (SS). METHODS: This is a proof-of-concept, case-control study of SS, healthy (HC) and other disease (OD) controls. A discovery dataset of plasma samples (n=30 SS, n=15 HC) was tested on human proteome arrays containing 19 500 proteins. A validation dataset of plasma and stimulated parotid saliva from additional SS cases (n=46 anti-Ro+, n=50 anti-Ro-), HC (n=42) and OD (n=54) was tested on custom arrays containing 74 proteins. For each protein, the mean+3 SD of the HC value defined the positivity threshold. Differences from HC were determined by Fisher's exact test and random forest machine learning using 2/3 of the validation dataset for training and 1/3 for testing. Applicability of the results was explored in an independent rheumatology practice cohort (n=38 Ro+, n=36 Ro-, n=10 HC). Relationships among antigens were explored using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) interactome analysis. RESULTS: Ro+ SS parotid saliva contained autoantibodies binding to Ro60, Ro52, La/SS-B and muscarinic receptor 5. SS plasma contained 12 novel autoantibody specificities, 11 of which were detected in both the discovery and validation datasets. Binding to ≥1 of the novel antigens identified 54% of Ro- SS and 37% of Ro+ SS cases, with 100% specificity in both groups. Machine learning identified 30 novel specificities showing receiver operating characteristic area under the curve of 0.79 (95% CI 0.64 to 0.93) for identifying Ro- SS. Sera from Ro- cases of an independent cohort bound 17 of the non-canonical antigens. Antigenic targets in both Ro+ and Ro- SS were part of leukaemia cell, ubiquitin conjugation and antiviral defence pathways. CONCLUSION: We identified antigenic targets of the autoantibody response in SS that may be useful for identifying up to half of Ro seronegative SS cases.


Subject(s)
Autoantibodies , Sjogren's Syndrome , Humans , Case-Control Studies , Autoantigens , ROC Curve , Immunoglobulin G , Antibodies, Antinuclear
2.
Int J Mol Sci ; 20(5)2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30866434

ABSTRACT

The Bacillus anthracis Edema Toxin (ET), composed of a Protective Antigen (PA) and the Edema Factor (EF), is a cellular adenylate cyclase that alters host responses by elevating cyclic adenosine monophosphate (cAMP) to supraphysiologic levels. However, the role of ET in systemic anthrax is unclear. Efferocytosis is a cAMP-sensitive, anti-inflammatory process of apoptotic cell engulfment, the inhibition of which may promote sepsis in systemic anthrax. Here, we tested the hypothesis that ET inhibits efferocytosis by primary human macrophages and evaluated the mechanisms of altered efferocytic signaling. ET, but not PA or EF alone, inhibited the efferocytosis of early apoptotic neutrophils (PMN) by primary human M2 macrophages (polarized with IL-4, IL-10, and/or dexamethasone) at concentrations relevant to those encountered in systemic infection. ET inhibited Protein S- and MFGE8-dependent efferocytosis initiated by signaling through MerTK and αVß5 receptors, respectively. ET inhibited Rac1 activation as well as the phosphorylation of Rac1 and key activating sites of calcium calmodulin-dependent kinases CamK1α, CamK4, and vasodilator-stimulated phosphoprotein, that were induced by the exposure of M2(Dex) macrophages to Protein S-opsonized apoptotic PMN. These results show that ET impairs macrophage efferocytosis and alters efferocytic receptor signaling.


Subject(s)
Antigens, Bacterial/pharmacology , Bacillus anthracis/metabolism , Bacterial Toxins/pharmacology , Macrophages/cytology , Neutrophils/cytology , Phagocytosis/drug effects , Antigens, Surface/metabolism , Cell Polarity/drug effects , Cells, Cultured , Coculture Techniques , Cyclic AMP/metabolism , Dexamethasone/pharmacology , Dose-Response Relationship, Drug , Humans , Interleukin-10/metabolism , Interleukin-4/metabolism , Macrophages/drug effects , Macrophages/metabolism , Milk Proteins/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Protein S/metabolism , Receptors, Vitronectin/metabolism , Signal Transduction/drug effects , c-Mer Tyrosine Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL