Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters

Publication year range
1.
Nat Methods ; 12(8): 725-31, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26121405

ABSTRACT

Antibodies are used in multiple cell biology applications, but there are no standardized methods to assess antibody quality-an absence that risks data integrity and reproducibility. We describe a mass spectrometry-based standard operating procedure for scoring immunoprecipitation antibody quality. We quantified the abundance of all the proteins in immunoprecipitates of 1,124 new recombinant antibodies for 152 chromatin-related human proteins by comparing normalized spectral abundance factors from the target antigen with those of all other proteins. We validated the performance of the standard operating procedure in blinded studies in five independent laboratories. Antibodies for which the target antigen or a member of its known protein complex was the most abundant protein were classified as 'IP gold standard'. This method generates quantitative outputs that can be stored and archived in public databases, and it represents a step toward a platform for community benchmarking of antibody quality.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibody Specificity , Chromatin/chemistry , Immunoprecipitation/methods , Proteomics/methods , Cloning, Molecular , Computational Biology/methods , Escherichia coli/metabolism , HEK293 Cells , Humans , Immunoglobulin Fragments/chemistry , Immunoglobulin G/chemistry , Mass Spectrometry/methods , Peptide Library , Proteins/chemistry , Proteome , Reproducibility of Results
2.
PLoS Genet ; 10(7): e1004508, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25078964

ABSTRACT

The phenotypic effect of some single nucleotide polymorphisms (SNPs) depends on their parental origin. We present a novel approach to detect parent-of-origin effects (POEs) in genome-wide genotype data of unrelated individuals. The method exploits increased phenotypic variance in the heterozygous genotype group relative to the homozygous groups. We applied the method to >56,000 unrelated individuals to search for POEs influencing body mass index (BMI). Six lead SNPs were carried forward for replication in five family-based studies (of ∼4,000 trios). Two SNPs replicated: the paternal rs2471083-C allele (located near the imprinted KCNK9 gene) and the paternal rs3091869-T allele (located near the SLC2A10 gene) increased BMI equally (beta = 0.11 (SD), P<0.0027) compared to the respective maternal alleles. Real-time PCR experiments of lymphoblastoid cell lines from the CEPH families showed that expression of both genes was dependent on parental origin of the SNPs alleles (P<0.01). Our scheme opens new opportunities to exploit GWAS data of unrelated individuals to identify POEs and demonstrates that they play an important role in adult obesity.


Subject(s)
Glucose Transport Proteins, Facilitative/genetics , Obesity/genetics , Polymorphism, Single Nucleotide/genetics , Potassium Channels, Tandem Pore Domain/genetics , Adult , Body Mass Index , Female , Gene Expression Regulation , Genetic Predisposition to Disease , Genome-Wide Association Study , Genomic Imprinting , Genotype , Humans , Male , Obesity/pathology , White People/genetics
3.
Methods ; 81: 66-73, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25770357

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key regulator of circulating low density lipoprotein cholesterol (LDL-C) levels. Besides its full-length mature form, multiple variants of PCSK9 have been reported such as forms that are truncated, mutated and/or with posttranslational modifications (PTMs). Previous studies have demonstrated that most of these variants affect PCSK9's function and thereby LDL-C levels. Commercial ELISA kits are available for quantification of PCSK9, but do not allow discrimination between the various forms and PTMs of the protein. To address this issue and given the complexity and wide dynamic range of the plasma proteome, we have developed a mass spectrometric immunoassay coupled to selected reaction monitoring (MSIA-SRM) for the multiplexed quantification of several forms of circulating PCSK9 in human plasma. Our MSIA-SRM assay quantifies peptides spanning the various protein domains and the S688 phosphorylation site. The assay was applied in two distinct cohorts of obese patients and healthy pregnant women stratified by their circulating LDL-C levels. Seven PCSK9 peptides were monitored in plasma samples: one in the prodomain prior to the autocleavage site at Q152, one in the catalytic domain prior to the furin cleavage site at R218, two in the catalytic domain following R218, one in the cysteine and histidine rich domain (CHRD) and the C-terminal peptide phosphorylated at S688 and unmodified. The latter was not detectable in sufficient amounts to be quantified in human plasma. All peptides were measured with high reproducibility and with LLOQ and LOD below the clinical range. The abundance of 5 of the 6 detectable PCSK9 peptides was higher in obese patients stratified with high circulating LDL-C levels as compared to those with low LDL-C (p < 0.05). The same 5 peptides showed good and statistically significant correlations with LDL-C levels (0.55 < r < 0.65; 0.0002 ⩽ p ⩽ 0.002), but not the S688 phosphorylated peptide. However, this phosphopeptide was significantly correlated with insulin resistance (r = 0.48; p = 0.04). In the pregnant women cohort, none of the peptides were associated to LDL-C levels. However, the 6 detectable PCSK9 peptides, but not PCSK9 measured by ELISA, were significantly correlated with serum triglyceride levels in this cohort. Our results also suggest that PCSK9 circulates with S688 phosphorylated at high stoichiometry. In summary, we have developed and applied a robust and sensitive MSIA-SRM assay for the absolute quantification of all PCSK9 domains and a PTM in human plasma. This assay revealed novel relationships between PCSK9 and metabolic phenotypes, as compared to classical ELISA assays.


Subject(s)
Immunoassay/methods , Mass Spectrometry/methods , Proprotein Convertases/blood , Serine Endopeptidases/blood , Adolescent , Adult , Female , Humans , Insulin Resistance , Lipoproteins, LDL/blood , Male , Middle Aged , Obesity/blood , Phenotype , Pregnancy , Proprotein Convertase 9 , Proprotein Convertases/metabolism , Protein Processing, Post-Translational , Proteolysis , Serine Endopeptidases/metabolism , Triglycerides/blood , Young Adult
4.
Clin Proteomics ; 12(1): 2, 2015.
Article in English | MEDLINE | ID: mdl-25678897

ABSTRACT

BACKGROUND: The anatomy of PFO suggests that it can allow thrombi and potentially harmful circulatory factors to travel directly from the venous to the arterial circulation - altering circulatory phenotype. Our previous publication using high-resolution LC-MS/MS to profile protein and peptide expression patterns in plasma showed that albumin was relatively increased in donor samples from PFO-related than other types of ischemic strokes. Since albumin binds a host of molecules and acts as a carrier for lipoproteins, small molecules and drugs, we decided to investigate the albumin-bound proteins (in a similar sample cohort) in an effort to unravel biological changes and potentially discover biomarkers related to PFO-related stroke and PFO endovascular closure. METHODS: The method used in this study combined albumin immuno-enrichment with high resolution LC-MS in order to specifically capture and quantify the albumin-bound proteins. Subsequently, we measured cholesterol and HDL in a larger, separate cohort of PFO stroke patients, pre and post closure. RESULTS: The results demonstrated that a number of proteins were specifically associated with albumin in samples with and without endovascular closure of the PFO, and that the protein profiles were very different. Eight proteins, typically associated with HDL were common to both sample sets and quantitatively differently abundant. Pathway analysis of the MS results suggested that enhanced cholesterol efflux and reduced lipid oxidation were associated with PFO closure. Measurement of total cholesterol and HDL in a larger cohort of PFO closure samples using a colorimetric assay was consistent with the proteomic predictions. CONCLUSIONS: The collective data presented in this study demonstrate that analysis of albumin-bound proteins could provide a valuable tool for biomarker discovery on the effects of PFO endovascular closure. In addition, the results suggest that PFO endovascular closure can potentially have effects on HDL, cholesterol and albumin-bound ApoA-I abundance, therefore possibly providing benefits in cardioprotective functions.

5.
Proteomics ; 14(12): 1445-56, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24668948

ABSTRACT

The detection and quantification of insulin and its therapeutic analogs is important for medical, sports doping, and forensic applications. Synthetic variants contain slight sequence variations to affect bioavailability. To reduce sample handling bias, a universal extraction method is required for simultaneous extraction of endogenous and variant insulins with subsequent targeted quantification by LC-MS. A mass spectrometric immunoassay (MSIA), a multiplexed assay for intact insulin and its analogues that couples immunoenrichment with high resolution and accurate mass (HR/AM) spectrometric detection across the clinical range is presented in this report. The assay is sensitive, selective, semi-automated and can potentially be applied to detect new insulin isoforms allowing their further incorporation into second or third generation assays.


Subject(s)
Chromatography, Liquid/methods , High-Throughput Screening Assays , Immunoassay/methods , Insulin/analogs & derivatives , Insulin/blood , Proteomics , Tandem Mass Spectrometry/methods , Humans , Protein Isoforms
6.
J Proteome Res ; 13(2): 1077-87, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24392642

ABSTRACT

Apolipoprotein E (ApoE) is a polymorphic protein that plays a major role in lipid metabolism in the central nervous system and periphery. It has three common allelic isoforms, ApoE2, ApoE3, and ApoE4, that differ in only one or two amino acids. ApoE isoforms have been associated with the occurrence and progression of several pathological conditions, such as coronary atherosclerosis and Alzheimer's disease. The aim of this study was to develop a mass spectrometry (MS)-based assay for absolute quantification of ApoE isoforms in cerebrospinal fluid and plasma samples using isotope-labeled peptides. The assay included five tryptic peptides: CLAVYQAGAR (ApoE2), LGADMEDVCGR (ApoE2 and 3), LAVYQAGAR (ApoE3 and 4), LGADMEDVR (ApoE4), and LGPLVEQGR (total ApoE). Both cerebrospinal fluid and plasma samples were assayed to validate the method. The digestion yield and the extension of chemical modifications in selected amino acid residues (methionine oxidation, glutamine deamidation, and cyclization of N-terminus carbamidomethylcysteine) were also studied. The ApoE phenotype was successfully assigned to all samples analyzed in a blinded manner. The method showed good linearity (R(2) > 0.99) and reproducibility (within laboratory imprecision <13%). The comparison of the MS-based assay with an ELISA for total ApoE concentration showed a moderate correlation (R(2) = 0.59). This MS-based assay can serve as an important tool in clinical studies aiming to elucidate the association between ApoE genotype, total ApoE, and ApoE isoform concentrations in various disorders related to ApoE polymorphisms.


Subject(s)
Apolipoproteins E/chemistry , Peptides/chemistry , Protein Isoforms/chemistry , Amino Acid Sequence , Apolipoproteins E/analysis , Chromatography, Liquid , Mass Spectrometry , Molecular Sequence Data , Oxidation-Reduction , Protein Isoforms/analysis , Trypsin/chemistry
7.
Expert Rev Proteomics ; 11(3): 371-81, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24754513

ABSTRACT

Apolipoprotein E (ApoE) is an abundant plasma protein that interacts with low density lipoprotein receptors and other proteins, participating in the transport of cholesterol and lipids. Research has revealed many other roles for this multifunctional protein. ApoE is polymorphic and exists in three major isoforms: ApoE2, ApoE3 (the most common isoform) and ApoE4, which differ by only one amino acid, at positions 112 and 158. The altered binding to lipids and receptors by ApoE isoforms E2 and E4 results in an elevated risk for neurological, cerebrovascular and cardiovascular pathologies. Most notably, ApoE4 is associated with an elevated risk (relative to E3) for Alzheimer's disease. The application of mass spectrometry for genotyping and also direct measurement of ApoE protein isoforms is a recent development and is well suited to high-throughput applications. The precise quantification of protein isoforms will allow better characterization of effects resulting from heterozygous APOE genotypes.


Subject(s)
Alzheimer Disease/metabolism , Apolipoproteins E/metabolism , Cardiovascular Diseases/metabolism , Neurodegenerative Diseases/metabolism , Apolipoproteins E/genetics , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proteomics
8.
Clin Chem Lab Med ; 52(9): 1251-63, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24762644

ABSTRACT

The analysis of intact parathyroid hormone (PTH) (PTH1-84) is useful in the diagnosis of hyper- and hypocalcaemia, hyperparathyroidism, and in the prevention of bone mineral disorders in renal patients. The analysis is complicated by the presence of PTH fragments, which may accumulate in renal failure and cross-react in immunoassays, including the most recent third-generation immunoassays. Large variability exists between different commercially available assays. This article reviews the current literature on PTH testing, with emphasis on the use of mass spectrometry-based methods, and considers the important sources of variation which still need to be addressed prior to the development of much needed candidate reference methods for PTH analysis. Recently, mass spectrometric methods have been developed for the quantitation of PTH1-84 using surrogate tryptic peptides, but even these methods are subject to significant interferences due to the presence of newly observed modified PTH species, such as oxidised and phosphorylated PTH variants, which can accumulate in patient samples. Further work, including: 1) the use of high-resolution mass spectrometry; and 2) the analysis of PTH without prior protease digestion, is required before these approaches can be considered as reference methods against which other methods should be harmonised.


Subject(s)
Blood Chemical Analysis/methods , Mass Spectrometry/methods , Parathyroid Hormone/blood , Blood Chemical Analysis/trends , Chromatography, Liquid/methods , Genetic Variation , Humans , Immunoassay/methods , Oxidation-Reduction , Parathyroid Hormone/chemistry , Parathyroid Hormone/genetics , Peptide Fragments/blood , Peptide Fragments/chemistry , Peptide Fragments/genetics , Phosphorylation , Proteolysis , Reference Values
9.
Arthritis Rheum ; 65(4): 981-92, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23400684

ABSTRACT

OBJECTIVE: The pathophysiology of the most common joint disease, osteoarthritis (OA), remains poorly understood. Since synovial fluid (SF) bathes joint cartilage and synovium, we reasoned that a comparative analysis of its protein constituents in health and OA could identify pathways involved in joint damage. We undertook this study to perform a proteomic analysis of knee SF from OA patients and control subjects and to compare the results to microarray expression data from cartilage and synovium. METHODS: Age-matched knee SF samples from 10 control subjects, 10 patients with early-stage OA, and 10 patients with late-stage OA were compared using 2-dimensional difference-in-gel electrophoresis and mass spectrometry (MS). MS with a multiplexed peptide selected reaction monitoring assay was used to confirm differential expression of a subset of proteins in an independent OA patient cohort. Proteomic results were analyzed by Ingenuity Pathways Analysis and compared to published synovial tissue and cartilage messenger RNA profiles. RESULTS: Sixty-six proteins were differentially present in healthy and OA SF. Three major pathways were identified among these proteins: the acute-phase response signaling pathway, the complement pathway, and the coagulation pathway. Differential expression of 5 proteins was confirmed by selected reaction monitoring assay. A focused analysis of transcripts corresponding to the differentially present proteins indicated that both synovial and cartilage tissues may contribute to the OA SF proteome. CONCLUSION: Proteins involved in the acute-phase response signaling pathway, the complement pathway, and the coagulation pathway are differentially regulated in SF from OA patients, suggesting that they contribute to joint damage. Validation of these pathways and their utility as biomarkers or therapeutic targets in OA is warranted.


Subject(s)
Cartilage/metabolism , Osteoarthritis, Knee/metabolism , Proteome/analysis , RNA, Messenger/analysis , Synovial Fluid/metabolism , Synovial Membrane/metabolism , Acute-Phase Proteins/genetics , Acute-Phase Proteins/metabolism , Acute-Phase Reaction/metabolism , Aged , Blood Coagulation Factors/genetics , Blood Coagulation Factors/metabolism , Case-Control Studies , Complement System Proteins/genetics , Complement System Proteins/metabolism , Electrophoresis, Gel, Two-Dimensional , Female , Gene Expression Profiling , Humans , Knee Joint/metabolism , Male , Mass Spectrometry , Middle Aged , Osteoarthritis, Knee/genetics , Synovial Fluid/chemistry
10.
J Proteome Res ; 11(8): 3986-95, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22639787

ABSTRACT

Over the past few years, mass spectrometry has emerged as a technology to complement and potentially replace standard immunoassays in routine clinical core laboratories. Application of mass spectrometry to protein and peptide measurement can provide advantages including high sensitivity, the ability to multiplex analytes, and high specificity at the amino acid sequence level. In our previous study, we demonstrated excellent reproducibility of mass spectrometry-selective reaction monitoring (MS-SRM) assays when applying standardized standard operating procedures (SOPs) to measure synthetic peptides in a complex sample, as lack of reproducibility has been a frequent criticism leveled at the use of mass spectrometers in the clinical laboratory compared to immunoassays. Furthermore, an important caveat of SRM-based assays for proteins is that many low-abundance analytes require some type of enrichment before detection with MS. This adds a level of complexity to the procedure and the potential for irreproducibility increases, especially across different laboratories with different operators. The purpose of this study was to test the interlaboratory reproducibility of SRM assays with various upfront enrichment strategies and different types of clinical samples (representing real-world body fluids commonly encountered in routine clinical laboratories). Three different, previously published enrichment strategies for low-abundance analytes and a no-enrichment strategy for high-abundance analytes were tested across four different laboratories using different liquid chromatography-SRM (LC-SRM) platforms and previously developed SOPs. The results demonstrated that these assays were indeed reproducible with coefficients of variation of less than 30% for the measurement of important clinical proteins across all four laboratories in real world samples.


Subject(s)
Blood Chemical Analysis/standards , Laboratories/standards , Mass Spectrometry/standards , Amino Acid Sequence , Chromatography, Reverse-Phase , Female , Human Growth Hormone/urine , Humans , Limit of Detection , Male , Molecular Sequence Data , Peptide Fragments/chemistry , Prostate-Specific Antigen/blood , Prostatic Neoplasms/blood , Reference Standards , Reproducibility of Results , Seminal Plasma Proteins/chemistry
11.
PLoS Pathog ; 6(6): e1000957, 2010 Jun 24.
Article in English | MEDLINE | ID: mdl-20585630

ABSTRACT

Mycobacterium tuberculosis (Mtb) requires the ESX1 specialized protein secretion system for virulence, for triggering cytosolic immune surveillance pathways, and for priming an optimal CD8+ T cell response. This suggests that ESX1 might act primarily by destabilizing the phagosomal membrane that surrounds the bacterium. However, identifying the primary function of the ESX1 system has been difficult because deletion of any substrate inhibits the secretion of all known substrates, thereby abolishing all ESX1 activity. Here we demonstrate that the ESX1 substrate EspA forms a disulfide bonded homodimer after secretion. By disrupting EspA disulfide bond formation, we have dissociated virulence from other known ESX1-mediated activities. Inhibition of EspA disulfide bond formation does not inhibit ESX1 secretion, ESX1-dependent stimulation of the cytosolic pattern receptors in the infected macrophage or the ability of Mtb to prime an adaptive immune response to ESX1 substrates. However, blocking EspA disulfide bond formation severely attenuates the ability of Mtb to survive and cause disease in mice. Strikingly, we show that inhibition of EspA disulfide bond formation also significantly compromises the stability of the mycobacterial cell wall, as does deletion of the ESX1 locus or individual components of the ESX1 system. Thus, we demonstrate that EspA is a major determinant of ESX1-mediated virulence independent of its function in ESX1 secretion. We propose that ESX1 and EspA play central roles in the virulence of Mtb in vivo because they alter the integrity of the mycobacterial cell wall.


Subject(s)
Bacterial Proteins/metabolism , Cell Wall/metabolism , Tuberculosis/pathology , Virulence , Animals , Disulfides/metabolism , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/pathogenicity , Phagosomes , Survival Rate , Tuberculosis/immunology , Tuberculosis/microbiology
12.
J Proteome Res ; 10(1): 133-42, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-20499897

ABSTRACT

The accurate diagnosis of Trisomy 21 requires invasive procedures that carry a risk of miscarriage. The current state-of-the-art maternal serum screening tests measure levels of PAPP-A, free bhCG, AFP, and uE3 in various combinations with a maximum sensitivity of 60-75% and a false positive rate of 5%. There is currently an unmet need for noninvasive screening tests with high selectivity that can detect pregnancies at risk, preferably within the first trimester. The aim of this study was to apply proteomics and mass spectrometry techniques for the discovery of new putative biomarkers for Trisomy 21 in first trimester maternal serum coupled with the immediate development of quantitative selective reaction monitoring (SRM) assays. The results of the novel workflow were 2-fold: (1) we identified a list of differentially expressed proteins in Trisomy 21 vs Normal samples, including PAPP-A, and (2) we developed a multiplexed, high-throughput SRM assay for verification of 12 new putative markers identified in the discovery experiments. To narrow down the initial large list of differentially expressed candidates resulting from the discovery experiments, we incorporated receiver operating characteristic (ROC) curve algorithms early in the data analysis process. We believe this approach provides a substantial advantage in sifting through the large and complex data typically obtained from discovery experiments. The workflow efficiently mined information derived from high-resolution LC-MS/MS discovery data for the seamless construction of rapid, targeted assays that were performed on unfractionated serum digests. The SRM assay lower limit of detection (LLOD) for the target peptides in a background of digested serum matrix was approximately 250-500 attomoles on column and the limit of accurate quantitation (LOQ) was approximately 1-5 femtomoles on column. The assay error as determined by coefficient of variation at LOQ and above ranged from 0 to 16%. The workflow developed in this study bridges the gap between proteomic biomarker discovery and translation into a clinical research environment. Specifically, for Trisomy 21, the described multiplexed SRM assay provides a vehicle for high-throughput verification of these, and potentially other, peptide candidates on larger sample cohorts.


Subject(s)
Biomarkers/blood , Down Syndrome/diagnosis , Mass Spectrometry/methods , Pregnancy Trimester, First , Prenatal Diagnosis/methods , Proteomics/methods , Area Under Curve , Blood Proteins/analysis , Blood Proteins/chemistry , Female , Humans , Peptide Fragments/analysis , Peptide Fragments/chemistry , Pregnancy , ROC Curve
13.
Anal Chem ; 83(1): 240-5, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21141837

ABSTRACT

Aberrant protein glycosylation has been shown to be associated with disease progression and can be potentially useful as a biomarker if disease-specific glycosylation can be identified. However, high-throughput quantitative analysis of protein glycosylation derived from clinical specimens presents technical challenges due to the typically high complexity of biological samples. In this study, a mass spectrometry-based analytical method was developed to measure different glycosylated forms of glycoproteins from complex biological samples by coupling glycopeptide extraction strategy for specific glycosylation with selected reaction monitoring (SRM). Using this method, we monitored glycosylated and sialylated prostate-specific antigen (PSA) in prostate cancer and noncancer tissues. Results of this study demonstrated that the relative abundance of glycosylated PSA isoforms were not correlated with total PSA protein levels measured in the same prostate cancer tissue samples by clinical immunoassay. Furthermore, the sialylated PSA was differentially distributed in cancer and noncancer tissues. These data suggest that differently glycosylated isoforms of glycoproteins can be quantitatively analyzed and may provide unique information for clinically relevant studies.


Subject(s)
N-Acetylneuraminic Acid/metabolism , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/metabolism , Female , Glycopeptides/isolation & purification , Glycopeptides/metabolism , Glycosylation , Humans , Immunoassay , Male , Mass Spectrometry , Peptide Fragments/metabolism , Prostate-Specific Antigen/chemistry , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Time Factors
15.
Clin Chem ; 56(2): 281-90, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20022981

ABSTRACT

BACKGROUND: Parathyroid hormone (PTH) assays able to distinguish between full-length PTH (PTH1-84) and N-terminally truncated PTH (PTH7-84) are of increasing significance in the accurate diagnosis of endocrine and osteological diseases. We describe the discovery of new N-terminal and C-terminal PTH variants and the development of selected reaction monitoring (SRM)-based immunoassays specifically designed for the detection of full-length PTH [amino acid (aa)1-84] and 2 N-terminal variants, aa7-84 and aa34-84. METHODS: Preparation of mass spectrometric immunoassay pipettor tips and MALDI-TOF mass spectrometric analysis were carried out as previously described. We used novel software to develop SRM assays on a triple-quadrupole mass spectrometer. Heavy isotope-labeled versions of target peptides were used as internal standards. RESULTS: Top-down analysis of samples from healthy individuals and renal failure patients revealed numerous PTH variants, including previously unidentified aa28-84, aa48-84, aa34-77, aa37-77, and aa38-77. Quantitative SRM assays were developed for PTH1-84, PTH7-84, and variant aa34-84. Peptides exhibited linear responses (R(2) = 0.90-0.99) relative to recombinant human PTH concentration limits of detection for intact PTH of 8 ng/L and limits of quantification of 16-31 ng/L depending on the peptide. Standard error of analysis for all triplicate measurements was 3%-12% for all peptides, with <5% chromatographic drift between replicates. The CVs of integrated areas under the curve for 54 separate measurements of heavy peptides were 5%-9%. CONCLUSIONS: Mass spectrometric immunoassays identified new clinical variants of PTH and provided a quantitative assay for these and previously identified forms of PTH.


Subject(s)
Immunoassay/methods , Kidney Failure, Chronic/diagnosis , Parathyroid Hormone/blood , Peptide Fragments/blood , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Aged , Amino Acid Sequence , Area Under Curve , Female , Humans , Kidney Failure, Chronic/blood , Limit of Detection , Male , Molecular Sequence Data
16.
J Appl Lab Med ; 3(5): 788-798, 2019 03.
Article in English | MEDLINE | ID: mdl-31639754

ABSTRACT

BACKGROUND: We compared the rates of intraoperative parathyroid hormone (PTH) decline using the Siemens Immulite® Turbo PTH and Roche Elecsys® short turnaround time PTH assays in 95 consecutive surgical patients to investigate analytical and turnaround time (TAT) differences between the tests performed in the operating room (OR) vs the central clinical chemistry laboratory (CCL). METHODS: Serial blood samples from 95 patients undergoing parathyroidectomy were collected and measured using the 2 immunoassays. Specimens from the first 15 patients were measured simultaneously in the OR and CCL and used for the TAT study. In addition to 2 baseline samples, specimens were collected at 5, 10, and 15 min (for some patients, >15 min) after parathyroidectomy. RESULTS: In the TAT study, a significant difference was observed (OR median 20 min vs CCL median 27 min; P < 0.05). Of the 95 patient series, slower rates of parathyroid hormone decrease were observed in approximately 20% of the patients when comparing the Roche with the Immulite immunoassay. CONCLUSIONS: There was a slightly longer TAT in the CCL compared with running the assay directly within the OR (median difference of approximately 7 min). For a majority of the patients, both methods showed equivalent rates of PTH decline; however, for approximately 20% of the patients, there was a slower rate of PTH decline using the Roche assay.


Subject(s)
Clinical Chemistry Tests/methods , Hyperparathyroidism, Primary/blood , Hyperparathyroidism, Primary/surgery , Immunoassay/methods , Parathyroid Hormone/blood , Parathyroidectomy/methods , Female , Humans , Intraoperative Period , Male , Middle Aged
17.
J Bioinform Comput Biol ; 5(5): 1023-45, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17933009

ABSTRACT

A high-throughput software pipeline for analyzing high-performance mass spectral data sets has been developed to facilitate rapid and accurate biomarker determination. The software exploits the mass precision and resolution of high-performance instrumentation, bypasses peak-finding steps, and instead uses discrete m/z data points to identify putative biomarkers. The technique is insensitive to peak shape, and works on overlapping and non-Gaussian peaks which can confound peak-finding algorithms. Methods are presented to assess data set quality and the suitability of groups of m/z values that map to peaks as potential biomarkers. The algorithm is demonstrated with serum mass spectra from patients with and without ovarian cancer. Biomarker candidates are identified and ranked by their ability to discriminate between cancer and noncancer conditions. Their discriminating power is tested by classifying unknowns using a simple distance calculation, and a sensitivity of 95.6% and a specificity of 97.1% are obtained. In contrast, the sensitivity of the ovarian cancer blood marker CA125 is approximately 50% for stage I/II and approximately 80% for stage III/IV cancers. While the generalizability of these markers is currently unknown, we have demonstrated the ability of our analytical package to extract biomarker candidates from high-performance mass spectral data.


Subject(s)
Biomarkers/analysis , Mass Spectrometry/statistics & numerical data , Algorithms , Biomarkers, Tumor/blood , CA-125 Antigen/blood , Computational Biology , Data Interpretation, Statistical , Female , Humans , Ovarian Neoplasms/blood , Proteome , Software , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/statistics & numerical data
18.
NPJ Aging Mech Dis ; 3: 7, 2017.
Article in English | MEDLINE | ID: mdl-28649425

ABSTRACT

Growing evidence suggests that many diseases of aging, including diseases associated with robust changes and adipose deports, may be caused by resident adult stem cell exhaustion due to the process called cellular senescence. Understanding how microRNA pathways can regulate cellular senescence is crucial for the development of novel diagnostic and therapeutic strategies to combat these pathologies. Herein, using integrated transcriptomic and semi-quantitative proteomic analysis, we provide a system level view of the regulation of human adipose-derived stem cell senescence by a subset of mature microRNAs (termed senescence-associated-microRNAs) produced by biogenesis of oncogenic MIR17HG and tumor-suppressive MIR100HG clusters. We demonstrate functional significance of these mature senescence-associated-microRNAs in the process of replicative senescence of human adipose-derived stem cells ex-vivo and define a set of senescence-associated-microRNA gene targets that are able to elicit, modulate and, most importantly, balance intimate connections between oncogenic and senescent events.

19.
Circ Res ; 90(4): 380-9, 2002 Mar 08.
Article in English | MEDLINE | ID: mdl-11884366

ABSTRACT

The identification of a majority of the polypeptides in mitochondria would be invaluable because they play crucial and diverse roles in many cellular processes and diseases. The endogenous production of reactive oxygen species (ROS) is a major limiter of life as illustrated by studies in which the transgenic overexpression in invertebrates of catalytic antioxidant enzymes results in increased lifespans. Mitochondria have received considerable attention as a principal source---and target---of ROS. Mitochondrial oxidative stress has been implicated in heart disease including myocardial preconditioning, ischemia/reperfusion, and other pathologies. In addition, oxidative stress in the mitochondria is associated with the pathogenesis of Alzheimer's disease, Parkinson's disease, prion diseases, and amyotrophic lateral sclerosis (ALS) as well as aging itself. The rapidly emerging field of proteomics can provide powerful strategies for the characterization of mitochondrial proteins. Current approaches to mitochondrial proteomics include the creation of detailed catalogues of the protein components in a single sample or the identification of differentially expressed proteins in diseased or physiologically altered samples versus a reference control. It is clear that for any proteomics approach prefractionation of complex protein mixtures is essential to facilitate the identification of low-abundance proteins because the dynamic range of protein abundance within cells has been estimated to be as high as 10(7). The opportunities for identification of proteins directly involved in diseases associated with or caused by mitochondrial dysfunction are compelling. Future efforts will focus on linking genomic array information to actual protein levels in mitochondria.


Subject(s)
Heart/physiology , Mitochondria, Heart/metabolism , Mitochondrial Proteins/metabolism , Proteome/physiology , Animals , Databases, Protein , Electrophoresis, Gel, Two-Dimensional , Humans , Mass Spectrometry , Mitochondrial Diseases/metabolism , Reactive Oxygen Species/metabolism
20.
J Proteomics ; 114: 115-24, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25462431

ABSTRACT

Generation of monoclonal antibody (mAb) libraries against antigens in complex matrices can prove a valuable analytical tool. However, delineating the specificity of newly generated antibodies is the limiting step of the procedure. Here, we propose a strategy for mAb production by injecting mice with complex biological fluid and mAb characterization by coupling immunoaffinity techniques with Mass spectrometry (immuno-MS). Mice were immunized against fractionated seminal plasma and mAbs were produced. Different immuno-MS protocols based on four types of solid support (i.e. polystyrene microtiter plates, NHS-activated agarose beads, tosyl-activated magnetic beads and MSIA™ pipette tips) were established. A well-characterized mouse monoclonal anti-KLK3 (PSA) Ab was used as a model to evaluate each protocol's robustness and reproducibility and to establish a set of criteria which would allow antigen characterization of newly developed Abs. Three of the newly generated Abs were analyzed using our optimized protocols. Analysis revealed that all assay configurations used were capable of antibody characterization. Furthermore, low-abundance antigens (e.g. ribonuclease T2) could be identified as efficiently as the high-abundance ones. Our data suggest that complex biological samples can be used for the production of mAbs, which will facilitate the analysis of their proteome, while the established immuno-MS protocols can offer efficient mAb characterization. BIOLOGICAL SIGNIFICANCE: The inoculation of animals with complex biological samples is aiming at the discovery of novel disease biomarkers, present in the biological specimens, as well as the production of rare reagents that will facilitate the ultra-sensitive analysis of the biomolecules' native form. In the present study, we initially propose a general workflow concerning the handling of biological samples, as well as the monoclonal antibody production. Furthermore, we established protocols for the reliable and reproducible identification of antibody specificity using various immuno-affinity purification techniques coupled to mass spectrometry. Our data suggest that processed biological fluids can be used for the production of mAbs targeting proteins of varying abundance, and that various immuno-MS protocols can offer great capabilities for the mAb characterization procedure.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody Specificity , Mass Spectrometry/methods , Adipokines , Animals , Antibodies, Monoclonal/chemistry , Carrier Proteins/chemistry , Carrier Proteins/immunology , Chromatography, Liquid , Epitopes/immunology , Female , Glycoproteins/chemistry , Glycoproteins/immunology , Male , Mice , Mice, Inbred BALB C , Prostate-Specific Antigen/immunology , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL