Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Publication year range
1.
Nature ; 597(7877): 539-543, 2021 09.
Article in English | MEDLINE | ID: mdl-34526718

ABSTRACT

Seven years after the declaration of the first epidemic of Ebola virus disease in Guinea, the country faced a new outbreak-between 14 February and 19 June 2021-near the epicentre of the previous epidemic1,2. Here we use next-generation sequencing to generate complete or near-complete genomes of Zaire ebolavirus from samples obtained from 12 different patients. These genomes form a well-supported phylogenetic cluster with genomes from the previous outbreak, which indicates that the new outbreak was not the result of a new spillover event from an animal reservoir. The 2021 lineage shows considerably lower divergence than would be expected during sustained human-to-human transmission, which suggests a persistent infection with reduced replication or a period of latency. The resurgence of Zaire ebolavirus from humans five years after the end of the previous outbreak of Ebola virus disease reinforces the need for long-term medical and social care for patients who survive the disease, to reduce the risk of re-emergence and to prevent further stigmatization.


Subject(s)
Disease Outbreaks , Ebolavirus/genetics , Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/virology , Models, Biological , Animals , Democratic Republic of the Congo/epidemiology , Disease Outbreaks/statistics & numerical data , Ebolavirus/classification , Female , Guinea/epidemiology , Hemorrhagic Fever, Ebola/transmission , High-Throughput Nucleotide Sequencing , Humans , Male , Persistent Infection/virology , Phylogeny , Survivors , Time Factors , Viral Zoonoses/transmission , Viral Zoonoses/virology
2.
Emerg Infect Dis ; 30(8): 1687-1691, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043450

ABSTRACT

In December 2023, we observed through hospital-based surveillance a severe outbreak of enterovirus D68 infection in pediatric inpatients in Dakar, Senegal. Molecular characterization revealed that subclade B3, the dominant lineage in outbreaks worldwide, was responsible for the outbreak. Enhanced surveillance in inpatient settings, including among patients with neurologic illnesses, is needed.


Subject(s)
Disease Outbreaks , Enterovirus D, Human , Enterovirus Infections , Respiratory Tract Infections , Humans , Senegal/epidemiology , Enterovirus D, Human/genetics , Enterovirus D, Human/classification , Enterovirus D, Human/isolation & purification , Enterovirus Infections/epidemiology , Enterovirus Infections/virology , Enterovirus Infections/diagnosis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Child, Preschool , Infant , Child , Phylogeny , Male , Female , Acute Disease/epidemiology , Adolescent , Hospitals , History, 21st Century
3.
Emerg Infect Dis ; 30(4): 770-774, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526209

ABSTRACT

In 2020, a sylvatic dengue virus serotype 2 infection outbreak resulted in 59 confirmed dengue cases in Kedougou, Senegal, suggesting those strains might not require adaptation to reemerge into urban transmission cycles. Large-scale genomic surveillance and updated molecular diagnostic tools are needed to effectively prevent dengue virus infections in Senegal.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue Virus/genetics , Senegal/epidemiology , Serogroup , Environment , Dengue/epidemiology
4.
Virol J ; 21(1): 163, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044231

ABSTRACT

Usutu virus (USUV), an arbovirus from the Flaviviridae family, genus Flavivirus, has recently gained increasing attention because of its potential for emergence. After his discovery in South Africa, USUV spread to other African countries, then emerged in Europe where it was responsible for epizootics. The virus has recently been found in Asia. USUV infection in humans is considered to be most often asymptomatic or to cause mild clinical signs. However, a few cases of neurological complications such as encephalitis or meningo-encephalitis have been reported in both immunocompromised and immunocompetent patients. USUV natural life cycle involves Culex mosquitoes as its main vector, and multiple bird species as natural viral reservoirs or amplifying hosts, humans and horses can be incidental hosts. Phylogenetic studies carried out showed eight lineages, showing an increasing genetic diversity for USUV. This work describes the development and validation of a novel whole-genome amplicon-based sequencing approach to Usutu virus. This study was carried out on different strains from Senegal and Italy. The new approach showed good coverage using samples derived from several vertebrate hosts and may be valuable for Usutu virus genomic surveillance to better understand the dynamics of evolution and transmission of the virus.


Subject(s)
Flavivirus Infections , Flavivirus , Genome, Viral , Phylogeny , Flavivirus/genetics , Flavivirus/classification , Flavivirus/isolation & purification , Animals , Flavivirus Infections/virology , Flavivirus Infections/veterinary , Humans , Senegal , Italy , Birds/virology , RNA, Viral/genetics , Genetic Variation , Culex/virology , Whole Genome Sequencing , Horses/virology
5.
Emerg Infect Dis ; 29(9): 1808-1817, 2023 09.
Article in English | MEDLINE | ID: mdl-37610149

ABSTRACT

Historically low levels of seasonal influenza circulation were reported during the first years of the COVID-19 pandemic and were mainly attributed to implementation of nonpharmaceutical interventions. In tropical regions, influenza's seasonality differs largely, and data on this topic are scarce. We analyzed data from Senegal's sentinel syndromic surveillance network before and after the start of the COVID-19 pandemic to assess changes in influenza circulation. We found that influenza shows year-round circulation in Senegal and has 2 distinct epidemic peaks: during January-March and during the rainy season in August-October. During 2021-2022, the expected January-March influenza peak completely disappeared, corresponding to periods of active SARS-CoV-2 circulation. We noted an unexpected influenza epidemic peak during May-July 2022. The observed reciprocal circulation of SARS-CoV-2 and influenza suggests that factors such as viral interference might be at play and should be further investigated in tropical settings.


Subject(s)
COVID-19 , Influenza, Human , Humans , COVID-19/epidemiology , SARS-CoV-2 , Senegal/epidemiology , Influenza, Human/epidemiology , Pandemics
6.
J Med Virol ; 95(1): e28347, 2023 01.
Article in English | MEDLINE | ID: mdl-36424699

ABSTRACT

Globally, 390 million people are at risk of dengue infection and over the past 50 years, the virus incidence increased thirty-fold. In Senegal, an unprecedented occurrence of outbreaks and sporadic cases have been noticed since 2017. In October 2018, an outbreak of Dengue virus 2 (DENV-2) was reported in the north of Senegal affecting multiple areas including Saint-Louis, Richard Toll, and Rosso which are located at the border with Mauritania. Of these 173 blood specimen samples collected from patients, 27 were positive for dengue by quantitative reverse transcription PCR (qRT-PCR), and eight were serologically confirmed to be positive for DENV immunoglobulin M (IgM). Serotyping using qRT-PCR reveals that isolates were positive for DENV-2. A subset of DENV-2 positive samples was selected and subjected to whole-genome sequencing followed by phylogenetic analysis. Analysis of six nearly complete genome sequences revealed that the isolates belong to the cosmopolitan genotype and are closely related to the Mauritanian strains detected between 2017 and 2018 and those detected in many West African countries such as Burkina Faso or Cote d'Ivoire. Our results suggest a transboundary circulation of the DENV-2 cosmopolitan genotype between Senegal and Mauritania and call for a need for coordinated surveillance of arboviruses between these two countries. Interestingly, a high level of homology between West African isolates highlights endemicity and calls for the set-up of subregional viral genomic surveillance which will lead to a better understanding of viral dynamics, transmission, and spread across Africa.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue/epidemiology , Senegal/epidemiology , Phylogeny , Disease Outbreaks , Genotype , Burkina Faso , Serogroup
7.
J Med Virol ; 94(11): 5593-5600, 2022 11.
Article in English | MEDLINE | ID: mdl-35879861

ABSTRACT

To assess the genetic diversity of circulating dengue virus 2 (DENV-2) in Senegal, we analyzed nine newly generated complete genomes of strains isolated during the 2018 outbreaks and 06 sequences obtained in 2018 and 2019 from Thiès and Rosso, respectively. Phylogenetic analyses revealed that Senegalese strains belonged to the cosmopolitan genotype of DENV-2, but we observed intragenotype variability leading to a divergence in two clades associated with specific geographic distribution. We report two DENV-2 variants belonging to two distinct clades. Isolates from the "Northern clade" (n = 8) harbored three nonsynonymous mutations (V1183M, R1405K, P2266T) located respectively on NS2A, NS2B, and NS4A, while isolates from the "Western clade" (n = 7) had two nonsynonymous mutations (V1185E, V3214E) located respectively in the NS2A and NS5 genes. These findings call for phylogeographic analysis to investigate routes of introductions, dispersal patterns, and in-depth in vitro and functional study to elucidate the impact of observed mutations on viral fitness, spread, epidemiology, and pathology.


Subject(s)
Dengue Virus , Dengue , Dengue/epidemiology , Genotype , Humans , Phylogeny , Phylogeography , Senegal/epidemiology
8.
BMC Infect Dis ; 21(1): 867, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34429064

ABSTRACT

BACKGROUND: Dengue fever is a mosquito born disease associated with self-limited to life threatening illness. First detected in Senegal in the nineteenth century, and despite its growing incidence this last decade, significant knowledge gaps exist in our knowledge of genetic diversity of circulating strains. This study highlights the circulating serotypes and genotypes between January 2017 and December 2018 and their spatial and temporal distribution throughout all regions of Senegal. METHODS: We used 56 dengue virus (DENV) strains for the analysis collected from 11 sampling areas: 39 from all regions of Senegal, and 17 isolates from Thiès, a particular area of the country. Two real time RT-qPCR systems were used to confirm dengue infection and corresponding serotypes. For molecular characterization, CprM gene was sequenced and submitted to phylogenetic analysis for serotypes and genotypes assignment. RESULTS: Three dengue virus serotypes (DENV-1-3) were detected by all used methods. DENV-3 was detected in 50% (28/56) of the isolates, followed by DENV-1 and DENV-2, each representing 25% (14/56) of the isolates. DENV-3 belongs to genotype III, DENV-1 to genotype V and DENV-2 to Cosmopolitan genotype. Serotype 3 was detected in 7 sampling locations and a co-circulation of different serotypes was observed in Thiès, Fatick and Richard-toll. CONCLUSIONS: These results emphasize the need of continuous DENV surveillance in Senegal to detect DENV cases, to define circulating serotypes/genotypes and to prevent the spread and the occurrence of severe cases.


Subject(s)
Dengue Virus/genetics , Dengue/epidemiology , Dengue/diagnosis , Dengue Virus/isolation & purification , Humans , Phylogeny , Public Health Surveillance , Senegal/epidemiology , Serogroup , Spatial Analysis
10.
Emerg Infect Dis ; 26(6): 1084-1090, 2020 06.
Article in English | MEDLINE | ID: mdl-32441631

ABSTRACT

During 2015-2016, Cape Verde, an island nation off the coast of West Africa, experienced a Zika virus (ZIKV) outbreak involving 7,580 suspected Zika cases and 18 microcephaly cases. Analysis of the complete genomes of 3 ZIKV isolates from the outbreak indicated the strain was of the Asian (not African) lineage. The Cape Verde ZIKV sequences formed a distinct monophylogenetic group and possessed 1-2 (T659A, I756V) unique amino acid changes in the envelope protein. Phylogeographic and serologic evidence support earlier introduction of this lineage into Cape Verde, possibly from northeast Brazil, between June 2014 and August 2015, suggesting cryptic circulation of the virus before the initial wave of cases were detected in October 2015. These findings underscore the utility of genomic-scale epidemiology for outbreak investigations.


Subject(s)
Microcephaly , Zika Virus Infection , Zika Virus , Africa, Western , Brazil/epidemiology , Cabo Verde , Disease Outbreaks , Genomics , Humans , Microcephaly/epidemiology , Zika Virus/genetics , Zika Virus Infection/epidemiology
11.
Brief Bioinform ; 18(3): 394-402, 2017 05 01.
Article in English | MEDLINE | ID: mdl-27178992

ABSTRACT

The era of genome-wide association studies (GWAS) has led to the discovery of numerous genetic variants associated with disease. Better understanding of whether these or other variants interact leading to differential risk compared with individual marker effects will increase our understanding of the genetic architecture of disease, which may be investigated using the family-based study design. We present M-TDT (the multi-locus transmission disequilibrium test), a tool for detecting family-based multi-locus multi-allelic effects for qualitative or quantitative traits, extended from the original transmission disequilibrium test (TDT). Tests to handle the comparison between additive and epistatic models, lack of independence between markers and multiple offspring are described. Performance of M-TDT is compared with a multifactor dimensionality reduction (MDR) approach designed for investigating families in the hypothesis-free genome-wide setting (the multifactor dimensionality reduction pedigree disequilibrium test, MDR-PDT). Other methods derived from the TDT or MDR to investigate genetic interaction in the family-based design are also discussed. The case of three independent biallelic loci is illustrated using simulations for one- to three-locus alternative hypotheses. M-TDT identified joint-locus effects and distinguished effectively between additive and epistatic models. We showed a practical example of M-TDT based on three genes already known to be implicated in malaria susceptibility. Our findings demonstrate the value of M-TDT in a hypothesis-driven context to test for multi-way epistasis underlying common disease etiology, whereas MDR-PDT-based methods are more appropriate in a hypothesis-free genome-wide setting.


Subject(s)
Epistasis, Genetic , Genome , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Models, Genetic , Pedigree
12.
Malar J ; 18(1): 48, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30791901

ABSTRACT

BACKGROUND: Malaria is a leading cause of mortality and morbidity in tropical countries, especially in sub-Saharan Africa. In Senegal, a control plan implemented in the beginning of the 2000s has enabled a substantial reduction of mortality and morbidity due to malaria. However, eradication of malaria requires a vaccine that protects against Plasmodium falciparum the deadliest species of the parasite that causes this disease. Plasmodium falciparum is characterized by an extensive genetic diversity that makes vaccine development challenging. In this study, the diversity of P. falciparum isolates was analysed from asymptomatic children residing in the district of Toubacouta, Senegal. METHODS: A nested PCR approach was used to perform genotyping of the msp-1 and msp-2 loci in samples from 87 asymptomatic children infected with P. falciparum, collected during a cross sectional survey in November and December 2010. Parasite densities in blood samples were determined by microscopic examination and statistical analyses were used to identify association of parasite genotype and parasitaemia. RESULTS: Genotyping was successful in 84/87 and 82/87 samples for msp-1 and msp-2, respectively. A strong genetic diversity was found with a total of 15 and 21 different alleles identified for msp-1 and msp-2, respectively. RO33 was the most frequent allelic family of msp-1 followed by MAD20, then by K1. Regarding msp-2 allelic families, 3D7 was more common than FC27. Multiple infections were predominant, since 69% and 89% of the samples genotyped for msp-1 and msp-2 showed more than one clone of P. falciparum with complexity of infection (COI) of 2.5 and 4.7, respectively. Expected heterozygosity (HE) was 0.57 and 0.55 for msp-1 and msp-2, respectively. Interestingly, polyclonal infections were significantly associated with higher parasitaemia. CONCLUSIONS: The strong genetic diversity of P. falciparum clones and the association of polyclonal infection with high parasitaemia call for a multi-allelic approach in the design of vaccine candidates for efficient malaria eradication.


Subject(s)
Asymptomatic Infections , Genetic Variation , Genotype , Malaria, Falciparum/parasitology , Parasitemia/parasitology , Plasmodium falciparum/classification , Plasmodium falciparum/genetics , Animals , Antigens, Protozoan/genetics , Child , Child, Preschool , Coinfection/parasitology , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Male , Microscopy , Parasite Load , Polymerase Chain Reaction , Senegal
13.
Malar J ; 17(1): 324, 2018 Sep 06.
Article in English | MEDLINE | ID: mdl-30189885

ABSTRACT

BACKGROUND: Serological markers are potentially useful tools for monitoring the progress of malaria control programs, but a better understanding of antibody response dynamics is necessary. The use of a magnetic bead-based immunoassay (MBA) is advantageous compared to ELISA, due to its multiplexing capacity, but limited information is available on the standardization and validation of this assay. METHODS: Several parameters for multiplex testing of antibodies to Plasmodium antigens were analysed using a set of 4 antigens and 98 sera from Senegalese rural asymptomatic and urban symptomatic individuals. The 4 antigens included Plasmodium falciparum CSP and PfAMA1 peptides, recombinant P. falciparum MSP4p20 and a Plasmodium malariae CSP (PmCSP) peptide. Comparisons with ELISA were done using MSP4p20 and whole schizont extract (SE) antigens. RESULTS: The use of fewer beads (1000 beads per well instead of 2000) and 5 µg of antigen per 106 bead were validated as lower amounts. The use of a carrier protein (BSA) was shown to be critical when using peptides and the effect of a 24 h delayed measures was evaluated (5-25% signal decrease). Analysis of Ab responses showed almost equally high levels and prevalence in all transmission settings. Clear distinctions between rural and urban malaria were noted using PmCSP and SE antigens. CONCLUSIONS: This study underlines the importance of further optimization of the MBA technique and highlights the interest of using multistage/multispecies antigens for surveillance of malaria in endemic settings.


Subject(s)
Antigens, Protozoan/immunology , Immunoassay/methods , Immunomagnetic Separation/methods , Malaria/immunology , Plasmodium falciparum/immunology , Plasmodium malariae/immunology , Protozoan Proteins/immunology , Malaria, Falciparum/immunology
14.
Malar J ; 17(1): 61, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29402293

ABSTRACT

BACKGROUND: Severe forms of malaria (SM) are an outcome of Plasmodium falciparum infection and can cause death especially in children under 4 years of age. RNASE3 (ECP) has been identified as an inhibitor of Plasmodium parasites growth in vitro, and genetic analysis in hospitalized Ghanaian subjects has revealed the RNASE3 +371G/C (rs2073342) polymorphism as a susceptibility factor for cerebral malaria. The +371 C allele results in an Arg/Thr mutation that abolishes the cytotoxic activity of the ECP protein. The present study aims to investigate RNASE3 gene polymorphisms and their putative link to severe malaria in a malaria cohort from Senegal. METHODS/RESULTS: Patients enrolled from hospitals were classified as having either uncomplicated (UM) or severe malaria (SM). The analysis of the RNASE3 gene polymorphisms was performed in 241 subjects: 178 falciparum infected (96 SM, 82 UM) and 63 non-infected subjects as population control group (CTR). Six frequent SNPs (MAF > 3%) were identified, and one SNP was associated with malaria severity by performing a logistic regression analysis SM vs.UM: RNASE3 +499G/C (rs2233860) under age, sex as covariates and HbS/HbC polymorphisms adjustment (p = 0.003, OR 0.43, CI 95% 0.20-0.92). The polymorphisms: +371G/C (rs2073342), +499G/C (rs2233860) and +577A/T (rs8019343) defined a haplotype risk (G-G-T) for malaria severity (Fisher exact test, p = 0.03) (OR 4.1, IC 95% (1.1-14.9). CONCLUSION: In addition to the previously described association of +371G/C polymorphism in Ghanaians cohort, the RNASE3 +499G/C polymorphism was associated with susceptibility to SM in a Senegalese population. The haplotype +371G/+499G/+577T defined by RNASE3 polymorphisms was associated with severity. The genetic association identified independently in the Senegalese population provide additional evidence of a role of RNASE3 (ECP) in malaria severity.


Subject(s)
Eosinophil Cationic Protein/genetics , Genetic Predisposition to Disease/genetics , Malaria, Cerebral , Malaria, Falciparum , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cohort Studies , Female , Humans , Malaria, Cerebral/epidemiology , Malaria, Cerebral/genetics , Malaria, Falciparum/epidemiology , Malaria, Falciparum/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Senegal/epidemiology , Young Adult
15.
Malar J ; 15: 155, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26969623

ABSTRACT

BACKGROUND: Concurrent malaria and arbovirus infections are common and represent an important public health concern in regions where both diseases are endemic. The present study investigates the genetic diversity and complexity of Plasmodium falciparum infection in concurrent malaria-arbovirus infections in Kedougou region, southeastern Senegal. METHODS: Parasite DNA was extracted from 60 to 27 sera samples collected from P. falciparum isolates of malaria and concurrent malaria-arbovirus infected patients, respectively, and followed by PCR-genotyping targeting the msp-1 (block2) and msp-2 (block3) allelic families. RESULTS: The mean number of genotype per allelic family was comparable between the two groups. K1 was the predominant msp-1 allelic type both in malaria (94.91%) and arbovirus-malaria (92.59%) groups, whereas IC/3D7 was the most prevalent msp-2 allelic type in malaria (94.91%) and arbovirus-malaria (96.29%) groups. Frequencies of msp-1 and msp-2 allelic types were statistically comparable between the two groups (Fisher exact test, P > 0.05) and were not associated with age. FC27 was strikingly the least prevalent in both groups and was absent in children under 5 years of age. The proportions of P. falciparum isolates from malaria-infected patients carrying the three msp-1 allelic types (67.44%) or the two msp-2 allelic types (76.47%) were significantly higher than those from arbovirus-malaria co-infected patients (Exact binomial test, P < 0.05). The multiplicities of infection (MOI) were low and comparable for msp-1 (1.19 vs 1.22) and msp-2 (1.11 vs 1.10), respectively between malaria and arbovirus-malaria groups. CONCLUSION: The study showed no difference in the genetic diversity between P. falciparum isolates from malaria and concurrent malaria-arbovirus infected patients in Kedougou. The MOI was low despite intense malaria transmission in Kedougou. The overall results suggest a limited or no influence of arbovirus infections on P. falciparum diversity and complexity of malaria infection.


Subject(s)
Arbovirus Infections/complications , Coinfection/parasitology , Genetic Variation , Malaria, Falciparum/complications , Malaria, Falciparum/parasitology , Plasmodium falciparum/classification , Plasmodium falciparum/genetics , Adolescent , Adult , Antigens, Protozoan/genetics , Child , Child, Preschool , DNA, Protozoan/genetics , DNA, Protozoan/isolation & purification , Female , Genotype , Genotyping Techniques , Humans , Infant , Male , Merozoite Surface Protein 1/genetics , Middle Aged , Plasmodium falciparum/isolation & purification , Polymerase Chain Reaction , Protozoan Proteins/genetics , Senegal , Young Adult
16.
Malar J ; 15: 47, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26821709

ABSTRACT

BACKGROUND: Malaria is one of the leading causes of acute febrile illness (AFI) in Africa. With the advent of malaria rapid diagnostic tests, misdiagnosis and co-morbidity with other diseases has been highlighted by an increasing number of studies. Although arboviral infections and malaria are both vector-borne diseases and often have an overlapping geographic distribution in sub-Saharan Africa, information about their incidence rates and concurrent infections is scarce. METHODS: From July 2009 to March 2013 patients from seven healthcare facilities of the Kedougou region presenting with AFI were enrolled and tested for malaria and arboviral infections, i.e., yellow fever (YFV), West Nile (WNV), dengue (DENV), chikungunya (CHIKV), Crimean Congo haemorrhagic fever (CCHFV), Zika (ZIKV), and Rift Valley fever viruses (RVFV). Malaria parasite infections were investigated using thick blood smear (TBS) and rapid diagnostics tests (RDT) while arbovirus infections were tested by IgM antibody detection (ELISA) and RT-PCR assays. Data analysis of single or concurrent malaria and arbovirus was performed using R software. RESULTS: A total of 13,845 patients, including 7387 with malaria and 41 with acute arbovirus infections (12 YFV, nine ZIKV, 16 CHIKV, three DENV, and one RVFV) were enrolled. Among the arbovirus-infected patients, 48.7% (20/41) were co-infected with malaria parasites at the following frequencies: CHIKV 18.7% (3/16), YFV 58.3% (7/12), ZIKV 88.9% (8/9), DENV 33.3% (1/3), and RVF 100% (1/1). Fever ≥40 °C was the only sign or symptom significantly associated with dual malaria parasite/arbovirus infection. CONCLUSIONS: Concurrent malaria parasite and arbovirus infections were detected in the Kedougou region from 2009 to 2013 and need to be further documented, including among asymptomatic individuals, to assess its epidemiological and clinical impact.


Subject(s)
Arbovirus Infections/epidemiology , Malaria/diagnosis , Malaria/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Arbovirus Infections/diagnosis , Child , Child, Preschool , Coinfection/diagnosis , Coinfection/epidemiology , Dengue/diagnosis , Dengue/epidemiology , Female , Humans , Infant , Male , Middle Aged , Senegal/epidemiology , Young Adult , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology
17.
Malar J ; 14: 281, 2015 Jul 19.
Article in English | MEDLINE | ID: mdl-26186936

ABSTRACT

BACKGROUND: Control efforts towards malaria due to Plasmodium falciparum significantly decreased the incidence of the disease in many endemic countries including Senegal. Surprisingly, in Kedougou (southeastern Senegal) P. falciparum malaria remains highly prevalent and the relative contribution of other Plasmodium species to the global malaria burden is very poorly documented, partly due to the low sensitivity of routine diagnostic tools. Molecular methods offer better estimate of circulating Plasmodium species in a given area. A molecular survey was carried out to document circulating malaria parasites in Kedougou region. METHODS: A total of 263 long-term stored sera obtained from patients presenting with acute febrile illness in Kedougou between July 2009 and July 2013 were used for malaria parasite determination. Sera were withdrawn from a collection established as part of a surveillance programme of arboviruses infections in the region. Plasmodium species were characterized by a nested PCR-based approach targeting the 18S small sub-unit ribosomal RNA genes of Plasmodium spp. RESULTS: Of the 263 sera screened in this study, Plasmodium genomic DNA was amplifiable by nested PCR from 62.35% (164/263) of samples. P. falciparum accounted for the majority of infections either as single in 85.97% (141/164) of Plasmodium-positive samples or mixed with Plasmodium ovale (11.58%, 19/164) or Plasmodium vivax (1.21%, 2/164). All 19 (11.58%) P. ovale-infected patients were mixed with P. falciparum, while no Plasmodium malariae was detected in this survey. Four patients (2.43%) were found to be infected by P. vivax, two of whom were mixed with P. falciparum. P. vivax infections originated from Bandafassi and Ninefesha villages and concerned patients aged 4, 9, 10, and 15 years old, respectively. DNA sequences alignment and phylogenetic analysis demonstrated that sequences from Kedougou corresponded to P. vivax, therefore confirming the presence of P. vivax infections in Senegal. CONCLUSION: The results confirm the high prevalence of P. falciparum in Kedougou and provide the first molecular evidence of P. vivax infections in Senegal. These findings pave the ways for further investigations of P. vivax infections in Senegal and its contribution to the global burden of malaria disease before targeted strategies can be deployed.


Subject(s)
Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Plasmodium vivax/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , DNA, Protozoan/blood , DNA, Protozoan/genetics , Female , Humans , Infant , Malaria/epidemiology , Malaria/parasitology , Male , Middle Aged , Plasmodium/genetics , Polymerase Chain Reaction , Retrospective Studies , Senegal/epidemiology , Young Adult
18.
Euro Surveill ; 20(44)2015.
Article in English | MEDLINE | ID: mdl-26558690

ABSTRACT

In the absence of a vaccine or specific treatments for Ebola virus disease (EVD), early identification of cases is crucial for the control of EVD epidemics. We evaluated a new extraction kit (SpeedXtract (SE), Qiagen) on sera and swabs in combination with an improved diagnostic reverse transcription recombinase polymerase amplification assay for the detection of Ebola virus (EBOV-RT-RPA). The performance of combined extraction and detection was best for swabs. Sensitivity and specificity of the combined SE and EBOV-RT-RPA were tested in a mobile laboratory consisting of a mobile glovebox and a Diagnostics-in-a-Suitcase powered by a battery and solar panel, deployed to Matoto Conakry, Guinea as part of the reinforced surveillance strategy in April 2015 to reach the goal of zero cases. The EBOV-RT-RPA was evaluated in comparison to two real-time PCR assays. Of 928 post-mortem swabs, 120 tested positive, and the combined SE and EBOV-RT-RPA yielded a sensitivity and specificity of 100% in reference to one real-time RT-PCR assay. Another widely used real-time RT-PCR was much less sensitive than expected. Results were provided very fast within 30 to 60 min, and the field deployment of the mobile laboratory helped improve burial management and community engagement.


Subject(s)
Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/diagnosis , Recombinases/metabolism , Reverse Transcriptase Polymerase Chain Reaction/methods , Disease Outbreaks , Early Diagnosis , Ebolavirus/genetics , Guinea , Hemorrhagic Fever, Ebola/virology , Humans , RNA, Viral/analysis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sensitivity and Specificity , Time Factors
19.
Emerg Infect Dis ; 20(2): 296-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24447334

ABSTRACT

After a period of heavy rainfall, an outbreak of Rift Valley fever occurred in southern Mauritania during September-November 2012. A total of 41 human cases were confirmed, including 13 deaths, and 12 Rift Valley fever virus strains were isolated. Moudjeria and Temchecket Departments were the most affected areas.


Subject(s)
Culicidae/virology , Disease Outbreaks , Insect Vectors/virology , Rift Valley Fever/epidemiology , Rift Valley fever virus/genetics , Viral Proteins/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Female , Humans , Male , Mauritania/epidemiology , Middle Aged , Phylogeny , Rift Valley Fever/mortality , Rift Valley Fever/transmission , Rift Valley Fever/virology , Rift Valley fever virus/classification , Seasons , Survival Analysis , Viral Proteins/classification
20.
Trop Med Infect Dis ; 9(2)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38393121

ABSTRACT

Dengue virus is becoming a major public health threat worldwide, principally in Africa. From 2016 to 2020, 23 outbreaks were reported in Africa, principally in West Africa. In Senegal, dengue outbreaks have been reported yearly since 2017. Data about the circulating serotypes and their spatial and temporal distribution were limited to outbreaks that occurred between 2017 and 2018. Herein, we describe up-to-date molecular surveillance of circulating DENV serotypes in Senegal between 2019 to 2023 and their temporal and spatial distribution around the country. For this purpose, suspected DENV-positive samples were collected and subjected to dengue detection and serotyping using RT-qPCR methods. Positive samples were used for temporal and spatial mapping. A subset of DENV+ samples were then sequenced and subjected to phylogenetic analysis. Results show a co-circulation of three DENV serotypes with an overall predominance of DENV-3. In terms of abundance, DENV-3 is followed by DENV-1, with scarce cases of DENV-2 from February 2019 to February 2022. Interestingly, data show the extinction of both serotype 1 and serotype 2 and the only circulation of DENV-3 from March 2022 to February 2023. At the genotype level, the analysis shows that sequenced strains belong to same genotype as previously described: Senegalese DENV-1 strains belong to genotype V, DENV-2 strains to the cosmopolitan genotype, and DENV-3 strains to Genotype III. Interestingly, newly obtained DENV 1-3 sequences clustered in different clades within genotypes. This co-circulation of strains belonging to different clades could have an effect on virus epidemiology and transmission dynamics. Overall, our results highlight DENV serotype replacement by DENV-3, accompanied by a wider geographic distribution, in Senegal. These results highlight the importance of virus genomic surveillance and call for further viral fitness studies using both in vitro and in vivo models, as well as in-depth phylogeographic studies to uncover the virus dispersal patterns across the country.

SELECTION OF CITATIONS
SEARCH DETAIL