Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters

Publication year range
1.
Nature ; 590(7847): 561-565, 2021 02.
Article in English | MEDLINE | ID: mdl-33627814

ABSTRACT

The fundamental building blocks of the proton-quarks and gluons-have been known for decades. However, we still have an incomplete theoretical and experimental understanding of how these particles and their dynamics give rise to the quantum bound state of the proton and its physical properties, such as its spin1. The two up quarks and the single down quark that comprise the proton in the simplest picture account only for a few per cent of the proton mass, the bulk of which is in the form of quark kinetic and potential energy and gluon energy from the strong force2. An essential feature of this force, as described by quantum chromodynamics, is its ability to create matter-antimatter quark pairs inside the proton that exist only for a very short time. Their fleeting existence makes the antimatter quarks within protons difficult to study, but their existence is discernible in reactions in which a matter-antimatter quark pair annihilates. In this picture of quark-antiquark creation by the strong force, the probability distributions as a function of momentum for the presence of up and down antimatter quarks should be nearly identical, given that their masses are very similar and small compared to the mass of the proton3. Here we provide evidence from muon pair production measurements that these distributions are considerably different, with more abundant down antimatter quarks than up antimatter quarks over a wide range of momenta. These results are expected to revive interest in several proposed mechanisms for the origin of this antimatter asymmetry in the proton that had been disfavoured by previous results4, and point to future measurements that can distinguish between these mechanisms.

13.
Phys Rev Lett ; 98(14): 142301, 2007 Apr 06.
Article in English | MEDLINE | ID: mdl-17501267

ABSTRACT

We report on a study of the longitudinal to transverse cross section ratio, R=sigmaL/sigmaT, at low values of x and Q2, as determined from inclusive inelastic electron-hydrogen and electron-deuterium scattering data from Jefferson Laboratory Hall C spanning the four-momentum transfer range 0.06

14.
Phys Rev Lett ; 88(1): 014801, 2002 Jan 07.
Article in English | MEDLINE | ID: mdl-11800956

ABSTRACT

We recently studied the spin-flipping efficiency of an rf-dipole magnet using a 120-MeV horizontally polarized proton beam stored in the Indiana University Cyclotron Facility Cooler Ring, which contained a nearly full Siberian snake. We flipped the spin by ramping the rf dipole's frequency through an rf-induced depolarizing resonance. By adiabatically turning on the rf dipole, we minimized the beam loss. After optimizing the frequency ramp parameters, we used 100 multiple spin flips to measure a spin-flip efficiency of 99.63+/-0.05%. This result indicates that spin flipping should be possible in very-high-energy polarized storage rings, where Siberian snakes are certainly needed and only dipole rf-flipper magnets are practical.

15.
Phys Rev Lett ; 87(10): 102302, 2001 Sep 03.
Article in English | MEDLINE | ID: mdl-11531475

ABSTRACT

The first measurements of the d(gamma,p)n differential cross section at forward angles and photon energies above 4 GeV were performed at the Thomas Jefferson National Accelerator Facility (JLab). The results indicate evidence of an angular dependent scaling threshold. Results at straight theta(cm) = 37 degrees are consistent with the constituent counting rules for E(gamma) greater, similar 4 GeV, while those at 70 degrees are consistent with the constituent counting rules for E(gamma) greater, similar 1.5 GeV.

16.
Phys Rev A ; 47(1): 468-479, 1993 Jan.
Article in English | MEDLINE | ID: mdl-9908939
SELECTION OF CITATIONS
SEARCH DETAIL