Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Mol Microbiol ; 116(3): 890-908, 2021 09.
Article in English | MEDLINE | ID: mdl-34184334

ABSTRACT

The lipid mediators, platelet-activating factor (PAF) and lysophosphatidylcholine (LPC), play relevant pathophysiological roles in Trypanosoma cruzi infection. Several species of LPC, including C18:1 LPC, which mimics the effects of PAF, are synthesized by T. cruzi. The present study identified a receptor in T. cruzi, which was predicted to bind to PAF, and found it to be homologous to members of the progestin and adiponectin family of receptors (PAQRs). We constructed a three-dimensional model of the T. cruzi PAQR (TcPAQR) and performed molecular docking to predict the interactions of the TcPAQR model with C16:0 PAF and C18:1 LPC. We knocked out T. cruzi PAQR (TcPAQR) gene and confirmed the identity of the expressed protein through immunoblotting and immunofluorescence assays using an anti-human PAQR antibody. Wild-type and knockout (KO) parasites were also used to investigate the in vitro cell differentiation and interactions with peritoneal mouse macrophages; TcPAQR KO parasites were unable to react to C16:0 PAF or C18:1 LPC. Our data are highly suggestive that PAF and LPC act through TcPAQR in T. cruzi, triggering its cellular differentiation and ability to infect macrophages.


Subject(s)
Lysophosphatidylcholines/metabolism , Platelet Activating Factor/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Trypanosoma cruzi/genetics , Trypanosoma cruzi/metabolism , Amino Acid Sequence , Animals , Cell Differentiation , Chagas Disease/parasitology , Gene Knockout Techniques/methods , Host-Parasite Interactions , Humans , Lysophosphatidylcholines/chemistry , Macrophages , Mice , Molecular Docking Simulation , Phylogeny , Platelet Activating Factor/chemistry , Protein Conformation , Protozoan Proteins/chemistry , Receptors, Adiponectin/chemistry , Receptors, Adiponectin/genetics , Receptors, Adiponectin/metabolism , Receptors, Progesterone/chemistry , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Trypanosoma cruzi/chemistry
2.
Parasitology ; 145(3): 355-370, 2018 03.
Article in English | MEDLINE | ID: mdl-29039273

ABSTRACT

The species Phytomonas serpens is known to express some molecules displaying similarity to those described in trypanosomatids pathogenic to humans, such as peptidases from Trypanosoma cruzi (cruzipain) and Leishmania spp. (gp63). In this work, a population of P. serpens resistant to the calpain inhibitor MDL28170 at 70 µ m (MDLR population) was selected by culturing promastigotes in increasing concentrations of the drug. The only relevant ultrastructural difference between wild-type (WT) and MDLR promastigotes was the presence of microvesicles within the flagellar pocket of the latter. MDLR population also showed an increased reactivity to anti-cruzipain antibody as well as a higher papain-like proteolytic activity, while the expression of calpain-like molecules cross-reactive to anti-Dm-calpain (from Drosophila melanogaster) antibody and calcium-dependent cysteine peptidase activity were decreased. Gp63-like molecules also presented a diminished expression in MDLR population, which is probably correlated to the reduction in the parasite adhesion to the salivary glands of the insect vector Oncopeltus fasciatus. A lower accumulation of Rhodamine 123 was detected in MDLR cells when compared with the WT population, a phenotype that was reversed when MDLR cells were treated with cyclosporin A and verapamil. Collectively, our results may help in the understanding of the roles of calpain inhibitors in trypanosomatids.


Subject(s)
Cysteine Proteinase Inhibitors/pharmacology , Dipeptides/pharmacology , Membrane Transport Proteins/drug effects , Peptide Hydrolases/drug effects , Trypanosomatina/drug effects , Calpain/antagonists & inhibitors , Calpain/chemistry , Calpain/drug effects , Calpain/genetics , Cysteine Endopeptidases/immunology , Drug Resistance , Glycoproteins/pharmacology , Leishmania/chemistry , Leishmania/physiology , Membrane Transport Proteins/genetics , Peptide Hydrolases/genetics , Protozoan Proteins/immunology , Trypanosoma cruzi/chemistry , Trypanosoma cruzi/physiology , Trypanosomatina/genetics
3.
Exp Parasitol ; 169: 111-8, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27531705

ABSTRACT

The protozoan parasite Leishmania amazonensis is the etiological agent of cutaneous leishmaniasis. During its life cycle, the flagellated metacyclic promastigote forms are transmitted to vertebrate hosts by sandfly bites, and they develop into amastigotes inside macrophages, where they multiply. L. amazonensis possesses a bifunctional enzyme, called 3'-nucleotidase/nuclease (3'NT/NU), which is able to hydrolyze extracellular 3'-monophosphorylated nucleosides and nucleic acids. 3'NT/NU plays an important role in the generation of extracellular adenosine and has been described as a key enzyme in the acquisition of purines by trypanosomatids. Furthermore, it has been observed that 3'NT/NU also plays a valuable role in the establishment of parasitic infection. In this context, this study aimed to investigate the modulation of the 3'-nucleotidase (3'NT) activity of L. amazonensis by several nucleotides. It was observed that 3'NT activity is inhibited by micromolar concentrations of guanosine and guanine nucleotides. The inhibition promoted by 5'-GMP on the 3'NT activity of L. amazonensis is reversible and uncompetitive because the addition of the inhibitor decreased the kinetic parameters Km and Vmax. Finally, we found that the addition of 5'-GMP is able to reverse the stimulation promoted by 3'-AMP in a macrophage-parasite interaction assay. The determination of compounds that can inhibit the 3'NT activity of Leishmania is very important because this enzyme does not occur in mammals, making it a potential therapeutic target.


Subject(s)
Guanosine Diphosphate/pharmacology , Guanosine Monophosphate/pharmacology , Guanosine Triphosphate/pharmacology , Leishmania mexicana/enzymology , Nucleotidases/antagonists & inhibitors , Animals , Kinetics , Leishmania mexicana/drug effects , Macrophages/parasitology , Mice , Nucleotidases/metabolism , RAW 264.7 Cells
4.
Exp Parasitol ; 127(3): 702-7, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21111737

ABSTRACT

In this work we showed that living cells of Leishmania chagasi was able to hydrolyse 3'AMP 10 times more than 5'AMP. When parasites were grown in a low phosphate concentration (2 mM) the cellular proliferation decreased by 50% compared to cells grown in the presence of a high phosphate concentration (80 mM). However, the ecto-3'nucleotidase activity was 2-fold higher when L. chagasi was grown in a low phosphate concentration. This modulation observed on ecto-3'nucleotidase activity was not observed on ecto-5'nucleotidase activity. These results suggest that low concentration of Pi in the culture medium modulates ecto-3'nucleotidase activity that may lead to modulation of important processes for the cell. Interestingly, the macrophage-parasite interaction increased by 45% when L. chagasi were grown at low phosphate concentration compared to the parasites grown in the presence of high phosphate source. Altogether, the results described here suggest that 3'nucleotidase activity modulated by external stimuli, Pi concentration, could be involved on parasite-macrophage interaction.


Subject(s)
Leishmania infantum/enzymology , Macrophages, Peritoneal/parasitology , Nucleotidases/metabolism , Phosphates/pharmacology , 5'-Nucleotidase/drug effects , 5'-Nucleotidase/metabolism , Animals , Female , Host-Pathogen Interactions , Leishmania infantum/drug effects , Leishmania infantum/growth & development , Mice , Mice, Inbred BALB C , Nucleotidases/drug effects
5.
Exp Parasitol ; 129(3): 277-83, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21827749

ABSTRACT

Ecto-3'-nucleotidase/nuclease (3'NT/NU) is a membrane-bound enzyme that plays a key role in the nutrition of Leishmania sp. protozoan parasites. This enzyme generates nucleosides via hydrolyzes of 3'mononucleotides and nucleic acids, which enter the cell by specific transporters. In this work, we identify and characterize Leishmania amazonensis ecto-3'-nucleotidase activity (La3'-nucleotidase), report ammonium tetrathiomolybdate (TTM) as a novel La3'-nucleotidase inhibitor and approach the possible involvement of ecto-3'-nucleotidase in cellular adhesion. La3'-nucleotidase presented characteristics similar to those reported for the class I single-strand nuclease family; a molecular weight of approximately 40 kDa and optimum activity in an alkaline pH range were observed. Although it is conserved among the genus, La3'-nucleotidase displays different kinetic properties; it can be inhibited by vanadate, molybdate and Cu(2+) ions. Interestingly, ecto-3'-nucleotidase activity is 60-fold higher than that of ecto-5'-nucleotidase in L. amazonensis. Additionally, ecto-3'-nucleotidase activity is two-fold higher in virulent L. amazonensis cells than in avirulent ones. Notably, macrophage-parasite attachment/invasion was increased by 400% in the presence of adenosine 3'-monophosphate (3'AMP); however, this effect was reverted by TTM treatment. We believe that La3'-nucleotidase may play a significant role in the generation of adenosine, which may contribute to mammalian host immune response impairment and establishment of infection.


Subject(s)
Leishmania mexicana/enzymology , Leishmania mexicana/pathogenicity , Macrophages, Peritoneal/parasitology , Nucleotidases/metabolism , Adenosine Monophosphate/metabolism , Amino Acid Sequence , Animals , Cricetinae , Female , Host-Parasite Interactions , Humans , Hydrogen-Ion Concentration , Leishmania mexicana/classification , Mice , Mice, Inbred BALB C , Nucleotidases/chemistry , Nucleotidases/genetics , Phylogeny , Sequence Alignment , Virulence
6.
Parasitol Res ; 108(6): 1473-8, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21161276

ABSTRACT

We investigated the effects of platelet-activating factor (PAF) on the interaction of Trypanosoma cruzi with Rhodnius prolixus. The parasites (epimastigotes) were treated with PAF and/or WEB 2086 (PAF antagonist) for 1 h prior to the interaction experiments. PAF stimulated both in vivo and ex vivo interactions between T. cruzi and R. prolixus while WEB 2086 abrogated these effects. PAF-treated epimastigotes also showed an increase in surface negativity and in the amount of surface sialic acid. Neither of these effects was observed when the epimastigotes were treated with neuraminidase following PAF treatment. In the ex vivo interaction experiments, the number of epimastigotes bound to the midguts of the insects was reduced when the epimastigotes had been treated with neuraminidase. We conclude that PAF modulates the interaction of T. cruzi with R. prolixus by altering the amount of sialyl residues at the surface of the parasite.


Subject(s)
Azepines/pharmacology , Neuraminidase/pharmacology , Platelet Activating Factor/antagonists & inhibitors , Rhodnius/drug effects , Triazoles/pharmacology , Trypanosoma cruzi/drug effects , Animals , Chagas Disease , Host-Parasite Interactions/drug effects , N-Acetylneuraminic Acid/analysis , Platelet Activating Factor/metabolism , Platelet Aggregation Inhibitors/pharmacology , Rhodnius/parasitology
7.
Front Cell Infect Microbiol ; 11: 819133, 2021.
Article in English | MEDLINE | ID: mdl-35096661

ABSTRACT

Phytomonas serpens is a protozoan parasite that alternates its life cycle between two hosts: an invertebrate vector and the tomato fruit. This phytoflagellate is able to synthesize proteins displaying similarity to the cysteine peptidase named cruzipain, an important virulence factor from Trypanosoma cruzi, the etiologic agent of Chagas disease. Herein, the growth of P. serpens in complex medium (BHI) supplemented with natural tomato extract (NTE) resulted in the increased expression of cysteine peptidases, as verified by the hydrolysis of the fluorogenic substrate Z-Phe-Arg-AMC and by gelatin-SDS-PAGE. Phytoflagellates showed no changes in morphology, morphometry and viability, but the proliferation was slightly reduced when cultivated in the presence of NTE. The enhanced proteolytic activity was accompanied by a significant increase in the expression of cruzipain-like molecules, as verified by flow cytometry using anti-cruzipain antibodies. In parallel, parasites incubated under chemically defined conditions (PBS supplemented with glucose) and added of different concentration of NTE revealed an augmentation in the production of cruzipain-like molecules in a typically dose-dependent way. Similarly, P. serpens recovered from the infection of mature tomatoes showed an increase in the expression of molecules homologous to cruzipain; however, cells showed a smaller size compared to parasites grown in BHI medium. Furthermore, phytoflagellates incubated with dissected salivary glands from Oncopeltus fasciatus or recovered from the hemolymph of infected insects also showed a strong enhance in the expression of cruzipain-like molecules that is more relevant in the hemolymph. Collectively, our results showed that cysteine peptidases displaying similarities to cruzipain are more expressed during the life cycle of the phytoflagellate P. serpens both in the invertebrate and plant hosts.


Subject(s)
Heteroptera , Trypanosoma cruzi , Trypanosomatina , Animals , Cysteine Endopeptidases/metabolism , Heteroptera/metabolism , Heteroptera/parasitology , Protozoan Proteins/genetics , Trypanosoma cruzi/metabolism
8.
Acta Parasitol ; 65(1): 108-117, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31755068

ABSTRACT

BACKGROUND: Protozoa are distantly related to vertebrates but present some features of higher eukaryotes, making them good model systems for studying the evolution of basic processes such as the cell cycle. Herpetomonas samuelpessoai is a trypanosomatid parasite isolated from the hemipteran insect Zelus leucogrammus. Lysophosphatidylcholine (LPC) is implicated in the transmission and establishment of Chagas disease, whose etiological agent is Trypanosoma cruzi. LPC is synthesized by T. cruzi and its vectors, the hemipteran Rhodnius prolixus and Triatoma infestans. Platelet-activating factor (PAF), a phospholipid with potent and diverse physiological and pathophysiological actions, is a powerful inducer of cell differentiation in Herpetomonas muscarum muscarum and T. cruzi. The enzyme phospholipase A2 (PLA2) catalyzes the hydrolysis of the 2-ester bond of 3-sn-phosphoglyceride, transforming phosphatidylcholine (PC) into LPC. METHODS: In this study, we evaluated cellular differentiation, PLA2 activity and protein kinase CK2 activity of H. samuelpessoai in the absence and in the presence of LPC and PAF. RESULTS: We demonstrate that both PC and LPC promoted a twofold increase in the cellular differentiation of H. samuelpessoai, through CK2, with a concomitant inhibition of its cell growth. Intrinsic PLA2 most likely directs this process by converting PC into LPC. CONCLUSIONS: Our results suggest that the actions of LPC on H. samuelpessoai occur upon binding to a putative PAF receptor and that the protein kinase CK2 plays a major role in this process. Cartoon depicting a model for the synthesis and functions of LPC in Herpetomonas samuelpessoai, based upon our results regarding the role of LPC on the cell biology of Trypanosoma cruzi [28-32]. N nucleus, k kinetoplast, PC phosphatidylcholine, LPC lysophosphatidylcholine, PLA2 phospholipase A2, PAFR putative PAF receptor in trypanosomatids [65], CK2 protein kinase CK2 [16].


Subject(s)
Casein Kinase II/metabolism , Cell Differentiation , Lysophosphatidylcholines/metabolism , Metabolic Networks and Pathways , Trypanosomatina/physiology , Animals , Dichlororibofuranosylbenzimidazole/pharmacology , Enzyme Inhibitors/pharmacology , Hemiptera/parasitology , Phospholipases A2/metabolism , Triazoles/pharmacology , Trypanosomatina/drug effects
9.
Front Oncol ; 10: 557280, 2020.
Article in English | MEDLINE | ID: mdl-33392068

ABSTRACT

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase widely expressed in cervical tumors, being correlated with adverse clinical outcomes. EGFR may be activated by a diversity of mechanisms, including transactivation by G-protein coupled receptors (GPCRs). Studies have also shown that platelet-activating factor (PAF), a pro-inflammatory phospholipid mediator, plays an important role in the cancer progression either by modulating the cancer cells or the tumor microenvironment. Most of the PAF effects seem to be mediated by the interaction with its receptor (PAFR), a member of the GPCRs family. PAFR- and EGFR-evoked signaling pathways contribute to tumor biology; however, the interplay between them remains uninvestigated in cervical cancer. In this study, we employed The Cancer Genome Atlas (TCGA) and cancer cell lines to evaluate possible cooperation between EGFR, PAFR, and lysophosphatidylcholine acyltransferases (LPCATs), enzymes involved in the PAF biosynthesis, in the context of cervical cancer. It was observed a strong positive correlation between the expression of EGFR × PAFR and EGFR × LPCAT2 in 306 cervical cancer samples. The increased expression of LPCAT2 was significantly correlated with poor overall survival. Activation of EGFR upregulated the expression of PAFR and LPCAT2 in a MAPK-dependent fashion. At the same time, PAF showed the ability to transactivate EGFR leading to ERK/MAPK activation, cyclooxygenase-2 (COX-2) induction, and cell migration. The positive crosstalk between the PAF-PAFR axis and EGFR demonstrates a relevant linkage between inflammatory and growth factor signaling in cervical cancer cells. Finally, combined PAFR and EGFR targeting treatment impaired clonogenic capacity and viability of aggressive cervical cancer cells more strongly than each treatment separately. Collectively, we proposed that EGFR, LPCAT2, and PAFR emerge as novel targets for cervical cancer therapy.

10.
Sci Rep ; 9(1): 17468, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31767875

ABSTRACT

Trypanosomatids are protozoan parasites that infect thousands of globally dispersed hosts, potentially affecting their physiology. Several species of trypanosomatids are commonly found in phytophagous insects. Leptomonas wallacei is a gut-restricted insect trypanosomatid only retrieved from Oncopeltus fasciatus. The insects get infected by coprophagy and transovum transmission of L. wallacei cysts. The main goal of the present study was to investigate the effects of a natural infection by L. wallacei on the hemipteran insect O. fasciatus, by comparing infected and uninfected individuals in a controlled environment. The L. wallacei-infected individuals showed reduced lifespan and morphological alterations. Also, we demonstrated a higher infection burden in females than in males. The infection caused by L. wallacei reduced host reproductive fitness by negatively impacting egg load, oviposition, and eclosion, and promoting an increase in egg reabsorption. Moreover, we associated the egg reabsorption observed in infected females, with a decrease in the intersex gene expression. Finally, we suggest alterations in population dynamics induced by L. wallacei infection using a mathematical model. Collectively, our findings demonstrated that L. wallacei infection negatively affected the physiology of O. fasciatus, which suggests that L. wallacei potentially has a vast ecological impact on host population growth.


Subject(s)
Heteroptera/physiology , Trypanosomatina/pathogenicity , Animals , Case-Control Studies , Female , Heteroptera/parasitology , Longevity , Male , Models, Theoretical , Oviposition , Population Dynamics , Sex Characteristics
11.
Infect Immun ; 76(12): 5543-52, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18794282

ABSTRACT

Trypanosoma cruzi, the etiological agent of Chagas disease, is transmitted by bug feces deposited on human skin during a blood meal. However, parasite infection occurs through the wound produced by insect mouthparts. Saliva of the Triatominae bug Rhodnius prolixus is a source of lysophosphatidylcholine (LPC). Here, we tested the role of both triatomine saliva and LPC on parasite transmission. We show that vector saliva is a powerful inducer of cell chemotaxis. A massive number of inflammatory cells were found at the sites where LPC or saliva was inoculated into the skin of mice. LPC is a known chemoattractant for monocytes, but neutrophil recruitment induced by saliva is LPC independent. The preincubation of peritoneal macrophages with saliva or LPC increased fivefold the association of T. cruzi with these cells. Moreover, saliva and LPC block nitric oxide production by T. cruzi-exposed macrophages. The injection of saliva or LPC into mouse skin in the presence of the parasite induces an up-to-sixfold increase in blood parasitemia. Together, our data suggest that saliva of the Triatominae enhances T. cruzi transmission and that some of its biological effects are attributed to LPC. This is a demonstration that a vector-derived lysophospholipid may act as an enhancing factor of Chagas disease.


Subject(s)
Chagas Disease/transmission , Immunosuppressive Agents/immunology , Insect Vectors/parasitology , Lysophosphatidylcholines/immunology , Rhodnius/parasitology , Saliva/immunology , Animals , Chagas Disease/immunology , Chemotaxis, Leukocyte/immunology , Chromatography, Thin Layer , Cytokines/biosynthesis , Humans , Lysophosphatidylcholines/metabolism , Macrophages/immunology , Macrophages/microbiology , Male , Mice , Neutrophil Infiltration/immunology , Nitric Oxide/biosynthesis , Parasitemia/immunology , Saliva/chemistry , Trypanosoma cruzi
12.
Exp Parasitol ; 120(4): 343-52, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18793639

ABSTRACT

We have characterized the cysteine peptidase production by Phytomonas serpens, a tomato trypanosomatid. The parasites were cultivated in four distinct media, since growth conditions could modulate the synthesis of bioactive molecules. The proteolytic profile has not changed qualitatively regardless the media, showing two peptidases of 38 and 40kDa; however, few quantitative changes were observed including a drastic reduction (around 70%) on the 40 and 38kDa peptidase activities when parasites were grown in yeast extract and liver infusion trypticase medium, respectively, in comparison with parasites cultured in Warren medium. The time-span of growth did not significantly alter the protein and peptidase expression. The proteolytic activities were blocked by classical cysteine peptidase inhibitors (E-64, leupeptin, and cystatin), being more active at pH 5.0 and showing complete dependence to reducing agents (dithiothreitol and l-cysteine) for full activity. The cysteine peptidases were able to hydrolyze several proteinaceous substrates, including salivary gland proteins from Oncopeltus fasciatus, suggesting broad substrate utilization. By means of agglutination, fluorescence microscopy, flow cytometry and Western blotting analyses we showed that both cysteine peptidases produced by P. serpens share common epitopes with cruzipain, the major cysteine peptidase of Trypanosoma cruzi. Moreover, our data suggest that the 40kDa cysteine peptidase was located at the P. serpens cell surface, attached to membrane domains via a glycosylphosphatidylinositol anchor. The 40kDa peptidase was also detected in the cell-free culture supernatant, in an active form, which suggests secretion of this peptidase to the extracellular environment.


Subject(s)
Cysteine Endopeptidases/biosynthesis , Trypanosomatina/enzymology , Animals , Blotting, Western , Culture Media , Cystatins/pharmacology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/immunology , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Electrophoresis, Polyacrylamide Gel , Flow Cytometry , Hemiptera/chemistry , Hydrogen-Ion Concentration , Leucine/analogs & derivatives , Leucine/pharmacology , Leupeptins/pharmacology , Solanum lycopersicum/parasitology , Microscopy, Fluorescence , Protozoan Proteins , Reducing Agents/pharmacology , Salivary Proteins and Peptides/metabolism , Trypanosomatina/growth & development
13.
Insect Biochem Mol Biol ; 37(9): 903-10, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17681229

ABSTRACT

The salivary transcriptome of the seed-feeding hemipteran, Oncopeltus fasciatus (milkweed bug), is described following assembly of 1025 expressed sequence tags (ESTs) into 305 clusters of related sequences. Inspection of these sequences reveals abundance of low complexity, putative secreted products rich in the amino acids (aa) glycine, serine or threonine, which might function as silk or mucins and assist food canal lubrication and sealing of the feeding site around the mouthparts. Several protease inhibitors were found, including abundant expression of cystatin transcripts that may inhibit cysteine proteases common in seeds that might injure the insect or induce plant apoptosis. Serine proteases and lipases are described that might assist digestion and liquefaction of seed proteins and oils. Finally, several novel putative proteins are described with no known function that might affect plant physiology or act as antimicrobials.


Subject(s)
Cystatins/genetics , Heteroptera/genetics , Transcription, Genetic , Amino Acid Sequence , Animal Feed , Animals , Conserved Sequence , DNA, Complementary/genetics , Expressed Sequence Tags , Molecular Sequence Data , Polymerase Chain Reaction , Saliva/physiology , Salivary Glands/physiology , Salivary Proteins and Peptides/genetics , Seeds , Sequence Alignment
14.
Int J Parasitol ; 36(4): 415-22, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16500661

ABSTRACT

The cell-associated and extracellular peptidases of Herpetomonas megaseliae grown in brain-heart infusion and in modified Roitman's complex media were analyzed by measuring peptidase activity on gelatin, casein and hemoglobin in zymograms. Casein was the best proteinaceous substrate for the peptidase detection on both growth conditions. However, no proteolytic activity was detected when hemoglobin was used. Our results showed that cellular cysteine peptidase (115-100, 40 and 35 kDa) and metallopeptidase (70 and 60 kDa) activities were detected on both media in casein and gelatin zymograms. Additionally, the use of casein in the gel revealed a distinct acidic metallopeptidase of 50 kDa when the parasite was cultured in the modified Roitman's complex medium. Irrespective of the culture medium composition, H. megaseliae released metallopeptidases exclusively in the extracellular environment. The presence of gp63-like molecules on the H. megaseliae surface was shown by flow cytometry using anti-gp63 antibody raised against recombinant gp63 from Leishmania mexicana. The pre-treatment of parasites with phospholipase C reduced the number of gp63-positive cells, suggesting that these molecules were glycosylphosphatidylinositol-anchored to the surface. Additionally, the supernatant obtained from phospholipase C-treated cells and probed with anti-cross-reacting determinant confirmed that at least a 52 kDa gp63-like molecule is glycosylphosphatidylinositol-anchored. Furthermore, we assessed a possible function for the gp63-like molecules in H. megaseliae on the interaction with explanted guts of its original host, Megaselia scalaris, and with an experimental model employing Aedes aegypti. Parasites pre-treated with either anti-gp63 antibody or phospholipase C showed a significant reduction in the adhesion to M. scalaris and A. aegypti guts. Similarly, the pre-treatment of the explanted guts with purified gp63 diminished the interaction process. Collectively, these results corroborate the ubiquitous existence of gp63 homologues in insect trypanosomatids and the potential adhesion of these molecules to invertebrate host tissues.


Subject(s)
Metalloendopeptidases/physiology , Peptide Hydrolases/physiology , Trypanosomatina/physiology , Aedes/parasitology , Animals , Cell Adhesion/physiology , Culture Media , Diptera/parasitology , Flow Cytometry/methods , Host-Parasite Interactions , Insect Vectors/parasitology , Intestines/parasitology , Metalloendopeptidases/metabolism , Peptide Hydrolases/metabolism , Trypanosomatina/drug effects , Trypanosomatina/metabolism , Type C Phospholipases/pharmacology
15.
Int J Parasitol ; 36(2): 165-73, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16337632

ABSTRACT

Platelet-activating factor is a phospholipid mediator that exhibits a wide variety of physiological and pathophysiological effects, including induction of inflammatory response, chemotaxis and cellular differentiation. Trypanosoma cruzi, the etiological agent of Chagas' disease, is transmitted by triatomine insects and while in the triatomine midgut the parasite differentiates from a non-infective epimastigote stage into the pathogenic trypomastigote metacyclic form. We have previously demonstrated that platelet activating factor triggers in vitro cell differentiation of T. cruzi. Here we show a platelet activating factor-like activity isolated from lipid extract of T. cruzi epimastigotes incubated in the presence of [14C]acetate. Trypanosoma cruzi-platelet activating factor-like lipid induced the aggregation of rabbit platelets, which was prevented by platelet activating factor-acetylhydrolase. Mouse macrophage infection by T. cruzi was stimulated when epimastigotes were kept for 5 days in the presence of T. cruzi-platelet activating factor, before interacting with the macrophages. The differentiation of epimastigotes into metacyclic trypomastigotes was also triggered by T. cruzi-platelet activating factor. These effects were abrogated by a platelet activating factor antagonist, WEB 2086. Polyclonal antibody raised against mouse platelet activating factor receptor showed labelling for T. cruzi epimastigotes using immunoblotting and immunofluorescence assays. These data suggest that T. cruzi contain the components of an autocrine platelet activating factor-like ligand-receptor system that modulates cell differentiation towards the infectious stage.


Subject(s)
Macrophages/parasitology , Platelet Activating Factor/analysis , Protozoan Proteins/analysis , Trypanosoma cruzi/chemistry , Animals , Blotting, Western/methods , Fluorescent Antibody Technique , Life Cycle Stages , Mice , Platelet Activating Factor/pharmacology , Platelet Aggregation , Protozoan Proteins/pharmacology , Rabbits , Trypanosoma cruzi/growth & development
16.
Int J Parasitol ; 36(1): 47-56, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16310789

ABSTRACT

In this study, we report the ultrastructural and growth alterations caused by cysteine peptidase inhibitors on the plant trypanosomatid Phytomonas serpens. We showed that the cysteine peptidase inhibitors at 10 microM were able to arrest cellular growth as well as promote alterations in the cell morphology, including the parasites becoming short and round. Additionally, iodoacetamide induced ultrastructural alterations, such as disintegration of cytoplasmic organelles, swelling of the nucleus and kinetoplast-mitochondrion complex, which culminated in parasite death. Leupeptin and antipain induced the appearance of microvillar extensions and blebs on the cytoplasmic membrane, resembling a shedding process. A 40 kDa cysteine peptidase was detected in hydrophobic and hydrophilic phases of P. serpens cells after Triton X-114 extraction. Additionally, we have shown through immunoblotting that anti-cruzipain polyclonal antibodies recognised two major polypeptides in P. serpens, including a 40 kDa component. Flow cytometry analysis confirmed that this cruzipain-like protein has a location on the cell surface. Ultrastructural immunocytochemical analysis demonstrated the presence of the cruzipain-like protein on the surface and in small membrane fragments released from leupeptin-treated parasites. Furthermore, the involvement of cysteine peptidases of P. serpens in the interaction with explanted salivary glands of the phytophagous insect Oncopeltus fasciatus was also investigated. When P. serpens cells were pre-treated with either cysteine peptidase inhibitors or anti-cruzipain antibody, a significant reduction of the interaction process was observed. Collectively, these results suggest that cysteine peptidases participate in several biological processes in P. serpens including cell growth and interaction with the invertebrate vector.


Subject(s)
Cysteine Proteinase Inhibitors/pharmacology , Trypanosomatina/growth & development , Animals , Antibodies, Protozoan/immunology , Antipain/pharmacology , Cell Division , Cells, Cultured , Cystatins/pharmacology , Cysteine Endopeptidases/immunology , Cysteine Endopeptidases/metabolism , Detergents/pharmacology , Flow Cytometry/methods , Heteroptera , Immunohistochemistry/methods , Iodoacetamide/pharmacology , Leucine/analogs & derivatives , Leucine/pharmacology , Leupeptins/pharmacology , Membrane Proteins/metabolism , Microscopy, Electron/methods , Octoxynol , Plant Proteins/metabolism , Polyethylene Glycols/pharmacology , Protozoan Proteins , Salivary Glands/metabolism , Trypanosomatina/drug effects , Trypanosomatina/ultrastructure
17.
Front Immunol ; 7: 62, 2016.
Article in English | MEDLINE | ID: mdl-26925065

ABSTRACT

Chagas disease is a severe illness, which can lead to death if the patients are not promptly treated. The disease is caused by the protozoan parasite Trypanosoma cruzi, which is mostly transmitted by a triatomine insect vector. There are 8-10 million people infected with T. cruzi in the world, but the transmission of such disease by bugs occurs only in the Americas, especially Latin America. Chronically infected patients will develop cardiac diseases (30%) and up digestive, neurological, or mixed disorders (10%). Lysophosphatidylcholine (LPC) is the major phospholipid component of oxidized low-density lipoproteins associated with atherosclerosis-related tissue damage. Insect-derived LPC powerfully attracts inflammatory cells to the site of the insect bite, enhances parasite invasion, and inhibits the production of nitric oxide by T. cruzi-stimulated macrophages. The recognition of the ubiquitous presence of LPC on the vector saliva, its production by the parasite itself and its presence both on patient plasma and its role on diverse host × parasite interaction systems lead us to compare its distribution in nature with the title of the famous Beatles song "Here, There and Everywhere" recorded exactly 50 years ago in 1966. Here, we review the major findings pointing out the role of such molecule as an immunosignaling modulator of Chagas disease transmission. Also, we believe that future investigation of the connection of this ubiquity and the immune role of such molecule may lead in the future to novel methods to control parasite transmission, infection, and pathogenesis.

18.
Acta Trop ; 164: 69-76, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27591136

ABSTRACT

The most commonly used drugs against visceral leishmaniasis are based on pentavalent antimonial compounds, which have played a fundamental role in therapy for over 70 years. However, the treatment is painful and has severe toxic side effects that can be fatal. Antimonial resistance is spreading and reaching alarming proportions. Linalool and eugenol have been shown to kill Leishmania (L.) amazonensis and Trypanosoma cruzi at low doses. In the present study, we demonstrate the effects of linalool and eugenol, components of essential oils, on Leishmania (L.) infantum chagasi, one of the causative agents of visceral leishmaniasis. We compared the effects of those compounds to the effects of glucantime, a positive control. In L. infantum chagasi killing assays, the LD50 for eugenol was 220µg/ml, and that for linalool was 550µg/ml. L. infantum chagasi was added to cultures of peritoneal mouse macrophages for four hours prior to drug treatment. Eugenol and linalool significantly decreased the number of parasites within the macrophages. Eugenol and linalool enhanced the activities of the L. infantum chagasi protein kinases PKA and PKC. Linalool also decreased L. infantum chagasi oxygen consumption. In conclusion, both linalool and eugenol promoted a decrease in the proliferation and viability of L. infantum chagasi. These effects were more pronounced during the interaction between the parasites and peritoneal mouse macrophages.


Subject(s)
Eugenol/pharmacology , Insecticides/pharmacology , Leishmania infantum/drug effects , Macrophages, Peritoneal/drug effects , Monoterpenes/pharmacology , Acyclic Monoterpenes , Animals , Macrophages, Peritoneal/parasitology , Mice, Inbred BALB C
19.
Res Microbiol ; 154(10): 689-95, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14643407

ABSTRACT

Platelet-activating factor (PAF) has been shown to induce the differentiation of several cell types. In this work, we evaluated the effects of PAF on the formation of sclerotic cells of Fonsecaea pedrosoi, the major causative agent of chromoblastomycosis. Cell differentiation was evaluated by light and electron microscopy, which showed that treatment of mycelial forms with PAF results in the generation of sclerotic bodies with typical morphological characteristics. Biochemical features of PAF-induced sclerotic cells were also analyzed and compared with those from sclerotic forms induced by propranolol, a previously described differentiating agent of F. pedrosoi. Chemical analyses of lipid and carbohydrate components from PAF- or propranolol-induced sclerotic bodies revealed that palmitic, stearic, oleic and linoleic acids were the major fatty acid components, while glucose, mannose, galactose and rhamnose were detected as the principal sugar constituents in these cells. Surface carbohydrate components of PAF- and propranolol-induced sclerotic cells were also evaluated, by flow cytometry analysis with twelve different lectins. The profile of reactivity of PAF- or propranolol-induced fungal cells with lectins was also very similar. Hydrolysis of the synthetic substrate p-nitrophenylphosphate by fungal cells demonstrated that the addition of PAF or propranolol to the mycelial cultures similarly promotes a significant increase in ecto-phosphatase activity. These results indicate that the differentiation of F. pedrosoi mycelial cells induced by PAF generates authentic sclerotic forms, as confirmed by the analysis of morphological and biochemical attributes. Since PAF is synthesized in normal conditions by the human host, these observations may have a correlation with the differentiation of F. pedrosoi in vivo.


Subject(s)
Ascomycota/drug effects , Ascomycota/growth & development , Platelet Activating Factor/pharmacology , Ascomycota/chemistry , Ascomycota/enzymology , Chromoblastomycosis/microbiology , Culture Media , Fatty Acids/analysis , Humans , Monosaccharides/analysis , Phosphoric Monoester Hydrolases/metabolism , Propranolol/pharmacology
20.
Res Microbiol ; 155(3): 136-43, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15059625

ABSTRACT

The available therapy for leishmaniasis, which affects 2 million people per annum, still causes serious side effects. The polyphenolic-rich extract from the husk fiber of Cocos nucifera Linn. (Palmae) presents antibacterial and antiviral activities, also inhibiting lymphocyte proliferation, as shown by our group in previous works. In the present study, the in vitro leishmanicidal effects of C. nucifera on Leishmania amazonensis were evaluated. The minimal inhibitory concentration of the polyphenolic-rich extract from C. nucifera to completely abrogate parasite growth was 10 microg/ml. Pretreatment of peritoneal mouse macrophages with 10 microg/ml of C. nucifera polyphenolic-rich extract reduced approximately 44% the association index between these macrophages and L. amazonensis promastigotes, with a concomitant increase of 182% in nitric oxide production by the infected macrophage in comparison to nontreated macrophages. These results provide new perspectives on drug development against leishmaniasis, since the extract of C. nucifera at 10 microg/ml is a strikingly potent leishmanicidal substance which inhibited the growth of both promastigote and amastigote developmental stages of L. amazonensis after 60 min, presenting no in vivo allergenic reactions or in vitro cytotoxic effects in mammalian systems.


Subject(s)
Cocos/chemistry , Leishmania/drug effects , Leishmaniasis/drug therapy , Phytotherapy/methods , Plant Extracts/pharmacology , Animals , Female , Flavonoids/pharmacology , Leishmania/growth & development , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/parasitology , Mice , Microbial Sensitivity Tests , Nitric Oxide/biosynthesis , Phenols/pharmacology , Polyphenols , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL